
11/19/10

1

Scalable Software Components for
Ultrascale Visualization Applications	

Wes Kendall, Tom Peterka, Jian Huang	

SC Ultrascale Visualization Workshop 2010	

11-15-2010	

Jian Huang Tom Peterka Rob Ross Han-Wei Shen	

Primary Collaborators	

11/19/10

2

Scalable Analysis Core Components	

Data bandwidth challenges:	

-I/O	

-Communication	

 -Global reduction	

 -Local nearest neighbor exchange	

 -Partitioning and repartitioning	

-Searching / sorting	

 -Query-driven reduction for vis	

Our answer – provide general and
scalable core components:	

-Researchers can study new algorithms	

-Vis groups (researchers and
production) can build custom
applications for current platforms	

-Automatically obtain state of the art	

3	

Our position:	

-Scientists need to perform more analysis at
run-time and post-simulation	

 -No turn-key system exists	

 -Data are often very large and complex	

 -Always a need for custom applications	

-Large data analysis has tough initial barriers	

 -Lack of resources / venues	

 -Steep learning curve (low-level MPI)	

 -Bottlenecks are often application/platform-
specific	

Interactivity is pivotal – depends on scalability:	

-Balance load (computation, communication)	

-Minimize or optimize data movement (storage
and network)	

-Hide data movement (overlap with work)	

BIL – The Block I/O Layer	

I/O patterns in analysis/visualization often
revolve around block-oriented patterns.
BIL abstracts these patterns across files
and variables in raw, netCDF, and HDF
formats.	

BIL API:	

-BIL_Add_{r,w}block{raw,nc,hdf}(

 block_bounds, file, variable, buffer);	

-BIL_{Read,Write}();	

4	

Applications (so far):	

-Matrix decomposition (SVD)	

-Volume rendering	

-Parallel particle tracing (OSUFlow)	

-Satellite data analysis	

Block distributions result in poor disk access	

Disk access (first two rows)	

Block-cyclic distribution	

11/19/10

3

BIL – Implementation and Preliminary Results	

BIL performs an application-level two-phase I/O over multiple variables and files	

5	

2000 timesteps BIL multi-file I/O vs. single-file I/O	

Code for this example	

BIL_Add_rblock_raw(num_dims, block_starts,
block_sizes, file_name[0], MPI_FLOAT, &data[0]);	

BIL_Add_rblock_raw(num_dims, block_starts,
block_sizes, file_name[1], MPI_FLOAT, &data[1]);	

BIL_Read();	

SQI – The Scalable Query Interface	

Boolean range queries:	

-Provide a powerful and intuitive
interface for feature characterization	

-Powerful enough by themselves to
describe temporal trends	

6	

Beginning of Spring, [ELAI < .4]*T
[ELAI > .4]?*	

MapReduce:	

-Parallel programming paradigm
popularized by	

-General interface + scalable
implementation = countless efficient jobs 	

M
ap
	

M
ap
	

M
ap
	

 R
ed

uc
e	

R
ed

uc
e	

 Map [k1, v1] Sort k Reduce [k1, [v1, v2, …]]	

SQI is a combination of both querying and sorting	

-Load balanced querying	

-Heavily optimized parallel sorting (100 GB integer sort in < 0.2 s)	

11/19/10

4

SQI_Init reads, “itemizes”, and distributes
points based on the configuration:	

Example code (mostly pseudocode) for
drought analysis:	

 …	

SQI – API and Usage Case: Drought Analysis	

SQI API:	

-SQI_Init(data_config);	

-SQI_Query(ranges, return_attributes);	

-SQI_Sort();	

Data configuration:	

Dataset layout:	

 …	

7	

data { files /dataset/dir .nc }	

dim { name X }	

dim { name Y }	

dim { name T, generate }	

var { name Veg }	

var { name Water }	

X, Y, T, Veg, Water X, Y, T, Veg, Water	

t1.nc	

 t2.nc	

 t3.nc	

 tn.nc	

SQI_Init(data_config);	

// Query low water and vegetation	

for each hemisphere of world {	

 SQI_Query(

 {hemisphere bounds, summer
timesteps, low veg, low water}, 	

 { X, Y, T});	

}	

// Sort query results based on X, Y, T	

SQI_Sort();	

// For each {X, Y}, find the years that had
the most occurrences.	

1.1 TB MODIS Drought Analysis	

8	

11/19/10

5

1.1 TB MODIS Drought Analysis	

9	

1.1 TB MODIS Drought Analysis	

10	

11/19/10

6

Global and Local Communication	

11	

-Partitioning	

 -Round robin	

 -Graph	

 -Repartitioning	

-Global reduction	

 -Merging	

 -Compositing	

-Local nearest-neighbor exchange	

 -Particle tracing	

 -Ghost cell exchange	

 -Component labeling	

12	

Partitioning and Repartitioning: ���
Eg. Round Robin Assignment 	

1. 	

Initial Partition	

3. 	

Repartition to
optimize metric

2. 	

Compute,
determine
balance metric	

Particle tracing with 1, 2, 4, 8, and 16
blocks per process. A larger number
of smaller blocks is better, to a limit.	

Partition data
structure:	

Maintain local data
only, not a global table

of the partition. Do
not want O(total data

size) or O(total
system size) memory

use.	

!"#$%

&#'("

)*
)+
),

Global
Block ID	

Local
Block ID	

Block
Data	

0	

1	

 0	

 X,Y,Z	

2	

3	

4	

 1	

 X,Y,Z	

5	

6	

7	

 2	

 X,Y,Z	

11/19/10

7

13	

Global Reduction Communication: ���
Eg. Parallel Image Composition 	

1. 	

Round 1
exchange with k
= 4, eg.	

3. 	

Repeat for as
many rounds as
desired (may be
partial merge)

2. 	

Round 2
exchange with k
= 2, eg.	

Scalability and performance speedup
of Radix-k over binary swap
reduction algorithms	

Example of using
Radix-k image

compositing to
reduce multiple
images into one	

Parameters:	

Number of rounds, k-values per round,
swap or transfer, gather to root or parallel
output, complete or partial merge	

14	

Local Nearest-Neighbor Communication: ���
Eg. Parallel Particle Tracing	

1. 	

Perform local
computations
on blocks	

3. 	

Repeat

2. 	

Exchange
objects among
processes when
they reach the
block boundary.	

4096 streamlines
generated from a

Nek5000 flow
field	

Scalability for 3 data sizes and up to
16 K processes. End-to-end
efficiency ~20%, including I/O	

11/19/10

8

15	

Library Organization	

Anlcom library	

Various computational modules can be
used here.	

Simulation or
visualization tool	

16	

Conclusions / Where Do We Go From Here?	

These tools have provided us with the ability to perform many
types of analyses that were not previously possible due to
overwhelming data demands. 	

We hope others can take advantage of our tools, study other large
scale problems using them, and ultimately foster more community
knowledge / involvement.	

Future Goals:	

BIL – Unstructured grid / AMR support	

SQI – Out of core / further testing and development	

ANLCom – Generalize for more applications and data types 	

BIL and SQI - http://seelab.eecs.utk.edu/

ANLCom - https://svn.mcs.anl.gov/repos/osuflow/anlcom

Kendall et al. SC `09 – Terascale Data Organization for Discovering Multivariate Climatic Trends
Petera et al. SC `09 – A Configurable Algorithm for Parallel Image-Compositing Applications
Kendall et al. EGPGV `10 – Accelerating and Benchmarking Radix-k Image Compositing at Large Scale

