Stallion tiled display in the TACC vislab, 512 MP image, 128 MIC'’s, 2 fps

Ray Tracing and Volume Rendering Large Molecular
Data on Multi-Core and Many-Core Architectures

Aaron Knoll (TACC)
Ingo Wald (Intel)
Paul Navratil (TACC)
Michael E. Papka (ANL)
Kelly Gaither (TACC)

(nteDg

Iﬁl&@@ - THE UNIVERSITY OF TEXAS AT AUSTIN
TEXAS ADVANCED COMPUTING CENTER

Motivation

e “Direct” visualization
— Glyphs and volume data, in particular applied to chem vis
— No triangles: reduce memory footprint, improve quality

e |nteractive vis without GPUs
— Evaluate CPU, MIC and GPU performance
— GPGPU-like code that works on CPU+MIC
— “First steps” towards platform-abstract ray tracing for visualization

e Ray tracing
— Better scalability to large data

— Better image quality (for a price...)
— One pipeline for both batch and interactive rendering

TRCC

Chem vis

e Materials and biochem are increasingly significant HPC workloads

e (lassical molecular dynamics, ab initio MD, DFT

e Volume rendering provides:

— Continuous electron density/potential fields

— Automatic LOD, transfer functions for illustrating uncertainty
and contrast in surfaces/interfaces

e DVR is expensive, most chem packages don’t do it
Computational chemists want these features and ball-and-stick,

for increasingly large data with many timesteps
— They want to do vis locally and on clusters, with or without GPU’s.

Data courtesy KC Lau, Maria Chan, Hakim Iddir,Julius Jellinek @ ANL

Related work: Nanovol

e GPU ray casting for large MD data (up to 15M atoms)

e Ball-and-stick and volume rendering, nice lighting + filtering
e Compute RBF volume data from molecule statistics, bulk DFT

e Many, many other molecular vis solutions, why nanovol?

Support for volume rendering

Not built around triangle preprocess pipeline (e.g. VMD, PyMol, Paraview, Visit)
Not specifically built for fast LOD glyph rendering (e.g. MegaMol)

Ray casting using a grid acceleration structure; could support full ray tracing.
Straightforward GLSL implementation, easy to reproduce and compare against

D &@@ On CAVEZ2: Reda et al. LDAV ZQ_{]@‘} m
: ‘

VMD vs Nanovol
~300 MB/

Si02 Fissure

timestep

4

5M atoms

y fast

. But GL_LINES are ver

GPU choke(d) on 5-100 GB of ball+stick or surface geometry

VMD

1 voxel per Angstrom volume data (92 MB), analytical glyphs, 6 fps @ 4 MP

Nanovol

Data courtesy Ken-ichi Nomura, University of Southern California

TRCC

680 GTX

in memory on a
(0.2 fps @ 2 MP)

o)
Q
4+
(7p]
()}
&
5
S~
(a]
O
—
&
)
Q
(7p]
(L)
i
M
©
=
(@]
4=
©
>
LN
i

Data courtesy Ken-ichi Nomura, University of Southern California

Coarse macrocell grid, slow performance

(©
o
(O
T
c
@)
P
(©
=
X
@
£
>
=
=
S
(©
o
o
<
<

Could only fit a 0.5 voxel-per-Angstrom volume

TRCC

3 solutions to GPU memory limits:

e Go parallel
e Qut-of-core/LOD
e Use hardware with more memory

e Our solution: use the CPU/MIC before going
parallel.

— ldeally, we’d like to do all 3. But first things first.

T&@@ Data courtesy Ken-ichi Nomura, University of Southern California

ANP3 data in bnsView

more memory on both CPU and MIC
BVH performs more gracefully than grid
(3 4 fps at 4 MP on 1 SE10P Xeon Ph|® ray tracmg W|th hard shadows)

T Q . ~ Data couftesy Keﬁ-ichi Nomﬁré, Uhiversity of Southern California

Benefits of CPU ray tracing

e CPU ray tracing can be made fast, has great weak scaling
— Ingo Wald papers from 2001- e
— Brownlee et al. EGPGV 13 (fast distributed image-parallel RT)
— Navratil et al. EGPGV 12 (data-parallel RT at scale)
— Knoll et al. PacificVis 11 (structured volumes on SMP)
e Nanovol is written in OpenGL

A e
- ''»
¥ . '. ‘A_ [

— Industry standard, but not everyone has a high-end GPU
— No suitably fast OpenGL/OpenCL/ for CPU’s
— Nanovol limited by volume rendering

e

-
> A Eu\
- L L 5.4

" ' Y
PN AN e
.)
- e
N
iy s -
X 8 \
» ;
2F 4 s
nr 3
e
Pl
S i
N &
- L3
- . ~dy
~ ..

