In-Situ Visualization for Direct Numerical Simulation of Turbulent Combustion

Hongfeng Yu

Sandia National Laboratories, Livermore, CA

Joint work with

Chaoli Wang (MTU), Ray Grout (Sandia), Jackie Chen (Sandia), Kwan-Liu Ma (UCD)

Background

Scientific Simulations
 Increasing amount of data
 Efficient and effective solutions

- Data Analysis and Visualization
 Post-processing
 Co-processing
- I/O and Network Bandwidth Bound
 Data reduction

In-Situ Visualization

- Transform and Reduce Data During Simulations
- Related Work
 Globus (1992), Parker (1995), Tu (2006) ...

Challenges

- Integration
- Workload balancing and scalability

OLow cost

In-Situ Visualization for S3D Combustion Simulations

S3D Time Advance Loop

• A simulation for lifted flame stabilized

- 1.3×10⁹ grid points, 22 species
- 140GB restart file / timestep, output every 200 timestep : interesting effects may occur more rapidly than this!
 - May not be recovered in post-processing
 - Significant I/O overhead in post-processing

In-Situ Visualization for S3D Combustion Simulations

Incorporate In-Situ Analysis

Rendering
Feature extraction and tracking
Data reduction

.

In-Situ Visualization for S3D Combustion Simulations

Incorporate In-Situ Analysis

Rendering: parallel volume and particle rendering OFeature extraction and tracking OData reduction

• • • • • •

Sort-last Parallel Rendering

Volume Rendering OBoundary data exchange Diagonal communication elimination ORay casting H2 OMulti-variable Н 0 02 OH H₂O HO2 H2O2 CH3 CH4

Particle Rendering
 Software point sprite
 Pre-calculated normal
 Depth
 Image space

Integrate Volume and Particle Rendering Boundary issue

Integrate Volume and Particle Rendering

Algorithm Integrating volume rendering with particle rendering

- 1: render particles within its own data region;
- 2: exchange particles falling into the boundary with neighboring data regions;
- 3: render particles falling into the boundary from its own region and neighboring data regions;
- 4: read out the RGBA and the depth channels of particle rendering;
- 5: perform volume raycasting with depth lookup of the particle image for correct blending.

Image Compositing

Direct Send ON·(N-1) messages exchanged among N PEs Ony number of processors

Binary Swap
 N·logN messages exchanged among N PEs
 Power-of-two processors

2-3 Swap

O(N·logN) messages exchanged among N PEs
 Any number of processors

Image Compositing

- 2-3 Swap
 - OMultistage process
 - Partition processors into groups
 - ○2-3 compositing tree
 - Oscale well to thousands of processors

Integrating Visualization with Simulation

Simulation Side

void s3drender_init_(

int *myid, int *gcomm,

double *species, char *speciesNames,

double *loc,

double *x, double *y, double *z, int *nx, int *ny, int *nz, int *npx, int *npy, int *npz,

int neighbors[6])

MPI Communicator

pointer to local scalar variable

pointer to local particle data

size and coordinates of global domain and local partition

neighbor processors

Integrating Visualization with Simulation

Visualization Side

- Perform volume and particle rendering
 Calculate and gather depth value
 Visibility sorting
 Build compositing tree
- Image composting

Test Environment

 Cray XT5 at (NCCS), total 224,256 compute cores. Each node contains two hex-core AMD Opteron processors, 16GB memory, and a SeaStar 2+ router.

Experiment OSimulation

# procs	240	1920	6480
volume size	$405 \times 320 \times 80$	$810 \times 640 \times 160$	$1215 \times 960 \times 240$
# variables	27	27	27
data size	2.1 <i>GB</i>	16.7GB	56.3GB
# particles	0.8M	5.2 <i>M</i>	17.4M
# variables	118	118	118
data size	0.3GB	2.5GB	8.3GB

• Visualization

Image Resolution: 512², 1024² and 2048²

Image Type: float, unsigned short and unsigned byte

Timing breakdown of simulation, I/O, and visualization for one time step

6480 processors, 1024² image resolution, and float image type:

Visualization time : ~ 6% of simulation time

I/O time : ~ 400% of simulation time

Timing breakdown of visualization for one time step with 1920 processors and float image type

Timing breakdown of visualization for one time step with 1920 processors and 1024² image resolution

Timing breakdown of visualization for each processor with 240 processors and 512² image resolution

Results

 Volume rendering results of five selected variables : C2H4, CH2O, CH3, H2O2, HO2

Results

 Selected zoomed-in views of mix rendering of volume and particle data (volume variable CH2O and particle variable HO2)

Results

Client program

 Run on remote user's desktop/laptop and communicate with simulation over the network

Demo

- Screen capture from a laptop
- Simulation runs on 2500 cores on XT5
- Perform in-situ visualization every time step

Discussion

- Boundary Data
- Parallel Image Compositing
- Transfer Function and View Settings

Summary

- In-Situ Visualization
 - Use same computing platforms as simulations
 Eliminate I/O and network bandwidth bound
 Debug and monitor simulations
 - OStudy the full extent of the data
- Future Work
 In-Situ Processing
 Feature extraction
 Data reduction

Acknowledgement

- US Department of Energy, Office of Advanced Scientific Computing Research and by the DOE Basic Energy Sciences Division of Chemical Sciences, Geosciences and Biosciences.
- DOE through the SciDAC program with Agreement No. DE-FC02-06ER25777, DOE-FC02-01ER41202, and DOE-FG02-05ER54817.
- Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000.
- Supercomputing time provided by the National Center for Computational Sciences at Oak Ridge National Laboratory.

Thank You