
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

The SDAV Software Frameworks for Visualization and
Analysis on Next-Generation Multi-core Architectures

Presentation by Chris Sewell, Los Alamos National Laboratory
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 PISTON 	
 	
 	
 	
 	
 	
 	
 DAX	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 EAVL	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 DIY	

Chris	
 Sewell,	
 Li-­‐ta	
 Lo,	
 James	
 Ahrens 	
 Ken	
 Moreland 	
 	
 	
 	
 	
 Jeremy	
 Meredith	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Tom	
 Peterka	

ProducFzaFon	
 support	
 provided	
 by	
 	

LA-­‐UR-­‐12-­‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

SDAV VTK-m Frameworks

●  Objective: Enhance existing multi/many-core technologies in anticipation of in
situ analysis use cases with LCF codes

●  Benefit to scientists: These frameworks will make it easier for domain scientists’
simulation codes to take advantage of the parallelism available on a wide
range of current and next-generation hardware architectures, especially with
regards to visualization and analysis tasks

●  Projects

●  EAVL, Oak Ridge National Laboratory

●  DAX, Sandia National Laboratory

●  DIY, Argonne National Laboratory

●  PISTON, Los Alamos National Laboratory

●  Work on integrating these projects with VTK is on-going, in collaboration with
Kitware

LA-­‐UR-­‐12-­‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

EAVL: Extreme-scale Analysis and Visualization
Library

●  Targets approaching hardware/software ecosystem:
●  Update traditional data model to handle modern simulation codes

and a wider range of data.
●  Investigate how an updated data and execution model can

achieve the necessary computational, I/O, and memory efficiency.
●  Explore methods for visualization algorithm developers to achieve

these efficiency gains and better support exascale architectures.

http://ft.ornl.gov/eavl
https://github.com/jsmeredith/EAVL

LA-­‐UR-­‐12-­‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

An Efficient Data Model in EAVL

●  More efficiently support existing data types with more
flexible mesh structures

●  Better support non-physical and new types of data (high-
order, high-dim)

●  Algorithms execute faster due to fewer data
transformations.

m
et
ha

ne
	

temperature	

H

C

H

C

H

H

31	
 2

LA-­‐UR-­‐12-­‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

ConnecFvity	

3D	
 Point	
 Coordinates	

Cell	
 Fields	

Point	
 Fields	

Dimensions	

3D	
 Point	
 Coordinates	

Cell	
 Fields	

Point	
 Fields	

Dimensions	

3D	
 Axis	
 Coordinates	

Cell	
 Fields	

Point	
 Fields	

A Traditional Data Set Model

Data	
 Set	

RecFlinear	
 Structured	
 Unstructured	

LA-­‐UR-­‐12-­‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Tree	
 ConnecFvity	
 Dimensions	

FieldName	

Component	

Name	

AssociaFon	

Values	

Cells[]	

Points[]	

Fields[]	

The EAVL Data Set Model

Data	
 Set	

CellSet	

Explicit	
 Structured	

Coords	

Field	

QuadTree	

CellList	

Subset	

LA-­‐UR-­‐12-­‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

●  No problem-sized data modifications.

●  Interleaved and separated coordinates can be used simultaneously.

EAVL Example: Elevating a Structured Grid

LA-­‐UR-­‐12-­‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Productive Algorithm Development in EAVL

struct PolyNormalFunctor
{
 void operator()(float *x, float *y, float *z, float *n)
 {
 // get two adjacent edge vectors
 float ax = x[1]-x[0], ay = y[1]-y[0], az = z[1]-z[0];
 float bx = x[2]-x[1], ay = y[2]-y[1], az = z[2]-z[1];
 // calculate their cross product
 n[0] = ay*bz - az*by; n[1] = az*bx - ax*bz; n[2] = ax*by - ay*bx;
 }
};

void FaceNormalFilter::Execute(...)
{
 executor->AddOperation(new NodeToCellOp3(xcoord, ycoord, zcoord, outputnormals,
 inputcells, PolyNormalFunctor()));
}

●  Topological iterators encapsulate data-parallel patterns

●  Functors provide optimized execution on CPU and GPU

●  Transparent heterogeneous memory space support

LA-­‐UR-­‐12-­‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Dax: A Toolkit for Analysis and Visualization at Extreme Scale

•  “Worklets”	
 ease	
 design	
 in	
 serial,	
 scheduled	
 in	
 parallel	

•  Basic	
 visualizaFon	
 design	
 objects	
 (think	
 VTK	
 for	
 many-­‐core)	