- X
4 -
» t' :
5 .

J » SV
P
. '.!'
’ .)
N %
." -
/
0
» o,
£ = 4
o
&
P,
<

Lol O
M

- .'.- -y 3
(

=

: ,.‘.5\3.8‘2
L
) o

& 8
e
An

&

o
o;\w
?

LA

-
o
-

,‘
7 R
ML w5

— ray tracing would be nice

e Potential for in situ / in transit vis on HPC systems without
GPU’s on every node

f

Lt
2
AN .L'

— Lots of data movement required for million+ atom MD

TRCC

TACC Stampede

128 GPU’s
6400+ dual-SandyBridge CPU’s
6400 MIC’s (8 GB each)

largemem

16 LargeMem Nodes
1TB RAM

32 cores
2x Nvidia K20 GPU

normal, serial,
development,

4x login nodes request ~6300 Compute
stampede.tacc.utexas. Nodes
edu 32 GB RAM

16 core Xeon
Xeon Phi SE10P

Login
vis, gpu

Nodes visdev, gpudev o Cn RAN
Queues 16 core Xeon

Nvidia K20 GPU

Xeon Phi SE10P Lustre File Systems

. Compute
Read/Write File System Access
Nodes

——> Job submission

TRCC

Intel MIC (Xeon Phi ®©)

e Stampede has 6400+ of these (and dual-MIC nodes)
— Tianhe 2, 3 MIC’s per node!
— Knights Landing: no longer just a discrete GPU!

e SE10P: a special TACC-only preproduction Xeon Phi,
— 61 cores at 1.1 GHz, 8 GB RAM
— 16 wide SP/ 8-wide DP SIMD vector instructions

e similar to the 5120D official product
e 1.2 TF theoretical peak — comparable to NVIDIA K20
e How does it stack up in practice?

e 16-wide vector ops are nasty.
— Intel compiler + OpenMP won’t solve this (yet)

— OpenCL on MIC... not quite.

_mm_prefetch((const cha)&([q+224]), _MM_HINT TO);
e We need to write SIMD intrinsics and SOA code for MIC = smeremanicons: ae Duaiazn: e
// For KNF, cheaply emulated to KNC
_— HOW? __m512 a 0 = mm512_load ps(&(a[ql));
_m512 a 1 = _mm512_load ps(&(a[q+16]));
. . _m512 a_2 = mm512_ load ps(&(a[g+32]));
— Can we re-use SIMD algorithms written for CPU / GPU? —geiziani mslzoloades (4(aTsHd0T)0)
_ _4 = _load_ps(&(a[q+64]));
m512 a 5 = mm512 load ps(&(a[g+801]));
_m512 a 6 = _mm512_load ps(&(a[q+96]));
m512 a 7 = mm512 load ps(&(afg+l112]));
b 0 = _mm512_add_ps(b_0, a_0)
b 1 = _mm512_add_ps(b_1, a_1)
b 2 = _mm512_add_ps(b_2, a_2)
b 3 = _mm512_add ps(b_3, a_3)

ISPC and IVL

e Single Process Multiple Data (SPMD) compilers for CPU vector instructions

— Write “single thread” code once, automatically create vectorized structure-of-arrays
(SOA) C++ code with SIMD vector instrinsics

— similar to GPU languages (OpenCL, CUDA, GLSL)
e Different from GPU’s:

— Abstraction of SIMD intrinsics, not
— explicit control over “uniform” vs “varying” data across multiple threads

e |SPC: Intel SPMD Program Compiler

— Official maintained Intel product built on clang/llvm

— ISPC authors write all backends for you, including a “generic-16” backend for MIC

e |VL: “Ingo Wald’s vector language”
— Built on flex, supports operator overloading, virtual functions
— Better support/performance on MIC
— Closed source, but accessible to TACC and ANL collaborators

— opportunity to write your own intrinsics (non-Intel hardware — BlueGene/ARM?)

We chose IVL when work on bnsView started...

