
A Framework for Particle 
Advection for Very Large Data 

Hank Childs, LBNL/UCDavis 
David Pugmire, ORNL 

Christoph Garth, Kaiserslautern 
David Camp, LBNL/UCDavis 

Sean Ahern, ORNL 
Gunther Weber, LBNL 

Allen Sanderson, Univ. of Utah 



Advecting particles 



Particle advection basics        

•  Advecting particles create integral curves 

•  Streamlines: display particle path 
(instantaneous velocities) 

•  Pathlines: display particle path (velocity 
field evolves as particle moves)  



Particle advection is the duct tape 
of the visualization world     

Advecting particles is essential to 
understanding flow and other 

phenomena (e.g. magnetic fields)! 



Outline 

  Efficient advection of particles 
  A general system for particle-advection based 

analysis 



Particle Advection Load Balancing 

  N particles (P1, P2, … Pn), M MPI tasks (T1, …, Tm) 
  Each particle takes a variable number of steps, S1, S2, … Sn 
  Total number of steps is ΣSi 

 We cannot do less work than this (ΣSi) 
  Goal: Distribute the ΣSi steps over M MPI tasks such that 

problem finishes in minimal time   



Particle Advection Performance 

  Goal: Distribute the ΣSi steps over M MPI tasks such that 
problem finishes in minimal time   

  Sounds sort of like a bin-packing problem, but… 
 particles can move from MPI task to MPI task 
 path of particle is data dependent and unknown a priori 

(we don’t know Si beforehand) 
 big data significantly complicates this picture…. 

 … data may not be readily available, introducing starvation 



Advecting particles 

Decomposition of large data 
set into blocks on filesystem 

? 

What is the right strategy for 
getting particle and data together? 



Strategy: load blocks necessary for 
advection 

Decomposition of large data 
set into blocks on filesystem 

Go to filesystem 
and read block 



Decomposition of large data 
set into blocks on filesystem 

Strategy: load blocks necessary for 
advection 

This strategy has multiple benefits: 
1)  Indifferent to data size: a serial program can 

process data of any size 
2)  Trivial parallelization (partition particles over 

processors) 

BUT: redundant I/O (both over MPI tasks and 
within a task) is a significant problem. 



“Parallelize over Particles” 

  “Parallelize over Particles”: particles are partitioned 
over processors, blocks of data are loaded as 
needed. 

  Some additional complexities: 
 Work for a given particle (i.e. Si) is variable and not 

known a priori: how to share load between processors 
dynamically? 

 More blocks than can be stored in memory: what is the 
best caching/purging strategy? 



“Parallelize over data” strategy: 
parallelize over blocks and pass particles 

T1 T2 

T4 T3 

This strategy has multiple benefits: 
1)  Ideal for in situ processing. 
2)  Only load data once. 

BUT: starvation is a significant problem. 



Both parallelization schemes have 
serious flaws. 

  Two approaches: 

Parallelizing Over I/O Efficiency 

Data Good Bad 
Particles Bad Good 

Parallelize 
over particles 

Parallelize 
over data Hybrid algorithms 



The master-slave algorithm is an 
example of a hybrid technique. 
  Algorithm adapts during runtime to avoid pitfalls of 

parallelize-over-data and parallelize-over-
particles. 
 Nice property for production visualization tools. 

  Implemented inside VisIt visualization and analysis 
package. 

D. Pugmire, H. Childs, C. Garth, S. Ahern, G. 
Weber, “Scalable Computation of 

Streamlines on Very Large Datasets.” SC09, 
Portland, OR, November, 2009 



Master-Slave Hybrid Algorithm 
•  Divide processors into groups of N 

•  Uniformly distribute seed points to each group 

Master: 
-  Monitor workload 
-  Make decisions to optimize resource 
utilization 

Slaves: 
-  Respond to commands from 
Master 
-  Report status when work 
complete 



Master Process Pseudocode 

Master() 
{ 
     while ( ! done ) 
     { 
          if ( NewStatusFromAnySlave() ) 
          { 
                 commands = DetermineMostEfficientCommand() 

                 for cmd in commands 
                      SendCommandToSlaves( cmd ) 
          } 
     } 
} 

What are the possible 
commands? 



Commands that can be issued by master 

Master Slave 

Slave is given a streamline that 
is contained in a block that is 
already loaded 

1. Assign / Loaded Block 
2. Assign / Unloaded Block 

3. Handle OOB / Load 
4. Handle OOB / Send 

OOB = out of bounds 



Master Slave 

Slave is given a streamline 
and loads the block 

Commands that can be issued by master 

1. Assign / Loaded Block 
2. Assign / Unloaded Block 

3. Handle OOB / Load 
4. Handle OOB / Send 

OOB = out of bounds 



Master Slave 

Load  

Slave is instructed to load a 
block. The streamline in that 
block can then be computed. 

Commands that can be issued by master 

1. Assign / Loaded Block 
2. Assign / Unloaded Block 

3. Handle OOB / Load 
4. Handle OOB / Send 

OOB = out of bounds 



Master Slave 

Send     to J 

Slave J 

Slave is instructed to send a 
streamline to another slave that 
has loaded the block 

Commands that can be issued by master 

1. Assign / Loaded Block 
2. Assign / Unloaded Block 

3. Handle OOB / Load 
4. Handle OOB / Send 

OOB = out of bounds 



Master Process Pseudocode 

Master() 
{ 
     while ( ! done ) 
     { 
          if ( NewStatusFromAnySlave() ) 
          { 
                 commands = DetermineMostEfficientCommand() 

                 for cmd in commands 
                      SendCommandToSlaves( cmd ) 
          } 
     } 
} * See SC 09 paper 

for details 



Master-slave in action 

T0 

T0 
T1 

T1 
T2 

T3 

T4 

Iteration Action 

0 T0 reads B0, 
T3 reads B1 

1 T1 passes points to T0, 
T4 passes points to T3, 
T2 reads B0 

0: Read 

0: Read 1: Pass 

1: Pass 1: Read 

-  When to pass and when to read? 
-  How to coordinate communication?  
Status?  Efficiently? 



