

Scalable Analysis Core Components

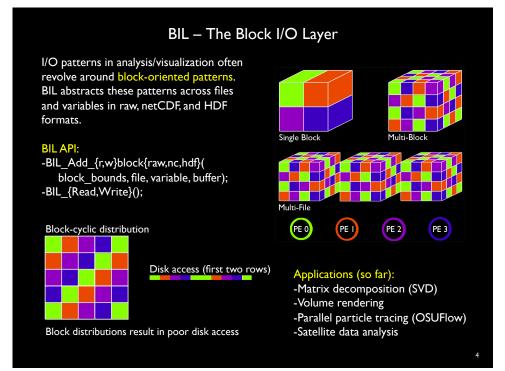
Our position:

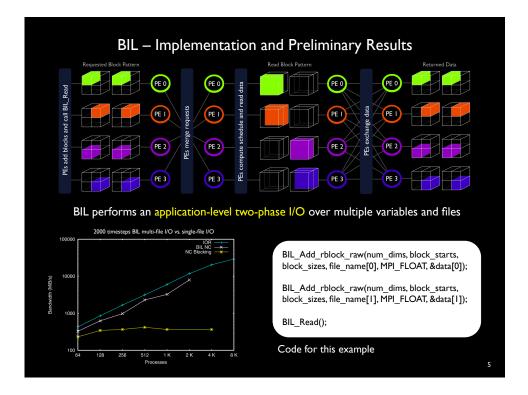
-Scientists need to perform more analysis at run-time and post-simulation

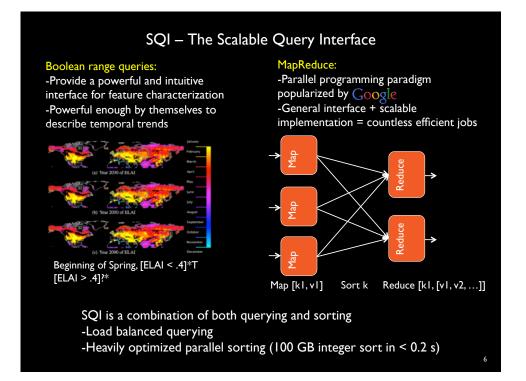
- -No turn-key system exists
- -Data are often very large and complex
- -Always a need for custom applications
- -Large data analysis has tough initial barriers -Lack of resources / venues
- -Steep learning curve (low-level MPI)

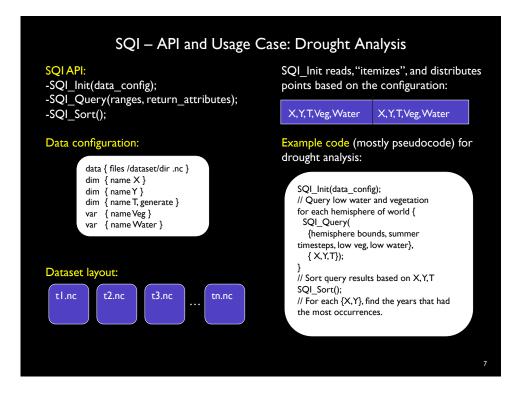
-Bottlenecks are often application/platform-specific

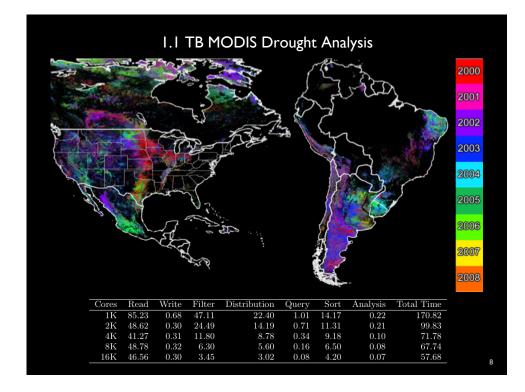
Interactivity is pivotal – depends on scalability:

