
A Framework for Particle
Advection for Very Large Data

Hank Childs, LBNL/UCDavis
David Pugmire, ORNL

Christoph Garth, Kaiserslautern
David Camp, LBNL/UCDavis

Sean Ahern, ORNL
Gunther Weber, LBNL

Allen Sanderson, Univ. of Utah

Advecting particles

Particle advection basics

•  Advecting particles create integral curves

•  Streamlines: display particle path
(instantaneous velocities)

•  Pathlines: display particle path (velocity
field evolves as particle moves)

Particle advection is the duct tape
of the visualization world

Advecting particles is essential to
understanding flow and other

phenomena (e.g. magnetic fields)!

Outline

  Efficient advection of particles
  A general system for particle-advection based

analysis

Particle Advection Load Balancing

  N particles (P1, P2, … Pn), M MPI tasks (T1, …, Tm)
  Each particle takes a variable number of steps, S1, S2, … Sn
  Total number of steps is ΣSi

 We cannot do less work than this (ΣSi)
  Goal: Distribute the ΣSi steps over M MPI tasks such that

problem finishes in minimal time

Particle Advection Performance

  Goal: Distribute the ΣSi steps over M MPI tasks such that
problem finishes in minimal time

  Sounds sort of like a bin-packing problem, but…
 particles can move from MPI task to MPI task
 path of particle is data dependent and unknown a priori

(we don’t know Si beforehand)
 big data significantly complicates this picture….

 … data may not be readily available, introducing starvation

Advecting particles

Decomposition of large data
set into blocks on filesystem

?

What is the right strategy for
getting particle and data together?

Strategy: load blocks necessary for
advection

Decomposition of large data
set into blocks on filesystem

Go to filesystem
and read block

Decomposition of large data
set into blocks on filesystem

Strategy: load blocks necessary for
advection

This strategy has multiple benefits:
1)  Indifferent to data size: a serial program can

process data of any size
2)  Trivial parallelization (partition particles over

processors)

BUT: redundant I/O (both over MPI tasks and
within a task) is a significant problem.

“Parallelize over Particles”

  “Parallelize over Particles”: particles are partitioned
over processors, blocks of data are loaded as
needed.

  Some additional complexities:
 Work for a given particle (i.e. Si) is variable and not

known a priori: how to share load between processors
dynamically?

 More blocks than can be stored in memory: what is the
best caching/purging strategy?

“Parallelize over data” strategy:
parallelize over blocks and pass particles

T1 T2

T4 T3

This strategy has multiple benefits:
1)  Ideal for in situ processing.
2)  Only load data once.

BUT: starvation is a significant problem.

Both parallelization schemes have
serious flaws.

  Two approaches:

Parallelizing Over I/O Efficiency

Data Good Bad
Particles Bad Good

Parallelize
over particles

Parallelize
over data Hybrid algorithms

The master-slave algorithm is an
example of a hybrid technique.
  Algorithm adapts during runtime to avoid pitfalls of

parallelize-over-data and parallelize-over-
particles.
 Nice property for production visualization tools.

  Implemented inside VisIt visualization and analysis
package.

D. Pugmire, H. Childs, C. Garth, S. Ahern, G.
Weber, “Scalable Computation of

Streamlines on Very Large Datasets.” SC09,
Portland, OR, November, 2009

Master-Slave Hybrid Algorithm
•  Divide processors into groups of N

•  Uniformly distribute seed points to each group

Master:
-  Monitor workload
-  Make decisions to optimize resource
utilization

Slaves:
-  Respond to commands from
Master
-  Report status when work
complete

Master Process Pseudocode

Master()
{
 while (! done)
 {
 if (NewStatusFromAnySlave())
 {
 commands = DetermineMostEfficientCommand()

 for cmd in commands
 SendCommandToSlaves(cmd)
 }
 }
}

What are the possible
commands?

Commands that can be issued by master

Master Slave

Slave is given a streamline that
is contained in a block that is
already loaded

1. Assign / Loaded Block
2. Assign / Unloaded Block

3. Handle OOB / Load
4. Handle OOB / Send

OOB = out of bounds

Master Slave

Slave is given a streamline
and loads the block

Commands that can be issued by master

1. Assign / Loaded Block
2. Assign / Unloaded Block

3. Handle OOB / Load
4. Handle OOB / Send

OOB = out of bounds

Master Slave

Load

Slave is instructed to load a
block. The streamline in that
block can then be computed.

Commands that can be issued by master

1. Assign / Loaded Block
2. Assign / Unloaded Block

3. Handle OOB / Load
4. Handle OOB / Send

OOB = out of bounds

Master Slave

Send to J

Slave J

Slave is instructed to send a
streamline to another slave that
has loaded the block

Commands that can be issued by master

1. Assign / Loaded Block
2. Assign / Unloaded Block

3. Handle OOB / Load
4. Handle OOB / Send

OOB = out of bounds

Master Process Pseudocode

Master()
{
 while (! done)
 {
 if (NewStatusFromAnySlave())
 {
 commands = DetermineMostEfficientCommand()

 for cmd in commands
 SendCommandToSlaves(cmd)
 }
 }
} * See SC 09 paper

for details

Master-slave in action

T0

T0
T1

T1
T2

T3

T4

Iteration Action

0 T0 reads B0,
T3 reads B1

1 T1 passes points to T0,
T4 passes points to T3,
T2 reads B0

0: Read

0: Read 1: Pass

1: Pass 1: Read

-  When to pass and when to read?
-  How to coordinate communication?
Status? Efficiently?