Algorithm Test Cases 

- Core collapse supernova simulation 
- Magnetic confinement fusion simulation 
- Hydraulic flow simulation 



Workload distribution in parallelize-over-data 

Starvation 



Workload distribution in parallelize-over-
particles 

Too much I/O 



Workload distribution in master-slave algorithm 

Just right 



Particles Data Hybrid 

Workload distribution in supernova simulation 

Parallelization by: 

Colored by processor doing integration 



Astrophysics Test Case:  
Total time to compute 20,000 Streamlines 
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Astrophysics Test Case:  
Number of blocks loaded 
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Summary: Master-Slave Algorithm 

  First ever attempt at a hybrid parallelization 
algorithm for particle advection 

  Algorithm adapts during runtime to avoid pitfalls of 
parallelize-over-data and parallelize-over-
particles. 
 Nice property for production visualization tools. 

  Implemented inside VisIt visualization and analysis 
package. 



Outline 

  Efficient advection of particles 
  A general system for particle-advection based 

analysis 



Goal 

  Efficient code for a variety of particle advection 
based techniques 

  Cognizant of use cases with >>10K particles.   
 Need handling of every particle, every evaluation to 

be efficient. 

  Want to support diverse flow techniques: flexibility/
extensibility is key.   

  Fit within data flow network design (i.e. a filter) 



Motivating examples of system 

  FTLE 
  Stream surfaces  
  Streamline 
  Dynamical Systems (e.g. Poincaré Maps) 
  Statistics based analysis 
  + more 



Design 

  PICS filter: parallel integral curve system 
  Execution: 

  Instantiate particles at seed locations 
 Step particles to form integral curves 

 Analysis performed at each step 
 Termination criteria evaluated for each step 

 When all integral curves have completed, create final 
output 



Design 

  Five major types of extensibility: 
 How to parallelize? 
 How do you evaluate velocity field? 
 How do you advect particles? 
  Initial particle locations? 
 How do you analyze the particle paths? 



Inheritance hierarchy 

avtPICSFilter 

Streamline Filter 
Your derived type 

of PICS filter 

avtIntegralCurve 

avtStreamlineIC 
Your derived type 
of integral curve 

  We disliked the “matching inheritance” scheme, but 
this achieved all of our design goals cleanly. 



#1: How to parallelize? 

avtICAlgorithm 

avtParDomIC-
Algorithm 

(parallel over 
data) 

avtSerialIC-
Algorithm  

(parallel over 
seeds) 

avtMasterSlave-
ICAlgorithm 



#2: Evaluating velocity field 

avtIVPField 

avtIVPVTKField 
avtIVPVTK- 

TimeVarying- 
Field 

avtIVPM3DC1 
Field 

avtIVP-
<YOUR>Higher

Order-Field 

IVP = initial value problem 



#3: How do you advect particles? 

avtIVPSolver 

avtIVPDopri5 avtIVPEuler avtIVPLeapfrog 

avtIVP-
M3DC1Integrator 

IVP = initial value problem 

avtIVPAdams-
Bashforth 



#4: Initial particle locations 

  avtPICSFilter::GetInitialLocations() = 0; 



#5: How do you analyze particle path? 

  avtIntegralCurve::AnalyzeStep() = 0; 
 All AnalyzeStep will evaluate termination criteria 

  avtPICSFilter::CreateIntegralCurveOutput(                                              
     std::vector<avtIntegralCurve*> &) = 0; 

  Examples: 
  Streamline: store location and scalars for current step in data 

members 
  Poincare: store location for current step in data members 
  FTLE: only store location of final step, no-op for preceding steps 

  NOTE: these derived types create very different types of 
outputs. 



Putting it all together 

PICS Filter 

avtICAlgorithm 

avtIVPSolver 

avtIVPField 
Vector< 

avtIntegral-Curve> 

Integral curves sent to other processors with 
some derived types of avtICAlgorithm.  

::CreateInitialLocations() = 0; 

::AnalyzeStep() = 0; 



VisIt is an open source, richly featured, 
turn-key application for large data. 

  Used by: 
 Visualization experts 
 Simulation code developers 
 Simulation code consumers 

  Popular 
 R&D 100 award in 2005 
 Used on many of the Top500 
 >>>100K downloads 

217 pin reactor cooling simulation   
Run on ¼ of Argonne BG/P   

Image credit: Paul Fischer, ANL 

1 billion grid points / time slice 



Final thoughts… 

  Summary: 
 Particle advection is important for understanding flow 

and efficiently parallelizing this computation is difficult. 
 We have developed a freely available system for 

doing this analysis for large data. 

  Documentation: 
  (PICS) http://www.visitusers.org/index.php?title=Pics_dev 
  (VisIt) http://www.llnl.gov/visit 

  Future work: 
  UI extensions, including Python 

  Additional analysis techniques (FTLE & more) 
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