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Survey of Science and Analysis Applications	



-No two analyses are alike	


-Analysis at scale is data-movement bound 	


-Data movement operations are common among different analyses 

Particle tracing of thermal hydraulics flow Information entropy analysis of astrophysics 

Morse-Smale complex of hydrodynamics and combustion 



Executive Summary���
DIY helps the user parallelize their analysis algorithm with 

data movement tools.���

A common set of operations can be 
identified and encoded in a library	



-Decompose the domain	


-Assign subdomains to processors	


-Access data and store results	


-Combine local and global operations	


-Balance load, minimize communication	


-Overlap communication with computation	


-Scale efficiently	
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High-level motivations and assumptions 	



-Large-scale analysis (visual and numerical) 
in parallel on distributed-memory HPC 
machines	



-Scientists, visualization researchers, tool 
builders	


-In situ, coprocessing, postprocessing	


-Parallelizing from scratch is arduous	


-Scalable data movement is key	


-The user is the expert and may already 
have serial code for the analysis.	



Benefits	



-Researchers can focus on their own work, not on building parallel infrastructure	


-Analysis applications can be custom	


-Reuse core components and algorithms for performance and programmer productivity	





DIY Structure	
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Library structure	



Written in C++	


C bindings	


Future Fortran bindings	



DIY usage and library organization	



Features	



Parallel I/O to/from storage	


-MPI-IO, BIL	



Domain decomposition	


-Decompose domain	


-Describe existing decomposition	



Network communication	


-Global reduction (2 flavors)	


-Local nearest neighbor	
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Data Model	
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Features	



-All input data and output analysis data is represented as MPI data types	


-MPI data types can represent any C/C++/Fortran language structure	


-User does not serialize / deserialize types prior to use	


-Zero copy at application level saves time and space	


-Custom MPI data types are an advanced topic	


-DIY assists in MPI data type creation	



struct Particle {	


 float[4] pt;	



 int steps;	


};	



MPI_Datatype type;	


struct map_block_t map[] = {	



 {MPI_FLOAT,  OFST,  4,  offsetof(struct Particle, pt),      1},	


 {MPI_INT,       OFST,  1,  offsetof(struct Particle, steps),  1},	



};	


DIY_Create_datatype(0, 2, map, &type);	



C data structure	

 DIY MPI data type	





I/O: Parallel Reading Data and Writing Analysis Results	
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Data input	



-Application-level two-phase I/O	


-Reads raw, netCDF, HDF5 (future)	


-Read requests sorted and aggregated  into large contiguous accesses	


-Data redistributed to processes after reading	


-Single and multi block/file domains.	



Input algorithm	



Kendall et al., Towards a General I/O Layer for Parallel Visualization Applications, CG&A ‘11 
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Analysis output	



-Binary	


-General header/data blocks	


-Footer with indices	


-Application assigns semantic value to DIY blocks	


-Compression	





3 Communication Patterns	
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Nearest neighbor	

 Swap-based 
reduction	



Merge-based 
reduction	





Example API Use	
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// initialize	


int dim = 3; // number of dimensions in the problem	



int tot_blocks = 8; // total number of blocks	


int data_size[3] = {10, 10, 10}; // data size	



MPI_Init(&argc, &argv); // init MPI before DIY	


DIY_Init(dim, ROUND_ROBIN_ORDER, tot_blocks, &nblocks, data_size, 

MPI_COMM_WORLD);	



// decompose domain	


int share_face = 0; // whether adjoining blocks share the same face	



int ghost = 0; // besides sharing a face, whether additional layers of ghost cells are needed	


int ghost_dir = 0; // ghost cells apply to all or particular sides of a block	



int given[3] = {0, 0, 0}; // constraints on blocking (none)	


DIY_Decompose(share_face, ghost, ghost_dir, given);	



// read data	


 for (int i = 0; i < nblocks; i++) {	



    DIY_Block_starts_sizes(i, min, size);	


    DIY_Read_add_block_raw(min, size, infile, MPI_INT, (void**)&(data[i]));	



}	


DIY_Read_blocks_all();	





Example API Continued	
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// your own local analysis	



// merge results, in this example	


// could be any combination / repetition of the three communication patterns	



int rounds = 2; // two rounds of merging	


int kvalues[2] = {4, 2}; // k-way merging, eg 4-way followed by 2-way merge	



int nb_merged; // number of output merged blocks	


DIY_Merge_blocks(in_blocks, hdrs, num_in_blocks, out_blocks, num_rounds, k_values, 
&MergeFunc, &CreateItemFunc, &DeleteItemFunc, &CreateTypeFunc, &num_out_blocks);	



// write results	


DIY_Write_open_all(outfile);	


DIY_Write_blocks_all(out_blocks, num_out_blocks, datatype);	


DIY_Write_close_all();	



// terminate	



DIY_Finalize(); // finalize DIY before MPI	


MPI_Finalize();	
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Parallel Time-Varying Flow Analysis	



Approach	



-In core / out of core processing of time 
steps	


-Simple load balancing (multiblock 
assignment, early particle termination)	



-Adjustable synchronization 
communication 	



Collaboration with the Ohio State University and University of Tennessee Knoxville 
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Algorithm	


for (epochs) {	


  read my process’ data blocks	


  for (rounds) {	


    for (my blocks) { 	


      advect particles	


    }	


    exchange particles	


  } 	


}	



Pathline tracing of 32 
time-steps of combustion 

in the presence of a cross-
flow	



Parallelization 
within epochs and 
serialization across 
epochs adds 
greater flexibility.	



Peterka et al., A Study of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields, IPDPS ‘11 
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Parallel Information-Theoretic Analysis	



Objective	


-Decide what data are the most essential for 
analysis 	



-Minimize the information losses and maximize the 
quality of analysis	



-Steer the analysis of data based on information 
saliency	



Information-theoretic approach	


-Quantify Information content based on Shannon’s 
entropy	



-Use this model to design new analysis data 
structures and algorithms	



Collaboration with the Ohio State University and New York University Polytechnic Institute 
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Shannon’s Entropy 	


The average amount of information 
expressed by the random variable is	





12	



Parallel Topological Analysis	



- Transform discrete scalar field into Morse-Smale complex	


-Nodes are minima, maxima, saddle points of scalar values	


- Arcs represent constant-sign gradient flow	


- Used to quickly see topological structure	



Two levels of simplification of 
the Morse-Smale complex for jet 
mixture fraction.	



Collaboration with SCI Institute, University of Utah 

Example of computing discrete gradient and Morse-Smale Complex	
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 2	
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Gyulassy et al., The Parallel Computation of Morse-Smale Complexes, Submitted to IPDPS ‘12 



Performance and Scalability	
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Information entropy	

 Topological analysis	

 Particle tracing	





Summary	
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Successes	



-Supports numerous, diverse analysis 
techniques	


-Enables serial algorithms to be parallelized	


-Flexible combination of data movements	


-Both postprocessing and in situ	


-Efficient and scalable	



Limitations	



-Requires effort on the part of the user	


-Needs a program and (expert?) 
programmer	



Ongoing	



Finish installing existing code for swap-based reduction	


AMR, unstructured, particle decomposition	


Hybrid parallelism?	



Main ideas	



-Scalable analysis is about moving, transforming, reducing, analyzing, storing data	


-Scientists, researchers take ownership of their own analysis	
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“The purpose of computing is insight, not numbers.”	


	

–Richard Hamming, 1962 
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