
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

The SDAV Software Frameworks for Visualization and
Analysis on Next-Generation Multi-core Architectures

Presentation by Chris Sewell, Los Alamos National Laboratory
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 PISTON 	 	 	 	 	 	 	 DAX	 	 	 	 	 	 	 	 	 	 	 	 	 EAVL	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 DIY	

Chris	 Sewell,	 Li-‐ta	 Lo,	 James	 Ahrens 	 Ken	 Moreland 	 	 	 	 	 Jeremy	 Meredith	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Tom	 Peterka	

ProducFzaFon	 support	 provided	 by	 	

LA-‐UR-‐12-‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

SDAV VTK-m Frameworks

●  Objective: Enhance existing multi/many-core technologies in anticipation of in
situ analysis use cases with LCF codes

●  Benefit to scientists: These frameworks will make it easier for domain scientists’
simulation codes to take advantage of the parallelism available on a wide
range of current and next-generation hardware architectures, especially with
regards to visualization and analysis tasks

●  Projects

●  EAVL, Oak Ridge National Laboratory

●  DAX, Sandia National Laboratory

●  DIY, Argonne National Laboratory

●  PISTON, Los Alamos National Laboratory

●  Work on integrating these projects with VTK is on-going, in collaboration with
Kitware

LA-‐UR-‐12-‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

EAVL: Extreme-scale Analysis and Visualization
Library

●  Targets approaching hardware/software ecosystem:
●  Update traditional data model to handle modern simulation codes

and a wider range of data.
●  Investigate how an updated data and execution model can

achieve the necessary computational, I/O, and memory efficiency.
●  Explore methods for visualization algorithm developers to achieve

these efficiency gains and better support exascale architectures.

http://ft.ornl.gov/eavl
https://github.com/jsmeredith/EAVL

LA-‐UR-‐12-‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

An Efficient Data Model in EAVL

●  More efficiently support existing data types with more
flexible mesh structures

●  Better support non-physical and new types of data (high-
order, high-dim)

●  Algorithms execute faster due to fewer data
transformations.

m
et
ha

ne
	

temperature	

H

C

H

C

H

H

31	 2

LA-‐UR-‐12-‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

ConnecFvity	

3D	 Point	 Coordinates	

Cell	 Fields	

Point	 Fields	

Dimensions	

3D	 Point	 Coordinates	

Cell	 Fields	

Point	 Fields	

Dimensions	

3D	 Axis	 Coordinates	

Cell	 Fields	

Point	 Fields	

A Traditional Data Set Model

Data	 Set	

RecFlinear	 Structured	 Unstructured	

LA-‐UR-‐12-‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Tree	 ConnecFvity	 Dimensions	

FieldName	

Component	

Name	

AssociaFon	

Values	

Cells[]	

Points[]	

Fields[]	

The EAVL Data Set Model

Data	 Set	

CellSet	

Explicit	 Structured	

Coords	
Field	

QuadTree	

CellList	

Subset	

LA-‐UR-‐12-‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

●  No problem-sized data modifications.

●  Interleaved and separated coordinates can be used simultaneously.

EAVL Example: Elevating a Structured Grid

LA-‐UR-‐12-‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Productive Algorithm Development in EAVL

struct PolyNormalFunctor
{
 void operator()(float *x, float *y, float *z, float *n)
 {
 // get two adjacent edge vectors
 float ax = x[1]-x[0], ay = y[1]-y[0], az = z[1]-z[0];
 float bx = x[2]-x[1], ay = y[2]-y[1], az = z[2]-z[1];
 // calculate their cross product
 n[0] = ay*bz - az*by; n[1] = az*bx - ax*bz; n[2] = ax*by - ay*bx;
 }
};

void FaceNormalFilter::Execute(...)
{
 executor->AddOperation(new NodeToCellOp3(xcoord, ycoord, zcoord, outputnormals,
 inputcells, PolyNormalFunctor()));
}

●  Topological iterators encapsulate data-parallel patterns

●  Functors provide optimized execution on CPU and GPU

●  Transparent heterogeneous memory space support

LA-‐UR-‐12-‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Dax: A Toolkit for Analysis and Visualization at Extreme Scale

