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Motivation

● Data too large to be 
stored in-core

● Contents of interval 
volumes are often of 
unequal importance

● Importance of interval 
volumes can change 
interactively

● Want to use memory on 
important interval 
volumes

Value
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Interval
volume

Unimportant
Interval
volumes



  

Workflow Context
Generate

Select

User
Feedback

Analyze

Real-time

Interactive

Non-interactive

● Non-interactive data generation
● Out-of-core storage

● Includes simulation time

● Interactive data selection
● Reduce data size

● Consider needs of analysis

● Real-time analysis
● Operates on in-core subset

● Present results to user



  

LOD Selection

● Goal is to minimize error subject to a size constraint, 
so we need a way to estimate error

● Error estimation must be interactive because:
● LOD selection is interactive
● Importance of different intervals may be changed 

interactively.

● Data is out-of-core, so it isn't practical to directly use 
the data for error estimation

● Generate metadata in noninteractive portion
● Estimate error using the metadata



  

Related Work: Min-max trees

● Store the min and max values of different subregions 
of the volume

● Can tell us whether a part of a volume may be 
sensitive to LOD selection, given salient intervals, but 
not how sensitive.

● Useful for isosurfacing
Gregorski, et al. 
“Adaptive Extraction of Time-varying Isosurfaces”

● May be possible to extend for LOD selection, but this 
is not the approach we take.



  

Contributions

● A kind of metadata, Histogram Spectra, is introduced 
to enable error estimation for interactive LOD 
selection on time-varying multivariate data

● Different interval volumes may have different 
importance weights

● Importance weights can be changed interactively, 
with the LOD optimization also being performed 
interactively, enabling interactive data selection

● Enables improved quality by applying optimization to 
approximately minimize error over salient intervals, 
subject to a size constraint



  

A Histogram Spectrum

h x ,a=∣f bx−f ax∣=Histogram spectrum
f ax =PDF of block sampled with frequency a
f bx =PDF of ground truth block
x=A sample value

Intuition: Stores a discretization of the differences between 
the PDF of the ground truth and the PDF of downsampled 
levels of detail.

Stored per-block



  

Weighted Histogram Spectrum

hw x ,a=w xhx ,a=Weighted histogram spectrum

w x={1 , x∈Y
0 ,otherwise

Y=Set of all points in the salient interval volume

● Values are not necessarily of equal importance
● To account for this, the histogram spectrum is 

weighted according to saliency
● Multiple salient intervals can be specified

Salient
interval



  

Error Estimation with a Weighted 
Histogram Spectrum

● An integration along a 
horizontal line segment 
within the weighted 
histogram spectrum

● Vertical position (a) 
determined by the LOD

E a=∫
−∞

∞

hw x ,adx=Histogram Spectrum Predicted Error

Intuitively, this is the approximate change in the volume of 
the salient interval volume

Salient
interval



  

Interpretation of Predicted Error
● Predicted error enables error estimation using compact 

precomputed metadata instead of the original data

● RMS error, without the use of metadata, is used for 
comparison; not practical for interactive workflows

● Proportionality is reasonable because downsampling tends to 
increase RMSE and change the volume of interval volumes

A typical result:



  

Applying Histogram Spectra

● Every block has a histogram spectrum
● Metadata, much smaller than input, per-block 
● Precomputed during the non-interactive data 

generation phase; the dataset must be read once
● Precomputation time is dominated by the single 

streaming read pass, rather than compute

● Because the histogram spectrum predicted error is 
proportional to the RMS error, we can use it in place 
of the RMS error for LOD selection.

● Any inaccuracy will manifest itself in the error present 
in the results for a given size constraint



  

Optimization for LOD Selection
argmin

L
∑
i=1

N

Ei(aLi
)

where

∑
i=1

N

Si , Li
≤Smax

1≤Li≤M
Li∈ℤ

Li is the LOD of block i
Si , k is the size of block i  at LOD k  in bytes
Smax is the maximum total size
N is the number of blocks
M is the number of levels
E i is the histogram spectrum predicted error for block i
aLi

is the sampling frequency for the LOD assigned to block i

● Unknowns are level of 
detail assignments

● Nonlinear because E
i
 

varies nonlinearly with a 
change in level

(Size constraint)

(Level constraint)

(Integer levels)



  

Optimization for LOD Selection

● Not practical to solve directly
● A linear binary integer programming 

formulation is in the paper – still not practical
● However, we did apply it using GLPK for 

evaluating accuracy.