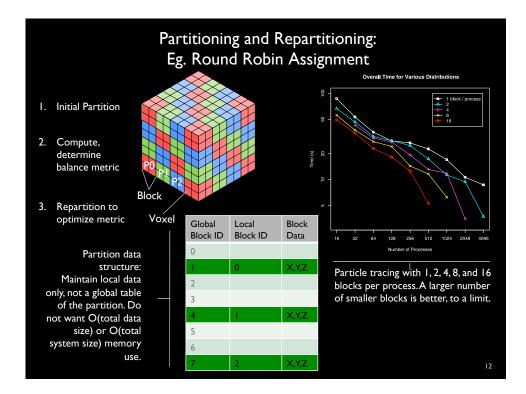

-Balance load (computation, communication) -Minimize or optimize data movement (storage and network)

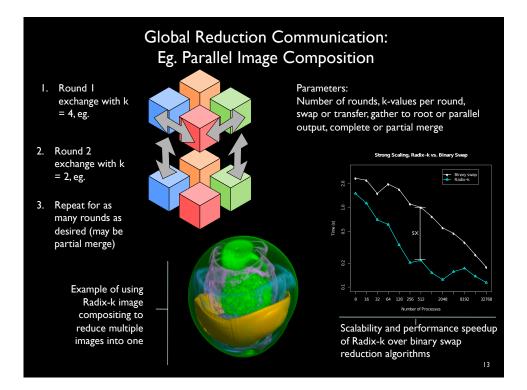

-Hide data movement (overlap with work)

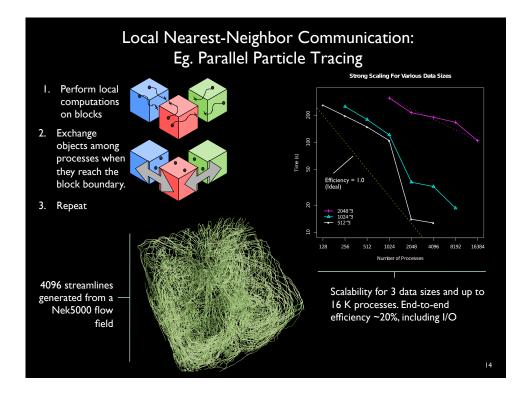

- Data bandwidth challenges: -I/O
- -
- -Communication -Global reduction
- -Local nearest neighbor exchange
- -Partitioning and repartitioning
- -Searching / sorting
- -Query-driven reduction for vis

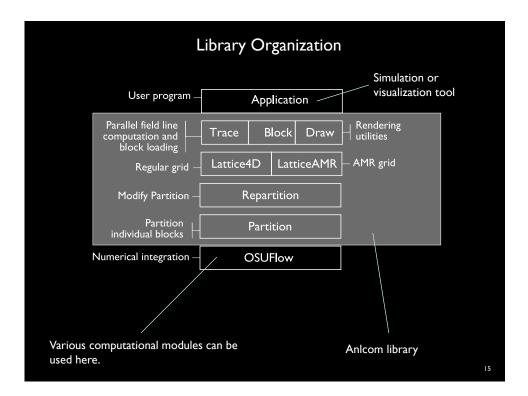

Our answer – provide general and scalable core components:


-Researchers can study new algorithms -Vis groups (researchers and production) can build custom applications for current platforms -Automatically obtain state of the art






