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SDAV VTK-m Frameworks 

●  Objective: Enhance existing multi/many-core technologies in anticipation of in 
situ analysis use cases with LCF codes 

●  Benefit to scientists: These frameworks will make it easier for domain scientists’ 
simulation codes to take advantage of the parallelism available on a wide 
range of current and next-generation hardware architectures, especially with 
regards to visualization and analysis tasks  

●  Projects 

●  EAVL, Oak Ridge National Laboratory 

●  DAX, Sandia National Laboratory 

●  DIY, Argonne National Laboratory 

●  PISTON, Los Alamos National Laboratory 

●  Work on integrating these projects with VTK is on-going, in collaboration with 
Kitware   
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EAVL: Extreme-scale Analysis and Visualization 
Library 

●  Targets approaching hardware/software ecosystem: 
●  Update traditional data model to handle modern simulation codes 

and a wider range of data. 
●  Investigate how an updated data and execution model can 

achieve the necessary computational, I/O, and memory efficiency. 
●  Explore methods for visualization algorithm developers to achieve 

these efficiency gains and better support exascale architectures. 

http://ft.ornl.gov/eavl    
https://github.com/jsmeredith/EAVL 
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An Efficient Data Model in EAVL 

●  More efficiently support existing data types with more 
flexible mesh structures 

●  Better support non-physical and new types of data (high-
order, high-dim) 

●  Algorithms execute faster due to fewer data 
transformations. 
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ConnecFvity	  

3D	  Point	  Coordinates	  

Cell	  Fields	  

Point	  Fields	  

Dimensions	  

3D	  Point	  Coordinates	  

Cell	  Fields	  

Point	  Fields	  

Dimensions	  

3D	  Axis	  Coordinates	  

Cell	  Fields	  

Point	  Fields	  

A Traditional Data Set Model 

Data	  Set	  

RecFlinear	   Structured	   Unstructured	  
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Tree	  ConnecFvity	   Dimensions	  

FieldName	  

Component	  

Name	  

AssociaFon	  

Values	  

Cells[]	  

Points[]	  

Fields[]	  

The EAVL Data Set Model 

Data	  Set	  

CellSet	  

Explicit	   Structured	  

Coords	  
Field	  

QuadTree	  

CellList	  

Subset	  
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●  No problem-sized data modifications. 

●  Interleaved and separated coordinates can be used simultaneously. 

EAVL Example: Elevating a Structured Grid 
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Productive Algorithm Development in EAVL 

struct PolyNormalFunctor 
{ 
  void operator()(float *x, float *y, float *z, float *n) 
  { 
    // get two adjacent edge vectors 
    float ax = x[1]-x[0],  ay = y[1]-y[0],  az = z[1]-z[0]; 
    float bx = x[2]-x[1],  ay = y[2]-y[1],  az = z[2]-z[1]; 
    // calculate their cross product 
    n[0] = ay*bz - az*by;  n[1] = az*bx - ax*bz;   n[2] = ax*by - ay*bx; 
  } 
}; 

void FaceNormalFilter::Execute(...) 
{ 
  executor->AddOperation(new NodeToCellOp3(xcoord, ycoord, zcoord, outputnormals, 
                                           inputcells, PolyNormalFunctor())); 
} 

●  Topological iterators encapsulate data-parallel patterns 

●  Functors provide optimized execution on CPU and GPU 

●  Transparent heterogeneous memory space support 
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Dax: A Toolkit for Analysis and Visualization at Extreme Scale 

•  “Worklets”	  ease	  design	  in	  serial,	  scheduled	  in	  parallel	  
•  Basic	  visualizaFon	  design	  objects	  (think	  VTK	  for	  many-‐core)	  
•  CommunicaFve	  operaFons	  provide	  neighborhood-‐wide	  

operaFons	  without	  exposing	  read/write	  hazards	  

The	  primiFves	  necessary	  to	  design	  finely-‐threaded	  algorithms	  

Contour	  with	  subsequent	  
vertex	  welding,	  coarsening,	  
subdivision,	  and	  curvature	  
esFmaFon	  

hcp://daxtoolkit.org	  

Streamlines	  (preliminary	  work)	  

	  Extracted	  cells	  
	  of	  large	  gradient	  

and	  compacted	  points	  
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Dax Framework 
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Example Dax Worklet 

  struct Normal: dax::exec::WorkletMapField 

  { 

  typedef void ControlSignature(Field(In),Field(Out)); 

  typedef _2 ExecutionSignature(_1); 

  template<typename T> 

  T operator()(const T& coord) const 

    { 

  dax::Scalar dot = dax::dot(coord,coord); 

  return coord * dax::math::RSqrt(dot); 

    } 

   }; 
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Example Dax Control Code 

  int main() 

 { 

   using namespace dax::cont; 

  std::vector<dax::Vector3> coords(10); 

  for(int i=0; i < 10; i++) 

     { 

     const dax::Scalar x(1.0f + i); 

     coords[i] = dax::Vector3(dax::math::Sin(x)/i+1, 

                               1/(x*x), 

                               0); 

