
Tom Peterka	

tpeterka@mcs.anl.gov	

Mathematics and Computer Science Division	

LDAV’11 Symposium 10/24/11	

Scalable Parallel Building Blocks for Custom Data Analysis	

Morse-Smale
Complex of

combustion in
the presence of

a cross flow	

Tom Peterka, Rob Ross (ANL)	

Attila Gyulassy, Valerio Pascucci (SCI)	

Wes Kendall (UTK)	

Han-Wei Shen, Teng-Yok Lee, Abon Chaudhuri (OSU) 	

Survey of Science and Analysis Applications	

-No two analyses are alike	

-Analysis at scale is data-movement bound 	

-Data movement operations are common among different analyses

Particle tracing of thermal hydraulics flow Information entropy analysis of astrophysics

Morse-Smale complex of hydrodynamics and combustion

Executive Summary���
DIY helps the user parallelize their analysis algorithm with

data movement tools.���

A common set of operations can be
identified and encoded in a library	

-Decompose the domain	

-Assign subdomains to processors	

-Access data and store results	

-Combine local and global operations	

-Balance load, minimize communication	

-Overlap communication with computation	

-Scale efficiently	

3	

High-level motivations and assumptions 	

-Large-scale analysis (visual and numerical)
in parallel on distributed-memory HPC
machines	

-Scientists, visualization researchers, tool
builders	

-In situ, coprocessing, postprocessing	

-Parallelizing from scratch is arduous	

-Scalable data movement is key	

-The user is the expert and may already
have serial code for the analysis.	

Benefits	

-Researchers can focus on their own work, not on building parallel infrastructure	

-Analysis applications can be custom	

-Reuse core components and algorithms for performance and programmer productivity	

DIY Structure	

4	

Library structure	

Written in C++	

C bindings	

Future Fortran bindings	

DIY usage and library organization	

Features	

Parallel I/O to/from storage	

-MPI-IO, BIL	

Domain decomposition	

-Decompose domain	

-Describe existing decomposition	

Network communication	

-Global reduction (2 flavors)	

-Local nearest neighbor	

!"#$%&'"() *"+$&%",&'"()-.((%

/)&%0+"+-1"23&30

4%&+56-789:;;;6-</== >&3&*"8?6-*"+@'

@.16-A+$B%(?6-C5$%%6-*.D

E@F

G>@

78"H52(3

I%(2&%

J%(K9")H

/++"H)#8)'

E@F

E8K(#L(+"'"() =(##$)"K&'"()
M8&N
E&'&

@OA

P3"'8-
M8+$%'+

=(#L38++"()Q'"%"'"8+ >&3&%%8%
!(3'

E&'&'0L8
=38&'"()

>&3&%%8%

Data Model	

5	

Features	

-All input data and output analysis data is represented as MPI data types	

-MPI data types can represent any C/C++/Fortran language structure	

-User does not serialize / deserialize types prior to use	

-Zero copy at application level saves time and space	

-Custom MPI data types are an advanced topic	

-DIY assists in MPI data type creation	

struct Particle {	

 float[4] pt;	

 int steps;	

};	

MPI_Datatype type;	

struct map_block_t map[] = {	

 {MPI_FLOAT, OFST, 4, offsetof(struct Particle, pt), 1},	

 {MPI_INT, OFST, 1, offsetof(struct Particle, steps), 1},	

};	

DIY_Create_datatype(0, 2, map, &type);	

C data structure	

 DIY MPI data type	

I/O: Parallel Reading Data and Writing Analysis Results	

6	

Data input	

-Application-level two-phase I/O	

-Reads raw, netCDF, HDF5 (future)	

-Read requests sorted and aggregated into large contiguous accesses	

-Data redistributed to processes after reading	

-Single and multi block/file domains.	

Input algorithm	

Kendall et al., Towards a General I/O Layer for Parallel Visualization Applications, CG&A ‘11

!"#$"%
&#'#

()#*+,-,
&#'# ././. ././.01,' 01,' 01,'20'3*4,

5/)

3*064/7 3*064/8 3*064/)/9/8 :00'"%

!"#$"%
&#'#

()#*+,-,
&#'#

!"#$"%
&#'#

()#*+,-,
&#'#Output file format	

Analysis output	

-Binary	

-General header/data blocks	

-Footer with indices	

-Application assigns semantic value to DIY blocks	

-Compression	

3 Communication Patterns	

7	

!"#$%&'
' () * + , - .

/ 0 (' ((() (* (+ (,

!"#$%&(

!12#342

' () * + , - .

/ 0 (' ((() (* (+ (,

' () * + , - .

/ 0 (' ((() (* (+ (,

!"#$%&'
(&)&* ' + , - * . / 0

1 2 +' ++ +, +- +* +.

!"#$%&+
(&)&,

!34#564

' + , - * . / 0

1 2 +' ++ +, +- +* +.

' + , - * . / 0

1 2 +' ++ +, +- +* +.

!"#$%&'
(&)&*

' + , - * . / 0

1 2 +' ++ +, +- +* +.

