

Modeling Resource-Coupled Computations

Mark Hereld

Computation Institute Mathematics and Computer Science Argonne Leadership Computing Facility Argonne National Laboratory University of Chicago

Roadmap

- issues and ideas
- models and measurements
- implications and work in progress

Issue

- Given increasingly massive (and complex) datasets...
- how to connect them to computational and display resources that support visualization and analysis?
- holistic approaches to allocating simulation, analysis, visualization, display, storage, and network resources
- create and exploit ways to optimally couple these resources in real time

Common sense

- Analysis engines must be co-located with simulation engines
- ...or even, analysis code must be co-located with simulation code, i.e **in situ**
- Display resources must be integrated locally with HPC resources
- In general, wide-area applications will become impossible...

• But, maybe the situation isn't so dire.

ideas

- Ideas
- Models
- Measurements
- Consequences
- Future

Mitigation

- More efficient I/O practices
 - Many (most) inefficiencies in R/W rates amenable to better practices by application developer
 - In addition to improvements in performance of I/O libraries
- Better data management
 - Better data layout
- Better brute force compression methods
 - Uncertainty aware; domain aware
- Leveraging limitations at the destination
 - Pixel real estate
 - Perceptual limitations (and features)

Coupled Resources

- remote visualization: couple data and large computational resources to remote display hardware
- in situ analysis and visualization: merge simulation and analysis code on single machine

• **co-analysis**: couple simulation on supercomputer to live analysis on visualization and analysis platform

models

- Ideas
- Models
- Measurements
- Consequences
- Future

models

ALCF Network Architecture

40K BGP Compute Nodes

Theoretical Max Bandwidth from I/O Nodes to Eureka (Memory to Memory) = 1 Tbps

- Bi-directional = 2 Tbps
- Theoretical Max Bandwidth from I/O Nodes to FileServer (Memory to Memory) = 1.28 Tbps
 - Bi-directional = **2.56 Tbps**
- Theoretical Max Bandwidth from Eureka to FileServer (Memory to Memory) = 1 Tbps
 - Bi-directional = 2 Tbps

Data Analytics Resource: Eureka

- Data analytics and visualization cluster at ALCF
- (2) head nodes, (100) compute nodes
 - (2) Nvidia Quadro FX5600 graphics cards
 - (2) XEON E5405 2.00 GHz quad core processors
 - 32 GB RAM: (8) 4 rank, 4GB DIMMS
 - (1) Myricom 10G CX4 NIC
 - (2) 250GB local disks; (1) system, (1) minimal scratch
 - 32 GFlops per server

Application

- FLASH
 - Multi-physics code: Gravitation, nuclear chemistry, MHD
 - Laboratory to Universe
- Multiple (~20) simulations
 - 8km resolution, 10K to 100K blocks each (16 * 16 * 16) voxel
 - 2 Racks (8K cores) of the ANL's Intrepid (BGP)
 - typical simulation is 10 runs each 12 hours
- O(hour) per checkpoint cycle
 - 66% time spent simulating
 - 33% time spent non-overlapping I/O

measurements

- Ideas
- Models
- Measurements
- Consequences
- Future

measurements

Flash IO for 1 run (12 hours)

FLASH Supernova Explosion Project

- multiple (~20) simulations
 - 8km resolution
 - 10K to 100K blocks each (16 * 16 * 16) voxel
 - 2 Racks (8K cores) of the ANL's Intrepid (BGP)
 - typical simulation is 10 runs each 12 hours
 - Circa November 2009

•					
•	File Type	File Size	#files	#files	Data Size
•			/ Run	/ Sim	
•	===========				
•	Particle	~ 131 MB	~ 500	5000	500 GB
•	Plot	~ 13 GB	40-90	800	10 TB
•	Checkpoint	~ 42 GB	5-10	100	4.2 TB

Internal Network Experiments

Toward middleware to facilitate co-analysis

BGP Compute Nodes

Δ

consequences

- Ideas
- Models
- Measurements
- Consequences
- Future

consequences

Map Intrepid I/O to Eureka

- Speed up the application
 - Offload data organization and disk writes
- Free co-analysis
 - Produce several high resolution movies
 - Data compression
 - Multi-time step caching for window analysis
- Eureka is an accelerator and co-analysis engine at only 1-2% cost of Intrepid

future

- Ideas
- Models
- Measurements
- Consequences
- Future

future

Works in Progress

- Footprints
 - System level use pattern data collection
 - Booting up a mini-consortium of resource monitoring enthusiasts
- in situ
 - Papka parallel software rendering
 - Tom Peterka and Rob Ross scaling software rendering algorithms
 - HW-SW rendering comparison experiments
- Co-analysis
 - StarGate experiments
 - Intrepid <> Eureka communication experiments
 - FLASH test
- Remote Visualization
 - Pixel shipping experiments and frameworks

Wide Area Experiments

z = 2.677

DETAILS AND DEMO IN SDSU BOOTH

Summary

- Discussion of the **issues** with illuminating example
 - Presumed impending Doom outlined
- Discussion of the **ideas** with examples
 - Resource-coupled computations
 - In situ couples simulation and analysis in real time on shared compute
 - Remote vis couples compute and data resources to remote display clients
 - **Co-analysis** couples two compute resources in real time
- Discussion of the **work in progress** with status
 - Suite of experiments underway to characterize system components
 - Strawman use cases in place provide challenging and exciting goals
 - Stunning results and paradigm shifts forthcoming

Acknowledgements

- Venkat Vishwanath
- Michael Papka
- Eric Olson
- Joe Insley
- Tom Uram
- Tom Peterka
- Rob Ross
- Rick Stevens

- Rick Wagner, UCSD
- Michael Norman, UCSD
- Robert Harkess (UCSD)
- Narayan Desai
- David Ressman
- William Scullin
- Loren Wilson
- Linda Winkler
- ESNET2

end

• Questions?

end