Algorithm Test Cases

- Core collapse supernova simulation
- Magnetic confinement fusion simulation
- Hydraulic flow simulation

Workload distribution in parallelize-over-data

Starvation

Workload distribution in parallelize-over-
particles

Too much I/O

Workload distribution in master-slave algorithm

Just right

Particles Data Hybrid

Workload distribution in supernova simulation

Parallelization by:

Colored by processor doing integration

Astrophysics Test Case:
Total time to compute 20,000 Streamlines

S
ec

on
ds

S
ec

on
ds

Number of procs Number of procs

Uniform
Seeding

Non-uniform
Seeding

Data Part-
icles

Hybrid

Astrophysics Test Case:
Number of blocks loaded

B
lo

ck
s

lo
ad

ed

B
lo

ck
s

lo
ad

ed

Number of procs Number of procs

Data Part-
icles

Hybrid

Uniform
Seeding

Non-uniform
Seeding

Summary: Master-Slave Algorithm

  First ever attempt at a hybrid parallelization
algorithm for particle advection

  Algorithm adapts during runtime to avoid pitfalls of
parallelize-over-data and parallelize-over-
particles.
 Nice property for production visualization tools.

  Implemented inside VisIt visualization and analysis
package.

Outline

  Efficient advection of particles
  A general system for particle-advection based

analysis

Goal

  Efficient code for a variety of particle advection
based techniques

  Cognizant of use cases with >>10K particles.
 Need handling of every particle, every evaluation to

be efficient.

  Want to support diverse flow techniques: flexibility/
extensibility is key.

  Fit within data flow network design (i.e. a filter)

Motivating examples of system

  FTLE
  Stream surfaces
  Streamline
  Dynamical Systems (e.g. Poincaré Maps)
  Statistics based analysis
  + more

Design

  PICS filter: parallel integral curve system
  Execution:

  Instantiate particles at seed locations
 Step particles to form integral curves

 Analysis performed at each step
 Termination criteria evaluated for each step

 When all integral curves have completed, create final
output

Design

  Five major types of extensibility:
 How to parallelize?
 How do you evaluate velocity field?
 How do you advect particles?
  Initial particle locations?
 How do you analyze the particle paths?

Inheritance hierarchy

avtPICSFilter

Streamline Filter
Your derived type

of PICS filter

avtIntegralCurve

avtStreamlineIC
Your derived type
of integral curve

  We disliked the “matching inheritance” scheme, but
this achieved all of our design goals cleanly.

#1: How to parallelize?

avtICAlgorithm

avtParDomIC-
Algorithm

(parallel over
data)

avtSerialIC-
Algorithm

(parallel over
seeds)

avtMasterSlave-
ICAlgorithm

#2: Evaluating velocity field

avtIVPField

avtIVPVTKField
avtIVPVTK-

TimeVarying-
Field

avtIVPM3DC1
Field

avtIVP-
<YOUR>Higher

Order-Field

IVP = initial value problem

#3: How do you advect particles?

avtIVPSolver

avtIVPDopri5 avtIVPEuler avtIVPLeapfrog

avtIVP-
M3DC1Integrator

IVP = initial value problem

avtIVPAdams-
Bashforth

#4: Initial particle locations

  avtPICSFilter::GetInitialLocations() = 0;

#5: How do you analyze particle path?

  avtIntegralCurve::AnalyzeStep() = 0;
 All AnalyzeStep will evaluate termination criteria

  avtPICSFilter::CreateIntegralCurveOutput(
 std::vector<avtIntegralCurve*> &) = 0;

  Examples:
  Streamline: store location and scalars for current step in data

members
  Poincare: store location for current step in data members
  FTLE: only store location of final step, no-op for preceding steps

  NOTE: these derived types create very different types of
outputs.

Putting it all together

PICS Filter

avtICAlgorithm

avtIVPSolver

avtIVPField
Vector<

avtIntegral-Curve>

Integral curves sent to other processors with
some derived types of avtICAlgorithm.

::CreateInitialLocations() = 0;

::AnalyzeStep() = 0;

VisIt is an open source, richly featured,
turn-key application for large data.

  Used by:
 Visualization experts
 Simulation code developers
 Simulation code consumers

  Popular
 R&D 100 award in 2005
 Used on many of the Top500
 >>>100K downloads

217 pin reactor cooling simulation
Run on ¼ of Argonne BG/P

Image credit: Paul Fischer, ANL

1 billion grid points / time slice

Final thoughts…

  Summary:
 Particle advection is important for understanding flow

and efficiently parallelizing this computation is difficult.
 We have developed a freely available system for

doing this analysis for large data.

  Documentation:
  (PICS) http://www.visitusers.org/index.php?title=Pics_dev
  (VisIt) http://www.llnl.gov/visit

  Future work:
  UI extensions, including Python

  Additional analysis techniques (FTLE & more)

Acknowledgements

  Funding: This work was supported by the Director, Office of
Science, Office and Advanced Scientific Computing Research,
of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231 through the Scientific Discovery through
Advanced Computing (SciDAC) program's Visualization and
Analytics Center for Enabling Technologies (VACET).

  Program Manager: Lucy Nowell

  Master-Slave Algorithm: Dave Pugmire (ORNL), Hank Childs
(LBNL/UCD), Christoph Garth (Kaiserslautern), Sean Ahern
(ORNL), and Gunther Weber (LBNL)

  PICS framework: Hank Childs (LBNL/UCD), Dave Pugmire
(ORNL), Christoph Garth (Kaiserslautern), David Camp (LBNL/
UCD), Allen Sanderson (Univ of Utah)

A Framework for Particle
Advection for Very Large Data

Hank Childs, LBNL/UCDavis
David Pugmire, ORNL

Christoph Garth, Kaiserslautern
David Camp, LBNL/UCDavis

Sean Ahern, ORNL
Gunther Weber, LBNL

Allen Sanderson, Univ. of Utah

