Visualization Frameworks for Data Staging and In-Situ Environments

David Pugmire

Scientific Computing Group,
Oak Ridge National Laboratory

Thanks to: H.Abbasi, S.Ahern, C. Chang, J. Choi, S. Ku, S. Klasky, J. Kress, J. Logan, Q. Liu, J. Meredith, K. Mu, G. Ostrouchov, N. Podhorszki, R. Sisneros, Y. Tian + many more

16 November 2014

or

Data Driven Science and Scientific Visualization

Volume	Increasing mesh resolutions Increasing temporal resolution				
Velocity	Increasing temporal resolution Frequency of data				
Variety	Multi-variate Ensembles Increasing complexity				
Veracity	Uncertainty Errors Approximations				
Value	Visualization and Analysis Feature detection Scientific insight				

Today's Tools in Data Driven Science World

Volume	Increasing mesh resolutions Increasing temporal resolution					
Velocity	Increasing temporal resolution Frequency of data					
Variety	Multi-variate Ensembles Increasing complexity					
Veracity	Uncertainty Errors Approximations					
Value	Visualization and Analysis Feature detection Scientific insight					

Today's Tools in Data Driven Science World

The state of the s	
Volume	Increasing mesh resolutions Increasing temporal resolution
Velocity	Increasing temporal resolution Frequency of data
Variety	Multi-variate Ensembles Increasing complexity
Veracity	Uncertainty Errors Approximations
Value	Visualization and Analysis Feature detection Scientific insight

Focused on **Volume**Others V's are harder, and often a function of Volume

Scalability of Visualization Tools

Research Questions:

- Can current visualization tools survive at the exascale?
- What are the bottlenecks at the largest scales?
- What differences do architectures make?

Methodology:

- "Create" exascale data (trillions of zones)
- Execute a simple workflow:
 - Read data
 - Volume render / contour data
 - Render and composite

see: Extreme Scaling of Production Visualization Software on Diverse Architectures, IEEE CG&A, 2010

Core-collapse supernova simulation. Data courtesy of T. Mezzacappa (GenASiS)

Scalability of Visualization Tools

Machine name	Machine type or OS	Total no. of cores	Memory per core (Gbytes)	System type	Clock speed	Peak flops	Top 500 rank (as of Nov. 2009)
JaguarPF	Cray	224,162	2.0	XT5	2.6 GHz	2.33 Pflops	1
Ranger	Sun Linux	62,976	2.0	Opteron Quad	2.0 GHz	503.8 Tflops	9
Dawn	Blue Gene/P	147,456	1.0	PowerPC	850.0 MHz	415.7 Tflops	11
Franklin	Cray	38,128	1.0	XT4	2.6 GHz	352 Tflops	15
Juno	Commodity (Linux)	18,402	2.0	Opteron Quad	2.2 GHz	131.6 Tflops	27
Purple	AIX (Advanced Interactive Executive)	12,208	3.5	Power5	1.9 GHz	92.8 Tflops	66

Scalability of Visualization Tools

Machine name	Machine type or OS	Total no. of cores	Memory per core (Gbytes)	System type	Clock speed	Peak flops	Top 500 rank (as of Nov. 2009)
JaguarPF	Cray	224,162	2.0	XT5	2.6 GHz	2.33 Pflops	1
Ranger	Sun Linux	62,976	2.0	Opteron Quad	2.0 GHz	503.8 Tflops	9
Dawn	Blue Gene/P	147,456	1.0	PowerPC	850.0 MHz	415.7 Tflops	11
Franklin	Cray	38,128	1.0	XT4	2.6 GHz	352 Tflops	15
Juno	Commodity (Linux)	18,402	2.0	Opteron Quad	2.2 GHz	131.6 Tflops	27
Purple	AIX (Advanced Interactive Executive)	12,208	3.5	Power5	1.9 GHz	92.8 Tflops	66

National Laboratory

		"20		
System Parameter	2011	Swim Lane 1	Swim Lane 2	Factor Change
System Peak	2 Pf/s	1 E	Ef/s	500
Power	6 MW	≤ 20	MW	3
System Memory	0.3 PB	32-6	4 PB	100-200
Total Concurrency	225K	$1B\times10$	$1B\times100$	40,000-400,000
Node Performance	$125~\mathrm{GF}$	1 TF 10 TF		8-80
Node Concurrency	12	1,000 10,000		83-830
Network BW	$1.5~\mathrm{GB/s}$	100 GB/s 1000 GB/s		66-660
System Size (nodes)	18700	1,000,000	100,000	50-500
I/O Capacity	15 PB	300–1000 PB		20-67
I/O BW	$0.2~\mathrm{TB/s}$	20–60	TB/s	100-200

