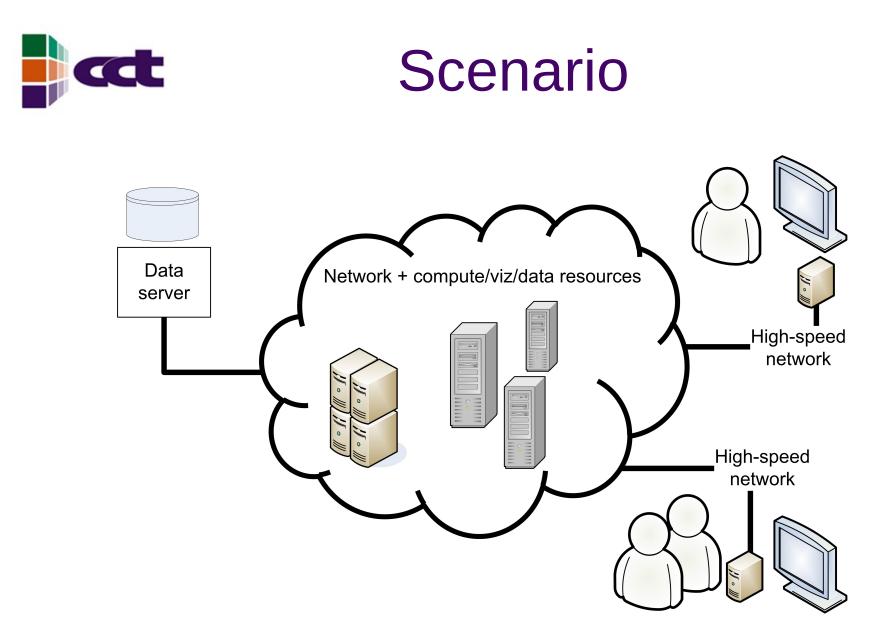
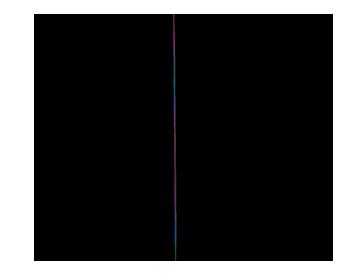
On Network-Aware Visualization *eaviv*

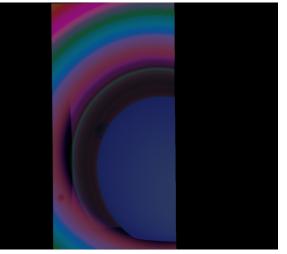
Andrei Hutanu, Jinghua Ge, Cornelius Toole, Jr., Gabrielle Allen

H.


)UISIANA STA

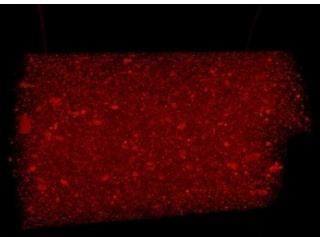
Introduction


- Data size increase
 - Instruments
 - Simulations
- Emerging high-speed networks

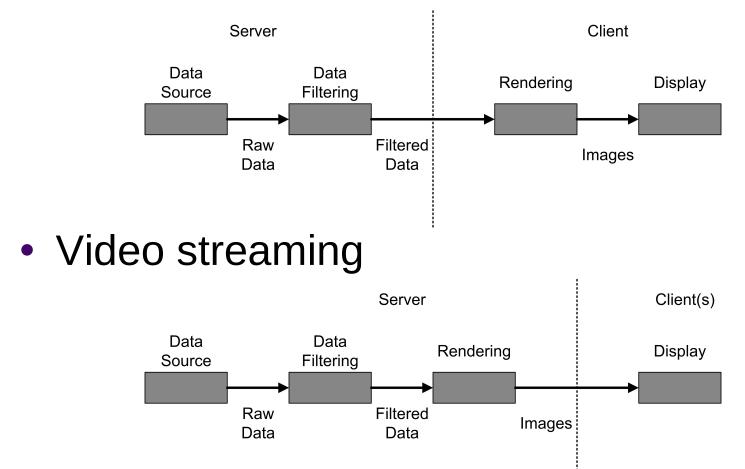

 Use to improve scalability of applications
- CPU performance limited: use parallel and distributed resources, use GPU, storage resources
- Create virtual meta-computer (OptIPuter)