•  CommunicaFve	
 operaFons	
 provide	
 neighborhood-­‐wide	

operaFons	
 without	
 exposing	
 read/write	
 hazards	

The	
 primiFves	
 necessary	
 to	
 design	
 finely-­‐threaded	
 algorithms	

Contour	
 with	
 subsequent	

vertex	
 welding,	
 coarsening,	

subdivision,	
 and	
 curvature	

esFmaFon	

hcp://daxtoolkit.org	

Streamlines	
 (preliminary	
 work)	

	
 Extracted	
 cells	

	
 of	
 large	
 gradient	

and	
 compacted	
 points	

LA-­‐UR-­‐12-­‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Dax Framework

LA-­‐UR-­‐12-­‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Example Dax Worklet

 struct Normal: dax::exec::WorkletMapField

 {

 typedef void ControlSignature(Field(In),Field(Out));

 typedef _2 ExecutionSignature(_1);

 template<typename T>

 T operator()(const T& coord) const

 {

 dax::Scalar dot = dax::dot(coord,coord);

 return coord * dax::math::RSqrt(dot);

 }

 };

LA-­‐UR-­‐12-­‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Example Dax Control Code

 int main()

 {

 using namespace dax::cont;

 std::vector<dax::Vector3> coords(10);

 for(int i=0; i < 10; i++)

 {

 const dax::Scalar x(1.0f + i);

 coords[i] = dax::Vector3(dax::math::Sin(x)/i+1,

 1/(x*x),

 0);

 }

 //make a dax array handle to the coordinates

 ArrayHandle<dax::Vector3> coordHandle =
 make_ArrayHandle(coords);

 //make a dax array handle to store the results

 ArrayHandle<dax::Vector3> normals;

 Schedule< > scheduler;

 //note two parameters passed to scheduler like the control
 // signature requests

 scheduler(Normal(), coordHandle, normals);

 std::vector<dax::Vector3> results(normals.GetNumberOfValues());

 normals.CopyInto (results.begin());

 }

LA-­‐UR-­‐12-­‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

DIY (Do-It-Yourself): Overview

13	
 DIY	
 usage	
 and	
 library	
 organizaFon	

Main	
 Ideas	
 and	
 ObjecFves	
 	

-­‐Large-­‐scale	
 parallel	
 analysis	
 (visual	
 and	
 	

numerical)	
 on	
 HPC	
 machines	

-­‐For	
 scienFsts,	
 visualizaFon	
 researchers,	
 tool	

builders	

-­‐In	
 situ,	
 coprocessing,	
 postprocessing	

-­‐Data-­‐parallel	
 problem	
 decomposiFon	

-­‐MPI	
 +	
 threads	
 hybrid	
 parallelism	

-­‐Scalable	
 data	
 movement	
 algorithms	

-­‐Runs	
 on	
 Unix-­‐like	
 plahorms,	
 from	
 laptop	
 to	

supercomputer	
 (including	
 all	
 IBM	
 and	
 Cray	
 HPC	

leadership	
 machines)	

Benefits	

-­‐Researchers	
 can	
 focus	
 on	
 their	
 own	

work,	
 not	
 on	
 parallel	

infrastructure	

-­‐Analysis	
 applicaFons	
 can	
 be	
 custom	

-­‐Reuse	
 core	
 components	
 and	

algorithms	
 for	
 performance	
 and	

producFvity	

Features	
 	

-­‐Parallel	
 I/O	
 to/from	
 storage	

-­‐Domain	
 decomposiFon	

-­‐Network	
 communicaFon	

-­‐Wricen	
 in	
 C++	

-­‐C	
 bindings,	
 can	
 be	
 called	
 from	
 Fortran,	
 C,	
 C++	

-­‐Autoconf	
 build	
 system	

-­‐Lightweight:	
 libdiv.a	
 800KB	

-­‐Maintainable:	
 ~15K	
 lines	
 of	
 code	

LA-­‐UR-­‐12-­‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

ParFcle	
 tracing	
 of	
 thermal	
 hydraulics	
 flow	
 InformaFon	
 entropy	
 analysis	
 of	
 astrophysics	

Morse-­‐Smale	
 complex	
 of	
 combusFon	
 Voronoi	
 tessellaFon	
 of	
 cosmology	

DIY: Applications

LA-­‐UR-­‐12-­‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

PISTON: A Portable Data-Parallel Visualization and Analysis
Framework

  Goal: Portability and performance for visualization and analysis operators on current and
next-generation supercomputers

  Main idea: Write operators using only data-parallel primitives (scan, reduce, etc.)

