

Toward Visual Analysis of Ensemble Data Sets

Or,

You want to render what?

2009 Ultrascale Visualization Workshop

November 16, 2009

Andy Wilson Sandia National Laboratories Kristi Potter

SCI Institute, Univ. of Utah

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Ensembles are...

• Large

- Tens of gigabytes to hundreds of terabytes

Multivariate

- Typically 10s to 100s of state variables

Time-varying

Multivalued

- Think of it as PDF-valued instead of scalar-valued

• Awkward

Raw data is frequently discarded in favor of an Excel spreadsheet

Ensembles help mitigate uncertainty

Multiple models

- Incorporate strengths of different approaches

• Multiple runs

- Sample an input space of uncertain parameters
- Perturb measured inputs to mitigate model/measurement error

Multiple grids

Evaluate and demonstrate convergence

Multiple values

- Reason about the most likely simulation outcomes

A Few Examples

• NOAA/NCEP Short-Term Reference Ensemble

- Weather for North America
- 4 models, 21 members, 624 state variables, 30 timesteps, 36GB/run, 3 runs/day

Climate Simulations (Earth System Grid)

- Worldwide climate over millenia
- 30TB+ repository at LLNL, lots more elsewhere
- Varying simulation domains

• Parameter studies for uncertainty quantification

- Engineered systems under stress
- Weather/climate data makes a good proxy

Driving Questions

• What conditions are predicted by this ensemble?

• Where and when do those conditions occur?

• What is the relative probability of some outcome?

Major Research Issues: Data Management

• Key Insight: The user only ever needs a tiny subset of the data -- but that subset changes frequently.

• Examples:

- What phenomena does the ensemble predict?
 - This is usually derived or inferred from the data
- Where and when will it happen?
 - Moral equivalent of an SQL WHERE clause
- What is the relative probability of X?
 - Derive this from "where and when" by aggregating over ensemble members

This calls for data stores with database-like access and query semantics.

#include <bill_howe_cloud_vis.ppt>

Major Research Issues: Many-Valued Data

- Spatial PDF visualization does not (yet) appear necessary
 - Summary statistics + drill-down suffices
 - Even that much is difficult

The world is often not Gaussian

- Beware of mean + standard deviation!
- Watch out for multimodal distributions

• There's Just Too Much Data

- "Display it all and let the analyst browse" doesn't work
- Query-driven visualization becomes very important here
- We may not be able to use the supercomputers "just for vis"

Our Approach: Data Store

Netezza NPS data warehouse appliance

- Parallel database with CPU right next to disk
- Schema exposes data values directly to the database
- All numeric queries go through SQL

• Research into data stores continues

- Column-store database?
- Numeric index like FastBit?
- Reordering data for multiresolution access?
- Cloud storage and processing?
- Assumption: We can move/index/reorganize the data at least once (possibly as it's being generated)

There Is No Perfect Display

– Many displays, all linked

An ensemble data set has several dimensions:

- Time (I)
- Space (2, 2.5 or 3)
- State Variable (1 to 1000)
- Ensemble Member (1 to 1000)

Collapse dimensions to yield 2- or 3D display

- "Collapse" means "extract or aggregate" here

Summary Display

Color = Mean

Color = Std. Dev.

Spaghetti Plot (I)

Spaghetti Plot (2)

Filmstrip Display

- Small multiples of summary display
- Show one variable over many timesteps at low resolution
- Cameras linked with other frames
- Selection linked with other frames and other displays

Quartile Chart

 Shows quick overview of distribution and clustering of data values over time

Trend Chart

Discussion

• Exactly what should we display?

- How should we display it?

• What statistics are appropriate?

- Do we have enough data to support them?

- How can we indicate missing data?
- How do we store and access the data?

Future Work

•3D (not as difficult as it appears)

...once that's done...

- Better display metaphors
- Data fusion across different grids and time domains

Acknowledgements

- Kristi Potter, Univ. of Utah
- NOAA/NCEP
- Dean Dobranich, SNL
- Valerio Pascucci, Univ. of Utah
- Chris Johnson, Univ. of Utah
- Peer-Timo Bremer, LLNL

Questions?