•  “Worklets”	 ease	 design	 in	 serial,	 scheduled	 in	 parallel	
•  Basic	 visualizaFon	 design	 objects	 (think	 VTK	 for	 many-‐core)	
•  CommunicaFve	 operaFons	 provide	 neighborhood-‐wide	

operaFons	 without	 exposing	 read/write	 hazards	

The	 primiFves	 necessary	 to	 design	 finely-‐threaded	 algorithms	

Contour	 with	 subsequent	
vertex	 welding,	 coarsening,	
subdivision,	 and	 curvature	
esFmaFon	

hcp://daxtoolkit.org	

Streamlines	 (preliminary	 work)	

	 Extracted	 cells	
	 of	 large	 gradient	

and	 compacted	 points	

LA-‐UR-‐12-‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Dax Framework

LA-‐UR-‐12-‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Example Dax Worklet

 struct Normal: dax::exec::WorkletMapField

 {

 typedef void ControlSignature(Field(In),Field(Out));

 typedef _2 ExecutionSignature(_1);

 template<typename T>

 T operator()(const T& coord) const

 {

 dax::Scalar dot = dax::dot(coord,coord);

 return coord * dax::math::RSqrt(dot);

 }

 };

LA-‐UR-‐12-‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Example Dax Control Code

 int main()

 {

 using namespace dax::cont;

 std::vector<dax::Vector3> coords(10);

 for(int i=0; i < 10; i++)

 {

 const dax::Scalar x(1.0f + i);

 coords[i] = dax::Vector3(dax::math::Sin(x)/i+1,

 1/(x*x),

 0);

 }

 //make a dax array handle to the coordinates

 ArrayHandle<dax::Vector3> coordHandle =
 make_ArrayHandle(coords);

 //make a dax array handle to store the results

 ArrayHandle<dax::Vector3> normals;

 Schedule< > scheduler;

 //note two parameters passed to scheduler like the control
 // signature requests

 scheduler(Normal(), coordHandle, normals);

 std::vector<dax::Vector3> results(normals.GetNumberOfValues());

 normals.CopyInto (results.begin());

 }

LA-‐UR-‐12-‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

DIY (Do-It-Yourself): Overview

13	 DIY	 usage	 and	 library	 organizaFon	

Main	 Ideas	 and	 ObjecFves	 	

-‐Large-‐scale	 parallel	 analysis	 (visual	 and	 	
numerical)	 on	 HPC	 machines	

-‐For	 scienFsts,	 visualizaFon	 researchers,	 tool	
builders	

-‐In	 situ,	 coprocessing,	 postprocessing	
-‐Data-‐parallel	 problem	 decomposiFon	
-‐MPI	 +	 threads	 hybrid	 parallelism	
-‐Scalable	 data	 movement	 algorithms	
-‐Runs	 on	 Unix-‐like	 plahorms,	 from	 laptop	 to	
supercomputer	 (including	 all	 IBM	 and	 Cray	 HPC	
leadership	 machines)	

Benefits	

-‐Researchers	 can	 focus	 on	 their	 own	
work,	 not	 on	 parallel	
infrastructure	

-‐Analysis	 applicaFons	 can	 be	 custom	
-‐Reuse	 core	 components	 and	
algorithms	 for	 performance	 and	
producFvity	

Features	 	

-‐Parallel	 I/O	 to/from	 storage	
-‐Domain	 decomposiFon	
-‐Network	 communicaFon	
-‐Wricen	 in	 C++	
-‐C	 bindings,	 can	 be	 called	 from	 Fortran,	 C,	 C++	

-‐Autoconf	 build	 system	
-‐Lightweight:	 libdiv.a	 800KB	
-‐Maintainable:	 ~15K	 lines	 of	 code	

LA-‐UR-‐12-‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

ParFcle	 tracing	 of	 thermal	 hydraulics	 flow	 InformaFon	 entropy	 analysis	 of	 astrophysics	

Morse-‐Smale	 complex	 of	 combusFon	 Voronoi	 tessellaFon	 of	 cosmology	

DIY: Applications

LA-‐UR-‐12-‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

PISTON: A Portable Data-Parallel Visualization and Analysis
Framework

  Goal: Portability and performance for visualization and analysis operators on current and
next-generation supercomputers

  Main idea: Write operators using only data-parallel primitives (scan, reduce, etc.)

