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Direct Numerical Simulations of Combustion 

• Energy Efficiency 
– 83% of U.S. energy comes from 

combustion of fossil fuels 

– Reduce greenhouse gas emissions by 
80% by 2050 

– Reduce petroleum usage by 25% by 
2020 

• Large Combustion Simulations 
– High-fidelity 

– Critical for new engine designs 

• Data Analysis Tools 
– Suitable for large data 

• Eulerian field data 

• Lagrangian particle data 
(14 million CPU-hours running for 20 days 
on 30,000 cores; 1.3 billion grid points, 22 
species; > 40 million particles per time step) 

 

Large Combustion Simulations New Designs 

Detailed Analysis and Modeling 



Background 

• Particle Analysis Tasks 
– Select particle trajectories of interest 
– Collect statistical information 
– Assemble particles into time series 

 

• COMPARED System  
– Combined particle analysis, reduction, exploration, and display 

– Leverage large heterogeneous systems 
• Interactive evaluation, query, analysis, and visualization 

• Full resolution particle data 

– Run-time calculation for advanced queries  
• Complex derived variables and flow topology classification  
     (that are a priori unknown and cannot be indexed) 

– Performance optimization 
• Store results from individual GPUs in collision-free hash table 
• Explicitly cache primary and computed variables at multiple levels 



COMPARED System 
Combined particle analysis, reduction, exploration, and display 

The core fuel jet ( YN2 >0.815) and the 

region where the flame reaction zone is 

located (YN2 <=0.815 & YOH >0.0005) 

Conditional mean of temperature 

conditional on mixture fraction for the 

particles where YN2 > 0.768 

Histogram of particle y-position 

where AGE < 1μs, output between 

t=1.4710ms and t=1.4950ms 

A lifted ethylene-air jet flame stabilized by the interaction between a fuel jet and the 

surrounding preheated air 

Interactive demo at SC09 



Motivation 

• Dual Space Analysis  

– Categorize particle time series curves in phase space 

– Explore corresponding particle trajectories in physical space 
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Motivation 

• Challenges 

– Analysis based on geometric properties of curves 

– Visual clutter 

– Large data 

Phase Space Physical Space 



Our Solution 

• Cluster-Label-Classify 

Unsupervised Learning 

Automatically extract 

knowledge from large 

unlabeled data 

 

Can not guarantee satisfying 

results 

 

Supervised Learning 

Incorporate user knowledge 

to label data 

 

Time-consuming for large 

data 

 

Semi-supervised 

Learning 

Limited number of 

labeled data 

+ 

Larger amount of 

unlabeled data 

 

Cluster-Label-Classify 

Automatic 

Clustering 

Semi-supervised 

Classification 

User 

Labeling 

Parallel Model-based Clustering 
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Model-based Clustering 

• What is Model-based Clustering 
– Assume that data can be divided into K groups, and each has a 

probabilistic model to describe the data within it 
– Recover model parameters from data 
– Assign a data object to a cluster with highest probability 

 
• Why is Model-based Clustering 

– Cluster lines of different lengths 
– Process large data efficiently 

 

• How to Perform Model-based Clustering 
– Polynomial regression model 

– Recover model parameters using Expectation-Maximization algorithm 



Parallel Model-based Clustering 

• Distribute Line Data to Multiple Compute Nodes 

– Keep workload balanced and minimize communication costs between 
compute nodes 

– Use a sorted balancing algorithm to ensure the total number of data 
points on each compute node roughly the same 

 

• Preprocess Line Data on Each Compute Node 

– Smooth and sample local lines on each compute node 

– Use GPUs to accelerate the preprocessing 

 



Parallel Model-based Clustering 

• Cluster Lines Using Multiple CPUs 
– On each compute node, initialize K component model parameters 

– Iterate between two steps 
• Expectation step: on each compute node, estimate local lines’ 

probabilistic membership in different clusters 

• Maximization step: on each compute node, calculate the K model 
parameters globally 

– Assign each local line to a cluster with highest membership probability 
on each CPU node 

 



Experiment Settings 

• Cluster: 8 computer nodes, each node contains  

– One Intel quad-core 3.00GHz CPU with 4GB of memory 

– One NVIDIA GeForce GTX 285 GPU 
 

• Dataset 

– 1,000,000 time series curves correlating multiple variables generated 
from a combustion simulation 

case Number of lines Number of computer nodes 
1      2      3      4      5      6      7      8 

1 10,000 X      X      X      X      X      X      X      X 

2 100,000 X      X      X      X      X      X      X      X 

3 1,000,000                          X      X      X      X      X 

Entries marked with “x” represent experiment runs. 



Performance Results 

• 10 Thousand Time Series Curves (Speedup) 

Smoothing Time Sampling Time 

E-step Time M-step Time 
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Performance Results 

Workloads among 8 nodes. In each plot, the horizontal axis represents the node ID, and the vertical axis 

represents the running time in second. The percentage number associated with each plot is the difference 

ratio (                                                                        ) between the maximum and minimum times among the 

nodes. 

• 1 Million Time Series Curves (Workload) 

Smoothing time(3.46%)  E-Step time(0.16%)  Sampling time(2.09%)  M-Step time(0.01%)  



Conclusion and Future Work 

• Cluster-Label-Classify 
– Incorporate expert domain knowledge 

– Effectively and efficiently process large line data 

– Parallel implementation with multiple CPUs and GPUs 
• Distribute line data for balanced workload 

• Efficiently preprocess line data in CUDA 

• Devise and implement the regression model-based clustering in MPI 

– Support dual space particle analysis 

 

• Future Work 
– Conduct particle data analysis in situ and compress lines as much as 

possible 

– Explore high dimensional lines 
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