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Survey of Science and Analysis Applications

"Morse-Smale complex of hydrodynamics and combustion

-No two analyses are alike
-Analysis at scale is data-movement bound
-Data movement operations are common among different analyses




Executive Summary
DIY helps the user parallelize their analysis algorithm with
data movement tools.

High-level motivations and assumptions A common set of operations can be

-Large-scale analysis (visual and numerical) identified and encoded in a library
in parallel on distributed-memory HPC -Decompose the domain

machines -Assign subdomains to processors

-Scientists, visualization researchers, tool -Access data and store results

builders -Combine local and global operations

-In situ, coprocessing, postprocessing -Balance load, minimize communication

-Parallelizing from scratch is arduous -Overlap communication with computation

-Scalable data movement is key -Scale efficiently

-The user is the expert and may already
have serial code for the analysis.

Benefits
-Researchers can focus on their own work, not on building parallel infrastructure
-Analysis applications can be custom
-Reuse core components and algorithms for performance and programmer productivity




DIY Structure

Features
Parallel I/O to/from storage
-MPI-10, BIL
Domain decomposition
-Decompose domain
-Describe existing decomposition
Network communication
-Global reduction (2 flavors)

-Local nearest neighbor

Simulation Visualization Tool
Flash, Nek5000, HACC ParaView, Vislt

Library structure
Written in C++
C bindings

Future Fortran bindings

Analysis Library
ITL, Osuflow, Qhull, VTK
|
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DIY usage and library organization




Data Model

Features
-All input data and output analysis data is represented as MPI data types
-MPI data types can represent any C/C++/Fortran language structure
-User does not serialize / deserialize types prior to use
-Zero copy at application level saves time and space
-Custom MPI data types are an advanced topic

-DIY assists in MPI data type creation

C data structure DIY MPI data type

struct Particle { MP|_Datatype type;
float[4] pt; struct map_block_t map[] = {
int steps; {MPI_FLOAT, OFST, 4, offsetof(struct Particle, pt), 1},
% {MPIL_INT, OFST, |, offsetof(struct Particle, steps), |},
¢
DIY_Create_datatype(0, 2, map, &type);




I/O: Parallel Reading Data and Writing Analysis Results

Data input

-Application-level two-phase I/O

-Reads raw, netCDF, HDF5 (future)

-Read requests sorted and aggregated into large contiguous accesses

-Data redistributed to processes after reading Input algorithm

-Single and multi block/file domains. " o
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Analysis output

PEs exchange data

-Binary

PE 2

PEs merge requests
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-General header/data blocks

PEs compute schedule and read data

-Footer with indices
-Application assigns semantic value to DIY blocks

-Compression

Headeré Analysis Header; Analysis Headeré Analysis
Data | Data Data ! Data B Data @ Data
Output file format : : :

Block 0 Block | Block n - | Footer

Kendall et al., Towards a General I/O Layer for Parallel Visualization Applications, CG&A ‘11




3 Communication Patterns

Swap-based
reduction

Merge-based
reduction




// initialize Example APl Use

int dim = 3; // number of dimensions in the problem
int tot_blocks = 8; // total number of blocks

int data_size[3] = {0, 10, 10}; // data size
MPI_Init(&argc, &argv); // init MPI before DIY

DIY_Init(dim, ROUND_ROBIN_ORDER, tot_blocks, &nblocks, data_size,
MPI_COMM_WORLD);

// decompose domain

int share_face = 0; // whether adjoining blocks share the same face

int ghost = 0; // besides sharing a face, whether additional layers of ghost cells are needed
int ghost_dir = 0; // ghost cells apply to all or particular sides of a block

int given[3] = {0, 0, 0}; // constraints on blocking (none)

DIY_Decompose(share_face, ghost, ghost_dir, given);

/] read data
for (inti = 0; i < nblocks; i++) {
DIY_Block_starts_sizes(i, min, size);
DIY_Read_add_block raw(min, size, infile, MPI_INT, (void**)&(data[i]));

}
DIY _Read_blocks_all();




Example APl Continued

Il 'your own local analysis

/I merge results, in this example

Il could be any combination / repetition of the three communication patterns
int rounds = 2; // two rounds of merging

int kvalues[2] = {4, 2}; // k-way merging, eg 4-way followed by 2-way merge
int nb_merged; // number of output merged blocks

DIY Merge_blocks(in_blocks, hdrs, num_in_blocks, out_blocks, num_rounds, k_values,
&MergeFunc, &CreateltemFunc, &DeleteltemFunc, &CreateTypeFunc, &num_out_blocks);

/] write results

DIY Write_open_all(outfile);
DIY_Write_blocks_all(out_blocks, num_out_blocks, datatype);
DIY_Write_close_all();

// terminate

DIY_Finalize(); // finalize DIY before MPI
MPI_Finalize();




Parallel Time-Varying Flow Analysis

Collaboration with the Ohio State University and University of Tennessee Knoxville

Approach

. . temporal
-In core / out of core processing of time neighborhood

time steps 0 epoch
steps
P wé Parallelization
tl

-Simple load balancing (multiblock t0//0/ within epochs and

assignment, early particle termination) block serialization across

-Adjustable synchronization epochs adds
communication greater flexibility.

Algorithm “e
for (epochs) {

read my process’ data blocks

for (rounds) { spatial

for (my blocks) { neighborhood

advect particles Pathline tracing of 32

} time-steps of combustion
in the presence of a cross-

exchange particles
flow

}

} Peterka et al., A Study of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields, IPDPS “11




Parallel Information-Theoretic Analysis

Collaboration with the Ohio State University and New York University Polytechnic Institute

Obijective

-Decide what data are the most essential for
analysis

Nek5000
CFD model

-Minimize the information losses and maximize the

quality of analysis Information-

-Steer the analysis of data based on information theoretic
. algorithms
saliency

Information-theoretic approach

Areas of high information
entropy--turbulent
entropy regions in original [
data--are the interesting
regions in simulating

-Quantify Information content based on Shannon’s

-Use this model to design new analysis data

structures and algorithms coolant flow in a nuclear
reactor.

Shannon’s Entr.opy ) Section of information
The average amount of information entropy field

expressed by the random variable is

H(z) = —) pilogp;
1=1




Parallel Topological Analysis
Collaboration with SCI Institute, University of Utah |

-Transform discrete scalar field into Morse-Smale complex
-Nodes are minima, maxima, saddle points of scalar values
-Arcs represent constant-sign gradient flow

-Used to quickly see topological structure

Two levels of simplification o
the Morse-Smale complex for jet

Example of computing discrete gradient and Morse-SmaIe Complex ) )
mixture fraction.

Gyulassy et al., The Parallel Computation of Morse-Smale Complexes, Submitted to IPDPS ‘12 12




Performance and Scalability

Strong Scaling Strong Scaling Strong Scaling
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Summary

Main ideas
-Scalable analysis is about moving, transforming, reducing, analyzing, storing data

-Scientists, researchers take ownership of their own analysis

Successes Limitations
-Supports numerous, diverse analysis -Requires effort on the part of the user

techniques -Needs a program and (expert?)
-Enables serial algorithms to be parallelized programmer

-Flexible combination of data movements
-Both postprocessing and in situ

-Efficient and scalable

Ongoing
Finish installing existing code for swap-based reduction
AMR, unstructured, particle decomposition

Hybrid parallelism?
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