Improve Application

- Additional motivation
 - Increase I/O rate (see movies)
 - Increase data size
 (top image: laptop only visualization,
 bottom image: distributed
 visualization on laptop using remote cluster)
 - Collaborative visualization capabilities



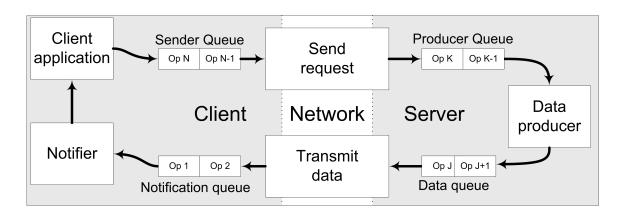
- Visualization system requirements:
 - Interactive (5fps or more)
 - High data rate for I/O
 - Responsive (1-2 seconds at most between updates)
 - Handles large data (tens of gigabytes/volume, terabytes total data size)
 - High resolution (1 megapixel or more)
 - Good quality (no image artifacts, responsive to interaction)
 - Enables collaborative visualization


Motivation

- Real datasets generated by scientists
 - Examples: Numerical Relativity (simulation of astrophysical systems) 4096³/variable and timestep (tens of variables, hundreds of timesteps); Chemistry (x-ray tomography scan)
 32 Gigabytes/scan (2048³); 24 datasets/experiment.
- Want to have usable tools
- Initially focusing on volume rendering

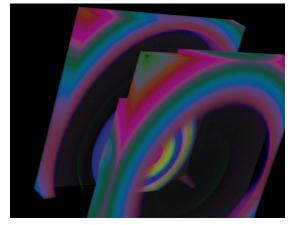
• Visualization of remote data

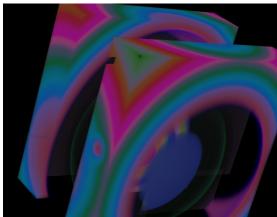
eaviv Architecture Collaboration Interaction Data server & filter Rendering Video Streaming Image Data Data Display Transfer server & filter

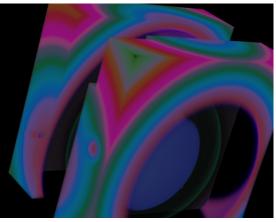

eaviv I/O - bandwidth

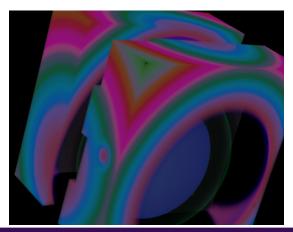
- Networks faster than local storage
- Distributed data servers
- Use main memory to cache data
- Fast protocols
 - Short-lived transfers (tens of seconds)
 - Reliable; Use on high-speed, possibly dedicated network links
 - TCP not suitable for high-speed links
 - Few usable alternatives, best is a protocol without congestion control (app sets rate)

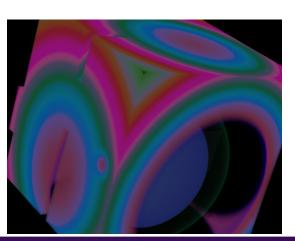
eaviv I/O - latency

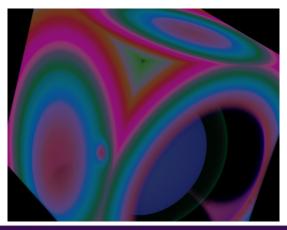

- Blocking on I/O, serialized operations
 - Very expensive when doing remote I/O over high RTT links
- Pipelined, non-blocking system
 - High operation throughput
 - Configurable operations (bulk, data formats)






Rendering


- Parallel, GPU volume rendering, ray-casting
- Only data sections. Progressive visualization



Interaction

- Modify parameters (zoom, viewing direction)
- Tangible devices: interfaces that enable direct manipulation of digital objects and actions through physical
 - means
 - Support collaboration

Streaming

- Images from remote renderer; collaboration
- Avoid quality degradation using high-speed networks
 - High resolution
 - High frame rate
 - No compression (low latency)
- Using SAGE
 - Parallel streaming from each node, UDP (though some issues when combined)

• Rendering performance; I/O speed; 8 node quad core Xeon, 4 Tesla S1070-16GB each