     } 

  //make a dax array handle to the coordinates 

  ArrayHandle<dax::Vector3> coordHandle =  
                                make_ArrayHandle(coords); 

  //make a dax array handle to store the results 

  ArrayHandle<dax::Vector3> normals; 

  Schedule< > scheduler; 

 //note two parameters passed to scheduler like the control  
           // signature requests 

  scheduler(Normal(), coordHandle, normals); 

   std::vector<dax::Vector3> results(normals.GetNumberOfValues()); 

   normals.CopyInto (results.begin()); 

 } 
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DIY (Do-It-Yourself): Overview 

13	  DIY	  usage	  and	  library	  organizaFon	  

Main	  Ideas	  and	  ObjecFves	  	  

-‐Large-‐scale	  parallel	  analysis	  (visual	  and	  	  
numerical)	  on	  HPC	  machines	  

-‐For	  scienFsts,	  visualizaFon	  researchers,	  tool	  
builders	  

-‐In	  situ,	  coprocessing,	  postprocessing	  
-‐Data-‐parallel	  problem	  decomposiFon	  
-‐MPI	  +	  threads	  hybrid	  parallelism	  
-‐Scalable	  data	  movement	  algorithms	  
-‐Runs	  on	  Unix-‐like	  plahorms,	  from	  laptop	  to	  
supercomputer	  (including	  all	  IBM	  and	  Cray	  HPC	  
leadership	  machines)	  

Benefits	  

-‐Researchers	  can	  focus	  on	  their	  own	  
work,	  not	  on	  parallel	  
infrastructure	  

-‐Analysis	  applicaFons	  can	  be	  custom	  
-‐Reuse	  core	  components	  and	  
algorithms	  for	  performance	  and	  
producFvity	  

Features	  	  

-‐Parallel	  I/O	  to/from	  storage	  
-‐Domain	  decomposiFon	  
-‐Network	  communicaFon	  
-‐Wricen	  in	  C++	  
-‐C	  bindings,	  can	  be	  called	  from	  Fortran,	  C,	  C++	  

-‐Autoconf	  build	  system	  
-‐Lightweight:	  libdiv.a	  800KB	  
-‐Maintainable:	  ~15K	  lines	  of	  code	  
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ParFcle	  tracing	  of	  thermal	  hydraulics	  flow	   InformaFon	  entropy	  analysis	  of	  astrophysics	  

Morse-‐Smale	  complex	  of	  combusFon	   Voronoi	  tessellaFon	  of	  cosmology	  

DIY: Applications 
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PISTON: A Portable Data-Parallel Visualization and Analysis 
Framework 

  Goal: Portability and performance for visualization and analysis operators on current and 
next-generation supercomputers 

  Main idea: Write operators using only data-parallel primitives (scan, reduce, etc.) 

  Requires architecture-specific optimizations for only for the small set of primitives 

  PISTON is built on top of NVIDIA’s Thrust Library 
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Motivation and Background 

●  Current production visualization software does not take full advantage of acceleration 
hardware and/or multi-core architecture 

●  Research on accelerating visualization operations are mostly hardware-specific; few were 
integrated in visualization software 

●  Standards such as OpenCL may allow program to run cross-platform, but usually still requires 
many architecture specific optimizations to run well 

●  Data parallelism: independent processors performs the same task on different pieces of data 
(see Blelloch, “Vector Models for Data Parallel Computing”)  

●  Due to the massive data sizes we expect to be simulating we expect data parallelism to be a 
good way to exploit parallelism on current and next generation architectures 

●  Thrust is a NVidia C++ template library for CUDA. It can also target other backends such as 
OpenMP, and allows you to program using an interface similar the C++ Standard Template 
Library (STL) 
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Videos of PISTON in Action 
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Brief Introduction to Data-Parallel Programming 
and Thrust 

●  Sorts 

●  Transforms 

●  Reductions 

●  Scans 

●  Binary searches 

●  Stream compactions 

●  Scatters / gathers 

Challenge: Write operators in terms of 
these primitives only 

Reward:  Efficient, portable code	  

What algorithms does Thrust provide? 
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Isosurface with Marching Cube – the Naive Way 

●  Classify all cells by transform 

●  Use copy_if to compact valid cells. 

●  For each valid cell, generate same 
number of geometries with flags. 

●  Use copy_if to do stream compaction 
on vertices. 

●  This approach is too slow, more than 
50% of time was spent moving huge 
amount of data in global memory. 

●  Can we avoid calling copy_if and 
eliminate global memory movement? 
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Isosurface with Marching Cube – Optimization 

●  Inspired by HistoPyramid 

●  The filter is essentially a mapping 
from input cell id to output vertex id 

●  Is there a “reverse” mapping? 