		"20		
System Parameter	2011	Swim Lane 1	Swim Lane 2	Factor Change
System Peak	2 Pf/s	1 E	Ef/s	500
Power	6 MW	≤20	MW	3
System Memory	0.3 PB	32–64 PB		100–200
Total Concurrency	225K	1B×10	$1B\times100$	40,000-400,000
Node Performance	$125~\mathrm{GF}$	1 TF	10 TF	8-80
Node Concurrency	12	1,000 10,000		83-830
Network BW	$1.5~\mathrm{GB/s}$	$100~\mathrm{GB/s}$	$1000~\mathrm{GB/s}$	66-660
System Size (nodes)	18700	1,000,000	100,000	50-500
I/O Capacity	15 PB	300–1000 PB		20-67
I/O BW	$0.2~\mathrm{TB/s}$	20–60	TB/s	100-200

		"20		
System Parameter	2011	Swim Lane 1	Swim Lane 2	Factor Change
System Peak	2 Pf/s	1 E	Ef/s	500
Power	6 MW	≤20	MW	3
System Memory	0.3 PB	32-6	4 PB	100-200
Total Concurrency	225K	1B×10	1B×100	40,000-400,000
Node Performance	$125~\mathrm{GF}$	1 TF	10 TF	8–80
Node Concurrency	12	1,000 10,000		83-830
Network BW	$1.5~\mathrm{GB/s}$	$100~\mathrm{GB/s}$	$1000~\mathrm{GB/s}$	66-660
System Size (nodes)	18700	1,000,000	100,000	50-500
I/O Capacity	15 PB	300–1000 PB		20-67
I/O BW	$0.2~\mathrm{TB/s}$	20–60	TB/s	100-200

		"20	18"	
System Parameter	2011	Swim Lane 1	Swim Lane 2	Factor Change
System Peak	2 Pf/s	1 E	Ef/s	500
Power	6 MW	≤20	MW	3
System Memory	0.3 PB	32–64 PB		100-200
Total Concurrency	225K	1B×10	1B×100	40,000-400,000
Node Performance	$125~\mathrm{GF}$	$1 \mathrm{\ TF}$	10 TF	8–80
Node Concurrency	12	1,000	10,000	83-830
Network BW	$1.5~\mathrm{GB/s}$	$100~\mathrm{GB/s}$	$1000~\mathrm{GB/s}$	66-660
System Size (nodes)	18700	1,000,000	100,000	50-500
I/O Capacity	15 PB	300–1000 PB		20–67
I/O BW	$0.2~\mathrm{TB/s}$	20–60	TB/s	100-200

		"20		
System Parameter	2011	Swim Lane 1	Swim Lane 2	Factor Change
System Peak	2 Pf/s	1 F	Ef/s	500
Power	6 MW	≤20	MW	3
System Memory	0.3 PB	32–64 PB		100-200
Total Concurrency	225K	1B×10	1B×100	40,000-400,000
Node Performance	$125~\mathrm{GF}$	$1 \mathrm{\ TF}$	10 TF	8–80
Node Concurrency	12	1,000	10,000	83-830
Network BW	$1.5~\mathrm{GB/s}$	$100~\mathrm{GB/s}$	$1000~\mathrm{GB/s}$	66-660
System Size (nodes)	18700	1,000,000	100,000	50-500
I/O Capacity	15 PB	300–1000 PB		20–67
I/O BW	$0.2~\mathrm{TB/s}$	20–60	TB/s	100-200

From: Exascale Workshop on Data Analysis, Management and Visualization. DOE ASCR 2011

I/O Caveats:

System	System Peak	I/O Peak	I/O Reality	I/O Hero
JaguarPF	2PF	200 GB/s	I GB/s	60 GB/s
Titan	20PF	I.2 TB/s	I GB/s	120 GB/s
Future	I 000PF	10 TB/s (?)	??	??