T&&@@

bnsView

e Uses RIVL (the predecessor of Intel’s Embree 2.0 ray tracer)
e Packet-based ray tracer, coherent BVH traversal
e Support for multiple vector backends (SSE, AVX, MIC) using IVL

— Code runs on Stampede CPUs and MICs, as well as my Mac.

e Started out as a fast ball-and-stick ray tracer
— Hard shadows, ambient occlusion, full path tracing

e Volume rendering added later

I TS ; '
- v r

SO i

diffuse + shadows Ambient occlusion Path tracing Volume + shadows Volume + shadows
58 fps 1.8 fps ~0.25 fps (unlit), 16 fps (lit), 3.4 fps

TRCC

Preprocess

e For each data timestep

Read data

Create a coarse grid of balls

Build sticks

Build BVH from both balls and sticks

Build structured volume using radial basis functions

Build macrocell grid from structured volume
(contains min-max values over range)

Optionally, offload to MIC using Intel COl libraries

TRCC

Rendering

e For each frame
— Update camera and all user params (transfer function, etc.)

— Ray generation and distribution (partition a frame buffer into strips of rays determined
by SIMD width)

— As determined by renderer (volume renderer, shadow ray caster, AO renderer, path
tracer):

e while (ray hasn’t terminated)
— trace ray(), with two separate traversals:
— Ball and stick ray tracing, using BVH traversal
» Computes hit position t, hit primitive and opaque color
— Direct volume rendering, using macrocell grid traversal
» Starting from the eye, ending at the opaque hit position
» Computes DVR termination position t, DVR integrated color
— Shade this ray, spawn secondary rays or terminate
Write integrated ray to frame buffer

TRCC

Coherent BVH traversal

e Acceleration structure traversal is the dominant cost for most ray tracing

e Trace packets of rays together: multiple rays, 1 BVH node
— Fast min/max SIMD intrinsics
— Exploit memory locality

e BVH is ideal for primitives whose boxes overlap (e.g. sticks)

Wald et al. ACM TOG 07

TRCC

Coherent BVH traversal in IVL

e Fast (Packet) CPU ray tracing algorithms can be written as if for single rays
— Compiled to multiple vector architectures (SSE, AVX, MIC, potentially BlueGeneP/Q)

e Fuller vector utilization than
varying bool BNS::tfraverse bvh.geometry(varying Ray reference ray)

using OpenMP (
uniform uint nodeStack[STACK.-DEPTH];

— On MIC, ray-bounding box tests are trivial [ET i)
uniform uint nodelD = 0;

for 16 rays at once trivial while (1) {
crs . . . const uniform uint count = node[nodelD].count;
— Much cleaner than ertlng Intrinsics const uniform uint offset = node[nodelD).offset;
c . if (count !=0) {
® ThIS WOUld be COded dlﬂ:e re ntly const uniform uint leafBegin = offset;
const uniform uint leafEnd = leafBegin + count;
on the GPU for (uniform uint itemID=leafBegin;item|D < leafEnd;itemID++) {
uniform int prim|D = primIDs[itemID];
— E.g. Aila & Laine HPG 2009 if (primID = numBalls)
intersect(ray,stick[prim|D-—-numBalls));
else
intersect(ray,ball[primID]);
: : : : }
e All ball & stick ray tracing in bnsView it (stackPtr == 0)

break;
uses this. nodelD = nodeStack| - —stackPtr];

}

TRCC

Volume rendering in bnsView

e Macrocell grid traversal
— Very similar to nanovol
— Standard 3D-DDA (e.g., Amanatides and Woo 87)
— Poor coherence, but grid is coarse enough that it shouldn’t matter
e 1.5x-3x improvements vs without the grid, similar to nanovol
e Could be improved (coherent grid traversal, Wald et al. SSIGGRAPH 06)

e Direct volume rendering
— Preintegrated transfer function
— Default step size of 0.5 voxels, uniform sampling
— Optional gradient shading

e This IVL code looks virtually identical to GLSL.

— Except we have to write and use our own tex3D()
and tex3Dgrad()

— Compare to GPU built-in 3D texture interpolation

— Nothing clever being done here (yet) —
room for improvement!