●  If there is a reverse mapping, the 
filter can be very “lazy” 

●  Given an output vertex id, we only 
apply operations on the cell that 
would generate the vertex 

●  Actually for a range of output vertex 
ids 
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Isosurface with Marching Cubes Algorithm 
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Variations on Isosurface: Cut Surfaces and Threshold 

●  Cut surface 

●  Two scalar fields, one for generating 
geometry (cut surface) the other for scalar 
interpolation 

●  Less than 10 LOC change, negligible 
performance impact to isosurface 

●  One 1D interpolation per triangle vertex 

●  Threshold 

●  Classify cells, this time based on whether 
value at each vertex falls within threshold 
range, then stream compact valid cells and 
generate geometry for valid cells  

●  Additional pass of cell classification and 
stream compaction to remove interior cells  
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Additional Operators 

Current prototypes 

●  Glyphs 

●  Halo finder for cosmology 
simulations 

●  “Boid” simulation (flocking 
birds) 

LA-‐UR-‐12-‐26127	  

Data	  Structures	  
	  	  	  	  Graphs:	  Neighbor	  reducing,	  distribuFng	  excess	  across	  edges	  
	  	  	  	  Trees:	  Leaffix	  and	  roohix	  operaFons,	  tree	  manipulaFons	  
	  	  	  	  MulFdimensional	  arrays	  
ComputaFonal	  Geometry	  
	  	  	  	  Generalized	  binary	  search	  
	  	  	  	  k-‐D	  tree	  
	  	  	  	  Closest	  pair	  
	  	  	  	  Quickhull	  
	  	  	  	  Merge	  Hull	  

Graph	  Algorithms	  
	  	  	  	  Minimum	  spanning	  tree	  
	  	  	  	  Maximum	  flow	  
	  	  	  	  Maximal	  independent	  set	  
Numerical	  Algorithms	  
	  	  	  	  Matrix-‐vector	  mulFplicaFon	  
	  	  	  	  Linear-‐systems	  solver	  
	  	  	  	  Simplex	  
	  	  	  	  Outer	  product	  
	  	  	  	  Sparse-‐matrix	  mulFplicaFon	  

Blelloch’s “Vector Models for Data-Parallel Computing” 
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PISTON Performance 

LA-‐UR-‐12-‐26127	  



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980 

Integration with VTK and ParaView 

●  Filters that use PISTON data types and algorithms integrated into VTK and ParaView 

●  Utility filters interconvert between standard VTK data format and PISTON data format 
(thrust device vectors) 

●  Supports interop for on-card rendering 
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Extending PISTON’s Portability: Architectures 

●  Prototype OpenCL backend 

●  Successfully implemented isosurface and cut plane operators in 
OpenCL with code almost identical to that used for the Thrust-based 
CUDA and OpenMP backends 

●  With interop on AMD FirePro V7800, we can run at about 6 fps for 
256^3 data set (2 fps without interop) 

●  Renderer  

●  Allows generation of images on systems without OpenGL  

●  Rasterizing and ray-casting versions (using K-D Tree)  

●  Inter-node parallelism 

●  VTK Integration 

–  Domain partitioned by VTK’s MPI libraries 

–  Each node uses PISTON filters to compute results for its portion 
of domain 

–  Results combined by VTK’s compositors 

●  Distributed implementations of Thrust primitives using MPI (in progress) 
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Extending PISTON’s Portability: Data Types 

●  Curvilinear coordinates 

●  Multiple layers of coordinate transformations 

●  Due to kernel fusion, very little performance 
impact 

●  Unstructured / AMR data 

●  Tetrahedralize uniform grid or unstructured grid 
(e.g., AMR mesh) 

●  Generate isosurface geometry based on look-up 
table for tetrahedral cells 

●  Next step: Develop PISTON operator to 
tetrahedralize grids, and/or to compute 
isosurface directly on AMR grid  
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PISTON In-Situ 

●  VPIC (Vector Particle in Cell) Kinetic Plasma Simulation Code 

●  Implemented first version of an in-situ adapter based on 
Paraview CoProcessing Library (Catalyst) 

●  Three pipelines: vtkDataSetMapper, vtkContourFilter, 
vtkPistonContour 

●  CoGL 

●  Stand-alone meso-scale simulation code developed as part of 
the Exascale Co-Design Center for Materials in Extreme 
Environments 

●  Studies pattern formation in ferroelastic materials using the 
Ginzburg–Landau approach 

●  Models cubic-to-tetragonal transitions under dynamic strain 
loading 

●  Simulation code and in-situ viz implemented using PISTON  

Output	  of	  vtkDataSetMapper	  and	  vtkPistonContour	  
filters	  on	  Hhydro	  charge	  density	  at	  one	  Fmestep	  of	  
VPIC	  simulaFon	  

LA-‐UR-‐12-‐26127	  

Strains	  in	  x,y,z	  (above);	  PISTON	  in-‐situ	  
visualizaFon	  (right)	  
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PISTON’s New Companion Project: PINION 

●  A portable, data-parallel software framework for physics simulations 

●  Data structures that allow scientists to program in a way that maps easily to the problem domain rather than 
dealing directly with 1D host/device vectors 

●  Operators that provide data-parallel implementations of analysis and computational functions often used in 
physics simulations 

●  Backends that optimize implementations of data parallel primitives for one or two emerging supercomputer 
hardware architectures 
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PISTON Open-Source Release 

●  Open-source release 

●  Stable tarball: http://viz.lanl.gov/projects/PISTON.html 

●  Current repository: https://github.com/losalamos/PISTON 
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