● A greedy solution was found to be effective in 
our test cases.



  

Greedy LOD Selection

● Heuristic: Error density

● We want blocks that have low error density
(to minimize overall error for a given size)

● Apply an evaluate – sort – select algorithm

A i , j=
E(a j)

Si , j

=Error density

where
E i(a j) is the predicted error in block i  at LOD j
S i , j is the size in bytes of block i  at LOD j



  

Evaluate – Sort – Select

1) Create a list of potential LOD assignments

● One entry for every block for every LOD
● Evaluate the error density heuristic for each

2) Sort assignments in ascending order of the heuristic

3) Apply LOD assignments incrementally from the start of the list 
until the size constraint is reached

● Initial assignments for blocks are at lowest LOD
● Every time an assignment is made to a block, the total 

size is updated by subtracting the old assignment 
size and adding the new assignment size



  

Greedy Approximation vs. Exact
● GLPK applied using the linear binary integer 

programming form of the problem for a direct solution 

● GLPK 1000x-100000x slower (to be expected...)

● Results nearly identical for the tested cases



  

RMS Error vs. Predicted Error

● Using histogram spectrum 
predicted error instead of 
RMS error within the 
optimization algorithm yields 
similar results.

● HSPE metadata usage 
reduces reads needed, 
greatly improving speed.

● This is reasonable, given the 
proportional relationship 
observed on all of our 
datasets

● Volume data

● Image data



  

Multivariate Extension

● Handled via a summation of univariate problems

● Independent histogram spectra

● Each variable has its own weighting function

argmin
L

∑
i=1

N

EiaLi


Univariate

hw i
x ,a=w xhix ,a

Eia=∫
−∞

∞

hwi
x ,adx

argmin
L

∑
k=1

C

∑
i=1

N k

Ek , iak , Lk , i


Ei , k a=∫
−∞

∞

hw i, k
x ,adx

hw i, k
x ,a=wk x hi , k x ,a

Multivariate, C variables

Objective
Function

Predicted
Error

Function

Weighted
Histogram

Spectra



  

Multivariate Weighting

● Consider the case where interval [a
0
:a

1
] of variable A 

is only important when it occurs within the interval 
[b

0
:b

1
] of variable B

● The weighting function for A, w
A
, depends on a and 

b, in this case.
● The important intervals are not known a priori
● Need interactive re-weighting; cannot go back to data
● This would require storage of joint histogram spectra 

between A and B

● An alternative: conditional importance



  

Conditional Importance
● Consider again the case 

where interval [a
0
:a

1
] of 

variable A is only important 
when it occurs within the 
interval [b

0
:b

1
] of variable B

● Approximate the relationship 
between A and B using 
conditional probability

● Does not require storage of 
joint histogram spectra

● Future work: Consider truly 
joint distributions

w A(a)={k A P(A=a∣B∈[b0: b1]) , a∈[a0 :a1]

0 ,otherwise
k A is a weighting constant for variable A

Example: Probability density of 
velocities is different within different 
QCLOUD interval volumes



  

Results: Speed
Climate Combustion

Original data 117GiB; 8 LODs; 
5,920 blocks

69GiB; 8 LODs;
17,010 blocks

Histogram spectra
(metadata)

67MiB 60MiB

LOD selection time 
using RMS error 
(no metadata)

1782 seconds 3900 seconds

LOD selection time 
using histogram spectra 
 predicted error 
(with metadata)

0.1 second 0.2 second

● Both tests used the greedy approximation algorithm

● Data size is much larger than system memory (4GiB)

● Using RMS error, disk accesses are needed, contrary to using histogram 
spectra predicted error



  

Results: Quality

● Narrower salient interval 
volumes tend to yield better 
quality: less volume to 
sample with same data size

Ground truth Narrow intervals Wide intervals

● More data yields higher 
quality: more data to sample 
the same volume
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Future Work

● HSPE vs. other error metrics

● Joint histogram spectra
● Storage challenges
● Curse of dimensionality
● May not be much better than conditional 

importance

● Consider continuity constraints between 
blocks in time and space
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