Sorting-free Pre-integrated
Projected Tetrahedra

Naohisa Sakamoto, Takuma Kawamura,
Hiroshi Kuwano, Koji Koyamada

Graduate School of Engineering
Center for the Promotion of Excellence in Higher Education,
Kyoto University

Ultrascale Visualization Workshop 09

November 16, Portland, Oregon

Objective

e lLarge-scale irregular volume rendering
* Visualization of multiple sub-volumes on tiled display wall

Multiple sub-volumes Tiled display wall

Dynamic load balancing is required.

Contents

1. Related work
2. Particle-based volume rendering (PBVR)

3. Sorting-free pre-integrated projected

tetrahedra (SPT)
1. Sorting-free approach
2. Implementation

3. Experiment

4. Conclusion

Contents

1. Related work

Related Works (1/2)

e Performance improvement of visibility sorting
— HAVS (1.3 fps for 1.4M tets, Steven et al. 2005)
— Point-based Technique (0.3 fps for 6.3M tets, Erik et al.
2007)
 Technique without visibility sorting
— Only absorption (Csébfalvi et al. 2003)
— Only emission (Stefan et al. 2003)

Development of a technique without visibility sorting which
considers both absorption and emission is required

Related Works (2/2)

* Parallel volume rendering for Irregular volume

— HPC system [Childs et. al., 2006]

e 35 sec for 138M tets.
e 128 procs (Opteron 2.4GHz), InfiniBand

— PC cluster system (iRun) [Vo et. al., 2007]
e 11.6 fps for 6.3M tets.
e 4 PCs (Pen. D 3.0GHz, RAM 2.0GB, NVIDIA 7800 GTX)

Interactive rendering is required in order to realize our
collaborative visualization environment.

Sorting-free approach

Particle-based volume rendering [Sakamoto, et. al.,2007]
— 7.0 fps for 208 M cells (15M particles) on a single PC (current version)

a8

Begion Options Tools View Help

LLIELE

RenderSoft

CamStudio

OP=N>OU3CE

Press the Stop Button to stop recording

1£(Global ::vol_fraj
NAI1Object s+

kvsi:PointObject*x ¢
kvs::UInt32 total pe
f(nr(kvs::UInt32 i -

// Read input dé
std:zcout<<"inpy

char nun[256];

sprintf (num, % _—
std:istring number (num)3
std:istring filename = Globa

PATLIREENG U 187 {1

M @ (@ M 7| O D¥vork¥application¥.. | 1] maincep ~ Visual G+.. | [Visual Studio 2008 ..

04 (TR - e | Broae
Intel Core 2 Duo 3.16GHz, 3.0GB RAM, NVIDIA GeForce 9800GT (512MB), 1280x1024 (SXGA)

9751 9 XF #A

(o] A8 =D e T
| & 209mm

Contents

2. Particle-based volume rendering (PBVR)

Particle-Based Volume Rendering

* Volume data is represented as particles.

— Particle generation within the volume data
— Particle projection into the image plane

* Visibility sorting is not required.

Image plane

Vol dat Particl
olume data articles Particles

A. Particle generation B. FParticle projection onto
within the volume data the image plane

Sampling (rendering) quality

Particle-Based Volume Rendering techniques

APVISO7

r:‘:’ -
‘&a v}

Rejection/
Metropolis method
on regular grids

2007

2008

(PBVR)

caG . | UEMFS IWPT09

== ..
£ S -

Particle modeling : pigriputed SAGE-based

using particle © PBVR by collaborative

density . transmitting visualization
sub-pixels

2009

SIMPAT

(\

GPU-based
enhancement

CG&A

submitted

JCST
submitted Layergd
S sampling

method

LOD control
by using
Ensemble
averaging

TOC

3. Sorting-free pre-integrated projected
tetrahedra (SPT)

1. Sorting-free approach

Sorting-free approach

* Ray casting (Brightness equation)

B, = ici X ((xiﬁ(l - ;))

* Sorting-free approach
— Brightness = Expected value of luminosity

B, = chPk

k-1
P = akl_[(l —Ct;) =% Probability of “c, =B’
j=1

Brightness as expected value

* An event where there is no particle from the
first to the (k-1)-th ray segment and more than
one particle in the k-th ray segment.

opaque and emissive particle

Ly b1 Uk / L,

Q % EREN % EEERN ﬁ
\ Y H-J
B, = ECkPk no particle more than one particle

k=1

Volume rendering can be approximated by repeating this events
multiple times

Accuracy of Sorting-free rendering

0.16 .
0.14
012 \\\
5 01 \
= 008
"1 0.06 \
0.04
0 | | | = | B
N ,\Q \QQ

Q \ Q \}
S & & S
D\ R
Repetitions

The error is defined as the absolute difference between the true and
approximated brightness values.