TRCC

GPU vs CPU vs MIC, 1 Stampede vis node
b&s + structured volume rendering

Dataset Nanobowl! Nanosphere Nanosphere SiO2 fissure

#atoms 20K 90K 740K 5M
Size 800 KB 3 MB 40 MB 160 MB

Volume size 1.1 MB 11 MB 720 MB 92 MB
Voxels/Ang. 4 4 4 1
GPU fps 34 21 7 20

CPU fps 22 8.6 6.1
MIC fps 71

MIC/GPU

MIC/CPU

GPU: NVIDIA K20 (Kepler) GPU (2496 cuda cores)

CPU: dual 8-core 2.7 GHz Intel Xeon E5-2680,

&@@ MIC: 61-core SE10P 1.1 GHz Intel Xeon Phi

GPU vs CPU vs MIC, 1 Stampede vis node
b&s + structured volume renderlng

' - '
\.. ° /
o]
LA L .
DY]
oy 1
-

Dataset Nanobowl! Nanosphere Nanosphere SiO2 fissure

#atoms 20K 90K 740K 5M
Size 800 KB 3 MB 40 MB 160 MB

Volume size 1.1 MB 11 MB 720 MB 92 MB
Voxels/Ang. 4 4 4 1
GPU fps 30.5 29.9 11.6 24 .4

CPU fps 15 10.2 7.85 7.65
MIC fps 46 28.3 23.8 33
MIC/GPU . 95x 2.1x 1.35x
MIC/CPU . 2.8x 3.0x 4.3x

GPU: NVIDIA K20 (Kepler) GPU (2496 cuda cores)

CPU: dual 8-core 2.7 GHz Intel Xeon E5-2680,

&@@ MIC: 61-core SE10P 1.1 GHz Intel Xeon Phi

Dataset
#atoms
Size

Volume size

Voxels/Ang.
GPU fps

CPU fps
MIC fps

MIC/GPU
MIC/CPU

with volumetric lighting (far)...

Nanobowl!
20K

800 KB
1.1 MB

4
41

Nanosphere
90K
3 MB

11 MB
4
19.5

2.42
12.4
.63x
5.1x

Nanosphere
740K
40 MB

720 MB
4
6

SiO2 fissure
5M
160 MB

92 MB
1
19.6

4.51
20.3
1.03x
4.5x

GPU: NVIDIA K20 (Kepler) GPU (2496 cuda cores)

CPU: dual 8-core 2.7 GHz Intel Xeon E5-2680,
MIC: 61-core SE10P 1.1 GHz Intel Xeon Phi

TRCC

Dataset
#atoms
Size
Volume size

Voxels/Ang.

GPU fps
CPU fps
MIC fps

MIC/GPU
MIC/CPU

with volumetric lighting (close)

Nanobowl!
20K
800 KB

1.1 MB
4
32.5

4.02
22

B67x
5.5x

2E

e

Nanosphere

90K
3 MB

11 MB
4
26

Nanosphere
740K
40 MB

720 MB
4
10.7

2.46
141
1.3x
5.7X

SiO2 fissure
5M

160 MB

92 MB
1

20.9
2.02
10.7
S1x
5.3x

GPU: NVIDIA K20 (Kepler) GPU (2496 cuda cores)

TRCC

CPU: dual 8-core 2.7 GHz Intel Xeon E5-2680,
MIC: 61-core SE10P 1.1 GHz Intel Xeon Phi

Remote vis with bnsView

[bnsView w £300_p00 /work/02037/knolla/live { — O X

e VNC on Stampede

View w1 t450_p00

work/02037

x

[bnsView w2 t600_p00 /work/02037/knolla/live 1 — O X [[7] bnsView w3 t750_p00 /work/02037/knolla/live { — O X [7] bnsView w4 t900_p00 /work/02037/knolla/live 1 — O X

bns\

work/02037/knoll

o

e DisplayCluster (~20 fps for a 8 MP window)
e Livein-transit demo, Intel booth @ SC13

x

™ bnsView w

3 t750_p16

o sl e

Did vt it

e "neduls e gleu

s odes:
i

i et s

R

aiz-00zs |

TRCC

X

-0 x

Conclusions

e For these similar volume + ball & stick ray casting
implementations, MIC is competitive with GPU’s
— CPU also competitive, but suffers from lack of gather
— Opportuntity for improvement in DVR code, lighting

e Volume rendering is the big bottleneck
— More so on CPU/MIC

e Potential for in-situ vis on Intel and non-Intel CPU’s

e Can programming models be merged?
— IVL/ISPC language (e.g. uniform) syntax needed for performance
— Syntax is similar, but optimized kernels look very different

— At least, one can write common host-side code and use either a IVL/
ISPC or GPU render

TRCC

Thank you!

Aaron Knoll
knolla@tacc.utexas.edu

T&@G THE UNIVERSITY OF TEXAS AT AUSTIN
TEXAS ADVANCED COMPUTING CENTER