	1.1 TE	3 M(ODIS Dr	ought	: Ana	lysis			
-Egy	Service S	Fet	bruary 14, 2007		- ALC			2000	
	7-200		GA Discusses Tortil						
	USG	Rising tortilla prices in Mexico are due to a supply Issue in that country - not increased U.S. ethanol production or U.S. com prices. The U.S. Grains Council (USGC) and the National Corn Growers Association (NCGA) report that lower				~~~	2001		
	5		corn production in Mexico and the lack of import licenses have caused white corn shortages there.					2002	
B. C.	A.		"While there has been much in the media on this issue, no one in Mexico is pointing fingers at the United States," said Chris Corry, USGC senior director of						
	inter	international operations. "They recognize that this is a supply issue coupled with a political situation in Mexico."					2003		
		2 Whit	te corn is the principal ingr	redient in tortill	15.		A A		
	4775		istry representatives in Mex				-	2004	
ST TR	Licer	licenses were made to the Mexican government starting in August 2006. Licenses were issued in January for February imports. In the near-term, the white corn supply should improve.				3	2005		
		-1	itionally the country experi		lion metric ton	(47.2 million		2005	
	105		nel) reduction in corn yields duced 22.5 million tons (88)					2006	
		corn in 2005, whereas production dropped 5 percent to 21.3 million tons (838.5 million bushels) in 2006.					2000		
	22		ile it is true that higher ye act on domestic yellow con					2007	
	A.	price	e of white corn in Mexico h	as increased," s	aid Ken McCaul	ey, NCGA			
		issue	ident. "What's important t e. Domestic and global dem	nand for U.S. cor				2008	
		end	the markets will even ever	rything out."					
Cores Rea	d Write F	ilter	Distribution	Query	Sort	Analysis	Total Time		
1K 85.2	3 0.68 4	7.11	22.40	1.01	14.17	0.22	170.82		
2K 48.6	0.30 2	4.49	14.19	0.71	11.31	0.21	99.83		
4K 41.2		1.80	8.78	0.34	9.18	0.10	71.78		
8K 48.7	8 0.32	6.30	5.60	0.16	6.50	0.08	67.74		
<u>16K</u> 46.5	6 0.30	3.45	3.02	0.08	4.20	0.07	57.68		9


I.I TB MODIS Drought Analysis											
	C f 2002 C update Parks, Deserver C the constant of 2002 The extreme drought on the extreme drough	the Prairies has topped Envir e feared worse weather than in matologist at Environment Ce phot 2002 ught hasn't been seen since It and grasshopers destroyed Sak. y can stand another year like The warm winter in the op affects Canadians. "For half the people of C weather ware set on error weather that occurs onco + ROM JULY 7, 2002 op	ronment Canada's I what appeared on th nada. he dust bowls of the the livelihood of far this," said Sawatzky sat was the runner- edia reports and ho anada, from Windss anada, from Windss anada, from Windss	list of strange weather he Prairies," said Dirty '30s. The mers like Dean /. up on Phillips' top 10 w much the weather or to Quebec City, it t was the kind of	2000 2001 2002 2003 2004 2005 2006 2007 2008						
Cores Read	Write Filter Distribution	Query Sort	Analysis	Total Time							
1K 85.23	$0.68 47.11 \qquad 22.40$	1.01 14.17	0.22	170.82							
2K 48.62	0.30 24.49 14.19	0.71 11.31	0.21	99.83							
4K 41.27	0.31 11.80 8.78	0.34 9.18	0.10	71.78							
8K 48.78	0.32 6.30 5.60	0.16 6.50	0.08	67.74							
16K 46.56	0.30 3.45 3.02	0.08 4.20	0.07	57.68	I						

Conclusions / Where Do We Go From Here?

These tools have provided us with the ability to perform many types of analyses that were not previously possible due to overwhelming data demands.

We hope others can take advantage of our tools, study other large scale problems using them, and ultimately foster more community knowledge / involvement.

Future Goals:

BIL – Unstructured grid / AMR support SQI – Out of core / further testing and development ANLCom – Generalize for more applications and data types

BIL and SQI - http://seelab.eecs.utk.edu/

ANLCom - https://svn.mcs.anl.gov/repos/osuflow/anlcom

Kendall et al. SC '09 – Terascale Data Organization for Discovering Multivariate Climatic Trends Petera et al. SC '09 – A Configurable Algorithm for Parallel Image-Compositing Applications Kendall et al. EGPGV '10 – Accelerating and Benchmarking Radix-k Image Compositing at Large Scale