The true brightness value is calculated by generating random numbers as
opacities and luminosities in all of the ray-segments

TOC

2. Implementation

Implementation

* Sorting-free Projected Tetrahedra (SPT)
— Pre-integration

— Stochastic color composition

Pre-integration with 3D texture

e The pre-integration computes the lookup tables mapping
three integration parameters (scalar value at the front: s,
scalar value at the back: s,, and length of the segment: d) to
the pre-integrated color C and opacity a.

(C)
d
\
/

Q —Fo | —— S, 01>

S

[K.Engel, et. al., 2001]

Classification and decomposition on
geometry shader

 The PT algorithm refers to the classification as splitting each of
the cells into a set of triangles following four classes of
projection patterns.

created vertex

(s5p,d)
- - 7

S8, d=0

[P.Shirley, et. al., 1990]

Stochastic color assighment on
fragment shader (1/2)

The stochastic color compositing is processed in the fragment
shader by referring to the pre-integrated table.

The first step is to obtain the color value of the current
fragment.

]
e (g b, @)
‘ O
.................. =) = 50
» User- ified
(55 8 d) transfer function 5 f

Fragments on S
the triangle f

Pre-integrated transfer function

Stochastic color assighment on
fragment shader (2/2)

* The next step is to decide whether this fragment should be
accepted, based on its current opacity value.

(R<a

accept

|
A

otherwise

(r,g b, a)
discard

R : random number

Element type: tetrahedral cell
Num, of elements: 1386882
Num, of nodes: 248992

bhlood_pressure

-1.,24543 0,763654 FPS: 1,#I0

TOC

3. Experiment

Influence of visibility sorting

 Comparison of rendering quality with and
without visibility sorting (Drill data, 9.9M tets)

HAVS (with sorting) SPT (without sorting)

PBVR vs. SPT

» Difference between the quality of images rendered by PBVR
and SPT when the transfer function varies precipitously.

* The opacity value of the transfer function drastically increases

in the red colored value range.

PBVR (repetitions: 144) SPT(repetitions: 144)

Performance evaluation (1/2)

¢ Performa nce mOdeI (T: computing time [ms], M: GPU memory [byte])

— SPT (nc: # of cells, Lr: repetition level, Ls: subpixel level, wxh: image resolution)

T = L(567x10%n, +451x10°whL’)
M = 206n, +7.1whL’

— PBVR (np: # of particles, Lr: repetition level, Ls: subpixel level, wxh: image resolution)

T = L(9.96x107n, +147 x10°whL)
M"™™ = 220n,+6.86whL’

— HAVS (nc: # of cells, k:k-buffer size, wxh: image resolution)

T = 1.88x10°n, +1.71x10°wh +0.275k
M™" = 37.65n, +76.3wh

Performance evaluation (2/2)

 Computational time
— HAVS < SPT, PBVR

* GPU memory resources
— HAVS > SPT, PBVR

* SPT vs. PBVR (51268 vRAM, 1024x1024)
— if # of tets. < 24.5M SPT
— otherwise PBVR

Rendering result of large-scale
volume dataset

* 13M tetrahedral cells
— Image resolution: 1024x1024
— Repetition level: 144

Rendering time [sec] 3.1 N/A

* 2.8G particles = 71GB VRAM

Intel Core 2 Quad 2.83 GHz, 8 GB RAM, Nvidia GeForce GTX 280 1.5GB VRAM

TOC

4. Conclusion

Conclusion

* Sorting-free Projected Tetrahedra (SPT)
— NOT particle-based technique
— Suitable for high resolution rendering
— Easy implementation to parallelize

A

SPT

Image resolution

PBVR

Volume data size

Future work

* Acceleration the rendering process by
subdividing frame buffer

» [—

* Dynamic load balancing on distributed
environment