# processes	Data size	Frame rate (fps)	Local speed	Network speed
1 (workstation)	$0.8\mathrm{GB}$	30	$0.68{ m Gbps}$	$0.8{ m Gbps}$
8 (cluster)	$15\mathrm{GB}$	15-21 (18 avg)	$0.11{ m Gbps}$	$6.6\mathrm{Gbps}$
16 (cluster)	$30\mathrm{GB}$	11-13 (12 avg)	$0.12{ m Gbps}$	$5.3\mathrm{Gbps}$
32 (cluster)	$60\mathrm{GB}$	4-5 (4.5 avg)	$0.2{ m Gbps}$	$4.3\mathrm{Gbps}$

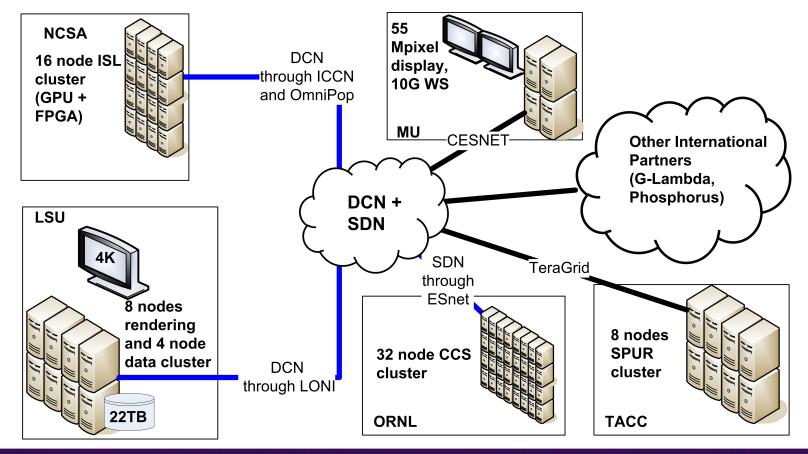
• Video streaming requirements

Resolution	Frame rate	Streaming requirements		
1024x800	$28\mathrm{fps}$	$525\mathrm{Mbps}$		
1920×1080	$11.5\mathrm{fps}$	$546\mathrm{Mbps}$		
2048x2048	$6\mathrm{fps}$	$576\mathrm{Mbps}$		

Results

Feature	eaviv	ParaView	VisIt
Data loading	Progressive, Asyn-	Single operation,	Single operation,
	chronous	Blocking	Asynchronous
Data protocols	UDT, TCP, fully config-	TCP only	TCP only
	urable		
Data servers	Distributed and parallel	Parallel only (MPI)	Parallel only, must be
			on same cluster
Data throughput	5.3 Gbps Network	0.12 Gbps Local	0.12 Gbps Local
	(30 GB data)	(32 GB data)	(32GBdata)
High-speed data limit	Yes: Main memory	No: Disk size	No: Disk size
Parallel volume ren-	GPU	CPU	CPU
dering			
Frame rate	11-12 fps (30 GB)	0.5-1 fps (32 GB)	0.28-0.35 fps (32 GB)
Render size limit	60 GB (GPU memory)	120 GB (CPU mem-	120 GB (CPU mem-
		ory)	ory)
Time to first image	5s	35 minutes (load	35 minutes (load
		time)	time)
Visualization updates	0.1 s (frame rate)	N.A.	<i>N.A</i> .

Feature	eaviv	ParaView	VisIt
Video streaming	Parallel (SAGE)	Serial	Serial
Video transmission	TCP, UDP (SAGE)	TCP only	TCP only
Interaction	Tangible devices (mouse	Mouse & keyboard	Mouse & keyboard
	& keyboard with VNC)		
Collaborative support	Yes: SAGE video distri-	No	No
	bution, tangible devices		
Direct simulation con-	No	No	Yes
nectivity			
Fully-featured visual-	No (Prototype)	Yes	Yes
ization application			
Programming effort	High	Lower	Lower
Execution complexity	High	Low	Low


Conclusions

- Using networks to improve I/O speed
- Remote rendering cluster to increase data size
- Support for high quality collaboration
- Future: increase data size, multiple clusters, multiple views

eaviv Project (300K, NSF EAGER)

• Distributed visualization using dynamically configurable optical networks