  Requires architecture-specific optimizations for only for the small set of primitives

  PISTON is built on top of NVIDIA’s Thrust Library

LA-‐UR-‐12-‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Motivation and Background

●  Current production visualization software does not take full advantage of acceleration
hardware and/or multi-core architecture

●  Research on accelerating visualization operations are mostly hardware-specific; few were
integrated in visualization software

●  Standards such as OpenCL may allow program to run cross-platform, but usually still requires
many architecture specific optimizations to run well

●  Data parallelism: independent processors performs the same task on different pieces of data
(see Blelloch, “Vector Models for Data Parallel Computing”)

●  Due to the massive data sizes we expect to be simulating we expect data parallelism to be a
good way to exploit parallelism on current and next generation architectures

●  Thrust is a NVidia C++ template library for CUDA. It can also target other backends such as
OpenMP, and allows you to program using an interface similar the C++ Standard Template
Library (STL)

LA-‐UR-‐12-‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Videos of PISTON in Action

LA-‐UR-‐12-‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Brief Introduction to Data-Parallel Programming
and Thrust

●  Sorts

●  Transforms

●  Reductions

●  Scans

●  Binary searches

●  Stream compactions

●  Scatters / gathers

Challenge: Write operators in terms of
these primitives only

Reward: Efficient, portable code	

What algorithms does Thrust provide?

LA-‐UR-‐12-‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Isosurface with Marching Cube – the Naive Way

●  Classify all cells by transform

●  Use copy_if to compact valid cells.

●  For each valid cell, generate same
number of geometries with flags.

●  Use copy_if to do stream compaction
on vertices.

●  This approach is too slow, more than
50% of time was spent moving huge
amount of data in global memory.

●  Can we avoid calling copy_if and
eliminate global memory movement?

LA-‐UR-‐12-‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Isosurface with Marching Cube – Optimization

●  Inspired by HistoPyramid

●  The filter is essentially a mapping
from input cell id to output vertex id

●  Is there a “reverse” mapping?

●  If there is a reverse mapping, the
filter can be very “lazy”

●  Given an output vertex id, we only
apply operations on the cell that
would generate the vertex

●  Actually for a range of output vertex
ids

0 1 2 5 4 3 6

0

1
2 3 4

5
6

7

8
9

LA-‐UR-‐12-‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Isosurface with Marching Cubes Algorithm

LA-‐UR-‐12-‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Variations on Isosurface: Cut Surfaces and Threshold

●  Cut surface

●  Two scalar fields, one for generating
geometry (cut surface) the other for scalar
interpolation

●  Less than 10 LOC change, negligible
performance impact to isosurface

●  One 1D interpolation per triangle vertex

●  Threshold

●  Classify cells, this time based on whether
value at each vertex falls within threshold
range, then stream compact valid cells and
generate geometry for valid cells

●  Additional pass of cell classification and
stream compaction to remove interior cells

LA-‐UR-‐12-‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Additional Operators

Current prototypes

●  Glyphs

●  Halo finder for cosmology
simulations

●  “Boid” simulation (flocking
birds)

LA-‐UR-‐12-‐26127	

Data	 Structures	
	 	 	 	 Graphs:	 Neighbor	 reducing,	 distribuFng	 excess	 across	 edges	
	 	 	 	 Trees:	 Leaffix	 and	 roohix	 operaFons,	 tree	 manipulaFons	
	 	 	 	 MulFdimensional	 arrays	
ComputaFonal	 Geometry	
	 	 	 	 Generalized	 binary	 search	
	 	 	 	 k-‐D	 tree	
	 	 	 	 Closest	 pair	
	 	 	 	 Quickhull	
	 	 	 	 Merge	 Hull	

Graph	 Algorithms	
	 	 	 	 Minimum	 spanning	 tree	
	 	 	 	 Maximum	 flow	
	 	 	 	 Maximal	 independent	 set	
Numerical	 Algorithms	
	 	 	 	 Matrix-‐vector	 mulFplicaFon	
	 	 	 	 Linear-‐systems	 solver	
	 	 	 	 Simplex	
	 	 	 	 Outer	 product	
	 	 	 	 Sparse-‐matrix	 mulFplicaFon	

