Exceptional service in the national interest

A Classification of Scientific Visualization Algorithms for Massive Threading

Kenneth Moreland Sandia National Laboratories

Berk Geveci Kitware, Inc.

Kwan-Liu Ma University of California at Davis

Robert Maynard Kitware, Inc.

November 17, 2013

Cielo AMD x86

Full x86 Core + Associated Cache 8 cores per die MPI-Only feasible 1 x86 core

1 Kepler core

Trinity (option 1)
NVIDIA GPU

2,880 cores collected in 15 SMX Shared PC, Cache, Mem Fetches Reduced control logic MPI-Only not feasible

Extreme Scale is Threads, Threads, Threads!

	Jaguar – XT5	Titan – XK7	Exascale*
Cores	224,256	299,008 and 18,688 gpu	1 billion
Concurrency	224,256 way	70 – 500 million way	10 – 100 billion way
Memory	300 Terabytes	700 Terabytes	128 Petabytes

- To succeed at extreme scale, you need to consider the finest possible level of concurrency
 - Expect each thread to process exactly one element
 - Disallow communication among threads

Key Principles

[Law et al., 1999]

Data Separability

Mappable Input

Result Invariant

Mappable Input Can Break Down

Coarse Parallelism
Result reasonably divided among partitions.

Massive Parallelism Most partitions are empty.

Result Invariant Can Break Down

Result Invariant Can Break Down

Result Invariant Can Break Down

New Key Principles

Coarse Parallel

- Data Separability
- Mappable Input
- Result Invariant

Massive Parallel

- Data Separability
- Discoverable Input Mapping
- Collective Work

Characterization and Classification

Key Principles

- Data Separability
- Discoverable Input Mapping

Collective Work

Characterization Parameters

- Separable Element
- Point Mapping
- Cell Mapping
- Field Mapping
- Collective Work

Input Output

Separable Element Any

Point Mapping Identity

Cell Mapping Identity

Field Mapping 1 to 1

Collective Work None

Input Output

Separable Element Cell

Point Mapping Identity

Cell Mapping Identity

Field Mapping Points on cell to cell

Collective Work None

Input Output

Separable Element Cell

Point Mapping 1 to 0 or 1

Cell Mapping 1 to 0 or more

Field Mapping Identity

Collective Work None (or find unused)

Output

Build Independent Topology

Build Independent Topology

Input

Output

Build Independent Topology

Separable Element Any

Point Mapping 1 element to many points

Cell Mapping 1 element to many cells (constant number)

Field Mapping Identity

Collective Work None

Tube (of Stream Tracer)

Ribbon (of Stream Tracer)

Input Output

Separable Element Cell

Point Mapping 1 cell to 0 or more points

Cell Mapping 1 to 0 or more

Field Mapping Interpolated points

Collective Work Resolve duplicate points

Output

Input Output

Separable Element Point, edge, or face

Point Mapping Identity

Cell Mapping Identity

Field Mapping

Collective Work

Incidence relationships may not be explicitly captured by topology structure.

Separable Element Any

Point Mapping None in output

Cell Mapping None in output

Field Mapping All to 1

Collective Work Global Reduction

Algorithms Histogram

Integrate

Outline (find bounds)

Statistics

Query Data

Search Structure

Output

Query Data

Separable Element Point, key, or query

Point Mapping Identity

Cell Mapping Identity

Field Mapping 1 query to 1 output

Collective Work Building query structure

Summary

Name	Separable Element	Point Mapping	Cell Mapping	Field Mapping	Collective Work	Example Algorithm
Basic Mapping	Any	Identity	Identity	1 to 1	None	Generate Ids
Map by Cell	Cell	Identity	Identity	Points on cell to cell	None	Cell Centers
Reconnect Cell	Cell	1 to 0 or 1	1 to 0 or more	Identity	None	Threshold
Build Independent Topology	Any	1 element to many points	1 element to many cells	Identity	None	Glyph
Build Connected Topology	Cell	1 cell to 0 or more points	1 to 0 or more	Interpolated points	Resolve duplicate points	Contour
Capture Cell Adjacencies	Point, edge, or face	Identity	Identity	Interpolated incident fields	Find incidence relationships	Normal Generation
Globally Reduce	Any	None in output	None in output	All to 1	Global reduction	Histogram
Query Data	Point, key, or query	Identity	Identity	1 query to 1 output	Building query structure	Stream Tracer

Conclusion

- Accelerators and other emerging architectures use massive threading that takes parallelism to a whole different scale
- Visualization algorithms can be characterized by:
 - How data is separated
 - How input elements are mapped to output elements
 - What collective work is performed
- Algorithms that share all three characterizations can be implemented with similar mechanisms
 - We can exploit this observation to implement new algorithms