  Requires architecture-specific optimizations for only for the small set of primitives

  PISTON is built on top of NVIDIA’s Thrust Library

LA-­‐UR-­‐12-­‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Motivation and Background

●  Current production visualization software does not take full advantage of acceleration
hardware and/or multi-core architecture

●  Research on accelerating visualization operations are mostly hardware-specific; few were
integrated in visualization software

●  Standards such as OpenCL may allow program to run cross-platform, but usually still requires
many architecture specific optimizations to run well

●  Data parallelism: independent processors performs the same task on different pieces of data
(see Blelloch, “Vector Models for Data Parallel Computing”)

●  Due to the massive data sizes we expect to be simulating we expect data parallelism to be a
good way to exploit parallelism on current and next generation architectures

●  Thrust is a NVidia C++ template library for CUDA. It can also target other backends such as
OpenMP, and allows you to program using an interface similar the C++ Standard Template
Library (STL)

LA-­‐UR-­‐12-­‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Videos of PISTON in Action

LA-­‐UR-­‐12-­‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Brief Introduction to Data-Parallel Programming
and Thrust

●  Sorts

●  Transforms

●  Reductions

●  Scans

●  Binary searches

●  Stream compactions

●  Scatters / gathers

Challenge: Write operators in terms of
these primitives only

Reward: Efficient, portable code	

What algorithms does Thrust provide?

LA-­‐UR-­‐12-­‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Isosurface with Marching Cube – the Naive Way

●  Classify all cells by transform

●  Use copy_if to compact valid cells.

●  For each valid cell, generate same
number of geometries with flags.

●  Use copy_if to do stream compaction
on vertices.

●  This approach is too slow, more than
50% of time was spent moving huge
amount of data in global memory.

●  Can we avoid calling copy_if and
eliminate global memory movement?

LA-­‐UR-­‐12-­‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Isosurface with Marching Cube – Optimization

●  Inspired by HistoPyramid

●  The filter is essentially a mapping
from input cell id to output vertex id

●  Is there a “reverse” mapping?

●  If there is a reverse mapping, the
filter can be very “lazy”

●  Given an output vertex id, we only
apply operations on the cell that
would generate the vertex

●  Actually for a range of output vertex
ids

0 1 2 5 4 3 6

0

1
2 3 4

5
6

7

8
9

LA-­‐UR-­‐12-­‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Isosurface with Marching Cubes Algorithm

LA-­‐UR-­‐12-­‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Variations on Isosurface: Cut Surfaces and Threshold

●  Cut surface

●  Two scalar fields, one for generating
geometry (cut surface) the other for scalar
interpolation

●  Less than 10 LOC change, negligible
performance impact to isosurface

●  One 1D interpolation per triangle vertex

●  Threshold

●  Classify cells, this time based on whether
value at each vertex falls within threshold
range, then stream compact valid cells and
generate geometry for valid cells

●  Additional pass of cell classification and
stream compaction to remove interior cells

LA-­‐UR-­‐12-­‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Additional Operators

Current prototypes

●  Glyphs

●  Halo finder for cosmology
simulations

●  “Boid” simulation (flocking
birds)

LA-­‐UR-­‐12-­‐26127	

Data	
 Structures	

	
 	
 	
 	
 Graphs:	
 Neighbor	
 reducing,	
 distribuFng	
 excess	
 across	
 edges	

	
 	
 	
 	
 Trees:	
 Leaffix	
 and	
 roohix	
 operaFons,	
 tree	
 manipulaFons	

	
 	
 	
 	
 MulFdimensional	
 arrays	

ComputaFonal	
 Geometry	

	
 	
 	
 	
 Generalized	
 binary	
 search	

	
 	
 	
 	
 k-­‐D	
 tree	

	
 	
 	
 	
 Closest	
 pair	

	
 	
 	
 	
 Quickhull	

	
 	
 	
 	
 Merge	
 Hull	

Graph	
 Algorithms	

	
 	
 	
 	
 Minimum	
 spanning	
 tree	

	
 	
 	
 	
 Maximum	
 flow	

	
 	
 	
 	
 Maximal	
 independent	
 set	

Numerical	
 Algorithms	

	
 	
 	
 	
 Matrix-­‐vector	
 mulFplicaFon	

	
 	
 	
 	
 Linear-­‐systems	
 solver	

	
 	