Blelloch’s “Vector Models for Data-Parallel Computing”

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

PISTON Performance

LA-‐UR-‐12-‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Integration with VTK and ParaView

●  Filters that use PISTON data types and algorithms integrated into VTK and ParaView

●  Utility filters interconvert between standard VTK data format and PISTON data format
(thrust device vectors)

●  Supports interop for on-card rendering

LA-‐UR-‐12-‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Extending PISTON’s Portability: Architectures

●  Prototype OpenCL backend

●  Successfully implemented isosurface and cut plane operators in
OpenCL with code almost identical to that used for the Thrust-based
CUDA and OpenMP backends

●  With interop on AMD FirePro V7800, we can run at about 6 fps for
256^3 data set (2 fps without interop)

●  Renderer

●  Allows generation of images on systems without OpenGL

●  Rasterizing and ray-casting versions (using K-D Tree)

●  Inter-node parallelism

●  VTK Integration

–  Domain partitioned by VTK’s MPI libraries

–  Each node uses PISTON filters to compute results for its portion
of domain

–  Results combined by VTK’s compositors

●  Distributed implementations of Thrust primitives using MPI (in progress)

LA-‐UR-‐12-‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Extending PISTON’s Portability: Data Types

●  Curvilinear coordinates

●  Multiple layers of coordinate transformations

●  Due to kernel fusion, very little performance
impact

●  Unstructured / AMR data

●  Tetrahedralize uniform grid or unstructured grid
(e.g., AMR mesh)

●  Generate isosurface geometry based on look-up
table for tetrahedral cells

●  Next step: Develop PISTON operator to
tetrahedralize grids, and/or to compute
isosurface directly on AMR grid

LA-‐UR-‐12-‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

PISTON In-Situ

●  VPIC (Vector Particle in Cell) Kinetic Plasma Simulation Code

●  Implemented first version of an in-situ adapter based on
Paraview CoProcessing Library (Catalyst)

●  Three pipelines: vtkDataSetMapper, vtkContourFilter,
vtkPistonContour

●  CoGL

●  Stand-alone meso-scale simulation code developed as part of
the Exascale Co-Design Center for Materials in Extreme
Environments

●  Studies pattern formation in ferroelastic materials using the
Ginzburg–Landau approach

●  Models cubic-to-tetragonal transitions under dynamic strain
loading

●  Simulation code and in-situ viz implemented using PISTON

Output	 of	 vtkDataSetMapper	 and	 vtkPistonContour	
filters	 on	 Hhydro	 charge	 density	 at	 one	 Fmestep	 of	
VPIC	 simulaFon	

LA-‐UR-‐12-‐26127	

Strains	 in	 x,y,z	 (above);	 PISTON	 in-‐situ	
visualizaFon	 (right)	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

PISTON’s New Companion Project: PINION

●  A portable, data-parallel software framework for physics simulations

●  Data structures that allow scientists to program in a way that maps easily to the problem domain rather than
dealing directly with 1D host/device vectors

●  Operators that provide data-parallel implementations of analysis and computational functions often used in
physics simulations

●  Backends that optimize implementations of data parallel primitives for one or two emerging supercomputer
hardware architectures

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

PISTON Open-Source Release

●  Open-source release

●  Stable tarball: http://viz.lanl.gov/projects/PISTON.html

●  Current repository: https://github.com/losalamos/PISTON

LA-‐UR-‐12-‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Acknowledgments and Resources

●  http://sdav-scidac.org/

●  Panel at SC12: “Visualization Frameworks for Multi-Core and Many-Core
Architectures” Hank Childs, Jeremy Meredith, Patrick McCormick,
Christopher Sewell, Kenneth Moreland

●  Wednesday, November 14, 3:30 – 5:00, 355-BC

●  The SciDAC Institute of Scalable Data Management, Analysis and
Visualization (SDAV) is funded by the DOE Office of Science through the
Office of Advanced Scientific Computing Research.

●  SciDAC Institute Director: Arie Shoshani

●  Visualization Project Chairs: James Ahrens, Wes Bethel

●  Related PISTON projects also funded by ASC Program, ASCR, LANL LDRD

LA-‐UR-‐12-‐26127	

