Visualizing Electromagnetic Field and Particle Simulations in Accelerators with ParaView

Greg Schussman
SLAC National Accelerator Laboratory
SC09 Ultrascale Visualization Workshop, Portland Oregon
November 16, 2009
Overview

• Visualization challenges at SLAC
• Using ParaView at SLAC
• Future plans
Special Accelerator Considerations

• We need a high degree of accuracy
 – 2nd order tetrahedral mesh
 – Up to 6th order fields
• Our simulations have huge dynamic range.
 – Field values span tens of orders of magnitude
 – We care about very big and very small values.
• Our meshes can be large (e.g., 17 million elements for a medium sized problem).
How Have We Used ParaView?

- Visualizing our particles and fields (e.g., Multipacting, PIC)
- Parallel rendering for exploration and movie making.
- Fine tuning meshes before simulation.
- With Ken Moreland at Sandia, we have started a simple toolbar to streamline accelerator visualization workflow.
 - Automatic pipeline construction for mesh, particles, and e and b fields.
 - Heuristic for automatic normalization of fields from wakefield simulations.
ParaView Generated Movies

- Multipacting
- Wakefield
- Power flow
- 3D Stereo
Multipacting Movie

- **What is multipacting?**
 - Resonant trajectories
 - Enhancement

- **Why is multipacting important?**
 - Can cause damage to accelerator structure
 - Limits operating power of structure

- **Movie Information**
 - Meshing and Simulation: Lixin Ge at SLAC
 - Saturated color: particle momentum (energy)
 - White trails: recent particle trajectory
 - Desaturated color: electric field magnitude
 - Wireframe: view dependent mesh exterior
 - Surface: view dependent mesh interior
Multipacting Simulation (context)
Multipacting Simulation

Multipacting in an SNS Cavity HOM Coupler

Rendered in parallel, on a 4 processor Sun Ultra 40
Wakefield Movie

• What is a wakefield?
 – Electromagnetic fields behind a particle bunch
 – Analogies:
 • Waves from a boat on a smooth lake
 • Turbulence left behind an aircraft

• Why are wakefields important?
 – Can cause harmful surface heating
 – Can kick bunch particles sideways, off path

• Movie Information:
 – Context: CLIC PETS
 – Meshing and Simulation: Arno Candel at SLAC
 – CAD Model: CERN
 – Field scaling is: \(\sqrt{\text{mag}(\text{efield})} \)
Field Scaling Functions
time: 00.000 ns
Power Flow Movie

- **What is power flow in this movie?**
 - One accelerator is used to power another.
 - Power flow shows where the resonant fields build up for particle acceleration.

- **Why is power flow important?**
 - Analogy: buildup of large waves for surfing
 - Is the (very complicated) structure operating as intended?

- **Movie Information:**
 - Context: CLIC structures
 - Meshing and Simulation: Arno Candel at SLAC
 - 17 million quadratic elements
 - CAD Model: CERN
 - Field scaling is linear power: \((\text{efield.efield} + \text{bfield.bfield}) \)
 - Filling takes a very long time, so this movie is highly accelerated.
time: 00.0 ns
3D Stereo Movie

• What is 3D Stereo?
 – Left eye and right eye see slightly different images.
 – Appears truly 3D, not just perspective projection of 3D onto 2D.

• Why is 3D Stereo important?
 – Provides more accurate sense of true 3D structure.
 – Effectively shows depth relationships.
 – Useful for very complex structures (accelerator structure, particle paths)

• Movie Information:
 – Same as previous movie.
 – **Left Eye Only**! Please see true stereo at the SLAC National Accelerator Center exhibit (Booth 901).
Power Flow in the CLIC Two-Beam Accelerator
Our Plans for ParaView

• Support for massively parallel visualization
 – Compile and make available on
 • DaVinci at NERSC
 • Lens at ORNL
• SBIR Phase II with Kitware
 – Collaborative Visualization
 – Higher order fields (up to 6th order)
 – Higher order geometry (2nd order)
 – Interactor for structures with high aspect ratio
• Possible SBIR Phase II with Kitware
 – Comparative visualization
Thank you.