 	
 	
 Simplex	

	
 	
 	
 	
 Outer	
 product	

	
 	
 	
 	
 Sparse-­‐matrix	
 mulFplicaFon	

Blelloch’s “Vector Models for Data-Parallel Computing”

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

PISTON Performance

LA-­‐UR-­‐12-­‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Integration with VTK and ParaView

●  Filters that use PISTON data types and algorithms integrated into VTK and ParaView

●  Utility filters interconvert between standard VTK data format and PISTON data format
(thrust device vectors)

●  Supports interop for on-card rendering

LA-­‐UR-­‐12-­‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Extending PISTON’s Portability: Architectures

●  Prototype OpenCL backend

●  Successfully implemented isosurface and cut plane operators in
OpenCL with code almost identical to that used for the Thrust-based
CUDA and OpenMP backends

●  With interop on AMD FirePro V7800, we can run at about 6 fps for
256^3 data set (2 fps without interop)

●  Renderer

●  Allows generation of images on systems without OpenGL

●  Rasterizing and ray-casting versions (using K-D Tree)

●  Inter-node parallelism

●  VTK Integration

–  Domain partitioned by VTK’s MPI libraries

–  Each node uses PISTON filters to compute results for its portion
of domain

–  Results combined by VTK’s compositors

●  Distributed implementations of Thrust primitives using MPI (in progress)

LA-­‐UR-­‐12-­‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Extending PISTON’s Portability: Data Types

●  Curvilinear coordinates

●  Multiple layers of coordinate transformations

●  Due to kernel fusion, very little performance
impact

●  Unstructured / AMR data

●  Tetrahedralize uniform grid or unstructured grid
(e.g., AMR mesh)

●  Generate isosurface geometry based on look-up
table for tetrahedral cells

●  Next step: Develop PISTON operator to
tetrahedralize grids, and/or to compute
isosurface directly on AMR grid

LA-­‐UR-­‐12-­‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

PISTON In-Situ

●  VPIC (Vector Particle in Cell) Kinetic Plasma Simulation Code

●  Implemented first version of an in-situ adapter based on
Paraview CoProcessing Library (Catalyst)

●  Three pipelines: vtkDataSetMapper, vtkContourFilter,
vtkPistonContour

●  CoGL

●  Stand-alone meso-scale simulation code developed as part of
the Exascale Co-Design Center for Materials in Extreme
Environments

●  Studies pattern formation in ferroelastic materials using the
Ginzburg–Landau approach

●  Models cubic-to-tetragonal transitions under dynamic strain
loading

●  Simulation code and in-situ viz implemented using PISTON

Output	
 of	
 vtkDataSetMapper	
 and	
 vtkPistonContour	

filters	
 on	
 Hhydro	
 charge	
 density	
 at	
 one	
 Fmestep	
 of	

VPIC	
 simulaFon	

LA-­‐UR-­‐12-­‐26127	

Strains	
 in	
 x,y,z	
 (above);	
 PISTON	
 in-­‐situ	

visualizaFon	
 (right)	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

PISTON’s New Companion Project: PINION

●  A portable, data-parallel software framework for physics simulations

●  Data structures that allow scientists to program in a way that maps easily to the problem domain rather than
dealing directly with 1D host/device vectors

●  Operators that provide data-parallel implementations of analysis and computational functions often used in
physics simulations

●  Backends that optimize implementations of data parallel primitives for one or two emerging supercomputer
hardware architectures

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

PISTON Open-Source Release

●  Open-source release

●  Stable tarball: http://viz.lanl.gov/projects/PISTON.html

●  Current repository: https://github.com/losalamos/PISTON

LA-­‐UR-­‐12-­‐26127	

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Acknowledgments and Resources

●  http://sdav-scidac.org/

●  Panel at SC12: “Visualization Frameworks for Multi-Core and Many-Core
Architectures” Hank Childs, Jeremy Meredith, Patrick McCormick,
Christopher Sewell, Kenneth Moreland

●  Wednesday, November 14, 3:30 – 5:00, 355-BC

●  The SciDAC Institute of Scalable Data Management, Analysis and
Visualization (SDAV) is funded by the DOE Office of Science through the
Office of Advanced Scientific Computing Research.

●  SciDAC Institute Director: Arie Shoshani

●  Visualization Project Chairs: James Ahrens, Wes Bethel

●  Related PISTON projects also funded by ASC Program, ASCR, LANL LDRD

LA-­‐UR-­‐12-­‐26127	

