Visualizing Electromagnetic Field and Particle Simulations in Accelerators with ParaView

Greg Schussman SLAC National Accelerator Laboratory SC09 Ultrascale Visualization Workshop, Portland Oregon November 16, 2009

Overview

- Visualization challenges at SLAC
- Using ParaView at SLAC
- Future plans

Special Accelerator Considerations

- We need a high degree of accuracy
 - 2nd order tetrahedral mesh
 - Up to 6th order fields
- Our simulations have huge dynamic range.
 - Field values span tens of orders of magnitude
 - We care about very big <u>and</u> very small values.
- Our meshes can be large (e.g., 17 million elements for a medium sized problem).

How Have We Used ParaView?

- Visualizing our particles and fields (e.g., Multipacting, PIC)
- Parallel rendering for exploration and movie making.
- Fine tuning meshes before simulation.
- With Ken Moreland at Sandia, we have started a simple toolbar to streamline accelerator visualization workflow.
 - Automatic pipeline construction for mesh, particles, and e and b fields.
 - Heuristic for automatic normalization of fields from wakefield simulations.

ParaView Generated Movies

- Multipacting
- Wakefield
- Power flow
- 3D Stereo

Multipacting Movie

- What is multipacting?
 - Resonant trajectories
 - Enhancement
- Why is multipacting important?
 - Can cause damage to accelerator structure
 - Limits operating power of structure
- Movie Information
 - Meshing and Simulation: Lixin Ge at SLAC
 - Saturated color: particle momentum (energy)
 - White trails: recent particle trajectory
 - Desaturated color: electric field magnitude
 - Wireframe: view dependent mesh exterior
 - Surface: view dependent mesh interior

Multipacting Simulation

Multipacting in an SNS Cavity HOM Coupler

Rendered in parallel, on a 4 processor Sun Ultra 40

Wakefield Movie

- What is a wakefield?
 - Electromagnetic fields behind a particle bunch
 - Analogies:
 - Waves from a boat on a smooth lake
 - Turbulence left behind an aircraft
- Why are wakefields important?
 - Can cause harmful surface heating
 - Can kick bunch particles sideways, off path
- Movie Information:
 - Context: CLIC PETS
 - Meshing and Simulation: Arno Candel at SLAC
 - CAD Model: CERN
 - Field scaling is: **sqrt(mag(efield))**

Field Scaling Functions

Power Flow Movie

- What is power flow in this movie?
 - One accelerator is used to power another.
 - Power flow shows where the resonant fields build up for particle acceleration.
- Why is power flow important?
 - Analogy: buildup of large waves for surfing
 - Is the (very complicated) structure operating as intended?
- Movie Information:
 - Context: CLIC structures
 - Meshing and Simulation: Arno Candel at SLAC
 - 17 million quadratic elements
 - CAD Model: CERN
 - Field scaling is linear power: (efield.efield + bfield.bfield)
 - Filling takes a very long time, so this movie is <u>highly</u> accelerated.

3D Stereo Movie

- What is 3D Stereo?
 - Left eye and right eye see slightly different images.
 - Appears truly 3D, not just perspective projection of 3D onto 2D.
- Why is 3D Stereo important?
 - Provides more accurate sense of true 3D structure.
 - Effectively shows depth relationships.
 - Useful for very complex structures (accelerator structure, particle paths)
- Movie Information:
 - Same as previous movie.
 - Left Eye Only! Please see true stereo at the SLAC National Accelerator Center exhibit (Booth 901).

Power Flow in the CLIC Two-Beam Accelerator

Our Plans for ParaView

- Support for massively parallel visualization
 - Compile and make available on
 - DaVinci at NERSC
 - Lens at ORNL
- SBIR Phase II with Kitware
 - Collaborative Visualization
 - Higher order fields (up to 6th order)
 - Higher order geometry (2nd order)
 - Interactor for structures with high aspect ratio
- Possible SBIR Phase II with Kitware
 - Comparative visualization

Thank you.