1 +' +, +*

1 +,

!"#$%&+
(&)&,

!34#564

Nearest neighbor	

 Swap-based
reduction	

Merge-based
reduction	

Example API Use	

8	

// initialize	

int dim = 3; // number of dimensions in the problem	

int tot_blocks = 8; // total number of blocks	

int data_size[3] = {10, 10, 10}; // data size	

MPI_Init(&argc, &argv); // init MPI before DIY	

DIY_Init(dim, ROUND_ROBIN_ORDER, tot_blocks, &nblocks, data_size,

MPI_COMM_WORLD);	

// decompose domain	

int share_face = 0; // whether adjoining blocks share the same face	

int ghost = 0; // besides sharing a face, whether additional layers of ghost cells are needed	

int ghost_dir = 0; // ghost cells apply to all or particular sides of a block	

int given[3] = {0, 0, 0}; // constraints on blocking (none)	

DIY_Decompose(share_face, ghost, ghost_dir, given);	

// read data	

 for (int i = 0; i < nblocks; i++) {	

 DIY_Block_starts_sizes(i, min, size);	

 DIY_Read_add_block_raw(min, size, infile, MPI_INT, (void**)&(data[i]));	

}	

DIY_Read_blocks_all();	

Example API Continued	

9	

// your own local analysis	

// merge results, in this example	

// could be any combination / repetition of the three communication patterns	

int rounds = 2; // two rounds of merging	

int kvalues[2] = {4, 2}; // k-way merging, eg 4-way followed by 2-way merge	

int nb_merged; // number of output merged blocks	

DIY_Merge_blocks(in_blocks, hdrs, num_in_blocks, out_blocks, num_rounds, k_values,
&MergeFunc, &CreateItemFunc, &DeleteItemFunc, &CreateTypeFunc, &num_out_blocks);	

// write results	

DIY_Write_open_all(outfile);	

DIY_Write_blocks_all(out_blocks, num_out_blocks, datatype);	

DIY_Write_close_all();	

// terminate	

DIY_Finalize(); // finalize DIY before MPI	

MPI_Finalize();	

10	

Parallel Time-Varying Flow Analysis	

Approach	

-In core / out of core processing of time
steps	

-Simple load balancing (multiblock
assignment, early particle termination)	

-Adjustable synchronization
communication 	

Collaboration with the Ohio State University and University of Tennessee Knoxville

!"#$

!%
!&

!'
()*+,

-$.!"+$/

/01!"1)
2$"34(*.4**5

/01+$

$0*+4

!$#0*.1)
2$"34(*.4**5

!"#$6/!$0/

!7
!'

!8

!9
!8

!:

Algorithm	

for (epochs) {	

 read my process’ data blocks	

 for (rounds) {	

 for (my blocks) { 	

 advect particles	

 }	

 exchange particles	

 } 	

}	

Pathline tracing of 32
time-steps of combustion

in the presence of a cross-
flow	

Parallelization
within epochs and
serialization across
epochs adds
greater flexibility.	

Peterka et al., A Study of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields, IPDPS ‘11

11	

Parallel Information-Theoretic Analysis	

Objective	

-Decide what data are the most essential for
analysis 	

-Minimize the information losses and maximize the
quality of analysis	

-Steer the analysis of data based on information
saliency	

Information-theoretic approach	

-Quantify Information content based on Shannon’s
entropy	

-Use this model to design new analysis data
structures and algorithms	

Collaboration with the Ohio State University and New York University Polytechnic Institute

!"#$%&'()$"*
(+,$%,()-.
'/0$%)(+&1

2,34555
678.&$9,/

:,-()$".$#.)"#$%&'()$"
,"(%$;<.#),/9

=%,'1.$#.+)0+.)"#$%&'()$"
,"(%$;<**(>%?>/,"(.
%,0)$"1.)".$%)0)"'/.

9'('**'%,.(+,.)"(,%,1()"0
%,0)$"1.)".1)&>/'()"0.

-$$/'"(.#/$@.)".'.">-/,'%.
%,'-($%A

Shannon’s Entropy 	

The average amount of information
expressed by the random variable is	

12	

Parallel Topological Analysis	

- Transform discrete scalar field into Morse-Smale complex	

-Nodes are minima, maxima, saddle points of scalar values	

- Arcs represent constant-sign gradient flow	

- Used to quickly see topological structure	

Two levels of simplification of
the Morse-Smale complex for jet
mixture fraction.	

Collaboration with SCI Institute, University of Utah

Example of computing discrete gradient and Morse-Smale Complex	

1	

 2	

3	

 4	

Gyulassy et al., The Parallel Computation of Morse-Smale Complexes, Submitted to IPDPS ‘12

Performance and Scalability	

13	

Information entropy	

 Topological analysis	

 Particle tracing	

Summary	

14	

Successes	

-Supports numerous, diverse analysis
techniques	

-Enables serial algorithms to be parallelized	

-Flexible combination of data movements	

-Both postprocessing and in situ	

-Efficient and scalable	

Limitations	

-Requires effort on the part of the user	

-Needs a program and (expert?)
programmer	

Ongoing	

Finish installing existing code for swap-based reduction	

AMR, unstructured, particle decomposition	

Hybrid parallelism?	

Main ideas	

-Scalable analysis is about moving, transforming, reducing, analyzing, storing data	

-Scientists, researchers take ownership of their own analysis	

Tom Peterka	

tpeterka@mcs.anl.gov	

Mathematics and Computer Science Division	

Acknowledgments:	

Facilities	

Argonne Leadership Computing Facility (ALCF)	

Oak Ridge National Center for Computational Sciences (NCCS)	

Funding	

DOE SciDAC UltraVis Institute	

DOE SDMAV Exascale Initiative	

ANL LDRD	

“The purpose of computing is insight, not numbers.”	

	

–Richard Hamming, 1962

https://svn.mcs.anl.gov/repos/diy/trunk	

LDAV’11 Symposium 10/24/11	