		"20	18"	
System Parameter	2011	Swim Lane 1	Swim Lane 2	Factor Change
System Peak	2 Pf/s	1 E	Ef/s	500
Power	6 MW	≤20	MW	3
System Memory	0.3 PB	32–64 PB		100-200
Total Concurrency	225K	1B×10	1B×100	40,000-400,000
Node Performance	$125~\mathrm{GF}$	$1 \mathrm{\ TF}$	10 TF	8–80
Node Concurrency	12	1,000	10,000	83-830
Network BW	$1.5~\mathrm{GB/s}$	$100~\mathrm{GB/s}$	$1000~\mathrm{GB/s}$	66-660
System Size (nodes)	18700	1,000,000	100,000	50-500
I/O Capacity	15 PB	300–1000 PB		20–67
I/O BW	$0.2~\mathrm{TB/s}$	20–60	TB/s	100-200

From: Exascale Workshop on Data Analysis, Management and Visualization. DOE ASCR 2011

I/O Caveats:

System	System Peak	I/O Peak	I/O Reality	I/O Hero
JaguarPF	2PF	200 GB/s	I GB/s	60 GB/s
Titan	20PF	I.2 TB/s	I GB/s	120 GB/s
Future	I 000PF	10 TB/s (?)	??	??

We will get **less** of what we **want**We will get **more** of what we **don't know how to use**

Impacts on Visualization

Massive Concurrency

- Production tools of today cannot fully utilize
- Challenges of new programming models

Complex Memory

- Visualization APIs not available
- New algorithms and programming models

Decreased I/O Performance

- Cannot rely on storage system in workflows
- In situ methods become critical

Memory Constraints

- Expressive and flexible data models
- Efficient data models become imperative, especially for zero-copy in situ applications

Path Forward

Massive Concurrency

- Library that supports/abstracts:
 - Heterogeneous computing
 - Fine grained parallelism

Complex Memory

- Advanced data model
- API that manages/abstracts the complexities

Decreased I/O Performance

- Data management and movement library
- Flexible in situ interface

Memory Constraints

- Advanced, expressive data model
- Efficient data model
 - Representation and execution

Path Forward

Extreme-Scale Analysis and Visualization Library (EAVL)

- Advanced visualization and analysis for next generation computer architectures
- Part of DOE funded VTK-m efforts

Adaptable I/O System (ADIOS)

- Middleware abstraction of I/O for HPC systems
- Provides increased performance for disk based I/O, and in situ processing

Data Management Framework: ADIOS

- An I/O abstraction framework
- Provides portable, fast, easy-to-use metadata rich output
- Change I/O method on-the-fly
- Abstract the API from the method
- Looks to provide support for "90% of applications"

http://www.nccs.gov/user-support/center-projects/adios/

- Astrophysics
- Climate
- Combustion
- •CFD
- Environmental Science
- Fusion
- Earthquake
- Material Science
- Medical: Pathology

- Neutron Science
- Nuclear Science
- Quantum Turbulence
- Relativity
- Seismology
- •Sub-surface Modeling
- Weather
- Satellite Processing

I/O in ADIOS

- Carefully manage movement of data in network and I/O system
- Data format agnostic
- Allows simulations to spend more time in compute, or allows more frequent output of data
- Visualization is especially sensitive to I/O performance

Data Staging in ADIOS

Data Staging in ADIOS

- Same application API can be used to do more advanced data movement
- Plugins will operate on data streams in user-defined ways

Extreme-scale Analysis and Visualization Library (**EAVL**)

EAVL enables advanced visualization and analysis for the next generation scientific simulations, supercomputing systems, and end-user analysis tools.

New Mesh Layouts

- More accurately represent simulation data in analysis results
- Support novel simulation applications

Parallel Algorithm Framework

- Accelerator-based system support
- Pervasive parallelism for multi-core and many-core processors

Greater Memory Efficiency

- Support future low-memory systems
- Minimize data movement and transformation costs

In Situ Support

- Direct zero-copy mapping of data from simulation to analysis codes
- Heterogeneous processing models allow broad platform support

J.S. Meredith, S. Ahern, D. Pugmire, R. Sisneros, "EAVL: The Extreme-scale Analysis and Visualization Library", Eurographics Symposium on Parallel Graphics and Visualization (EGPGV), 2012.

http://ft.ornl.gov/eavl

Gaps in Current Data Models

- Traditional data set models target only common combinations of cell and point arrangements
- This limits their expressiveness and flexibility

		Point Arrangement		
Cells	Coordinates	Explicit	Logical	Implicit
Structured	Strided	Structured Grid		
	Separated		Rectilinear Grid	Image Data
Unstructured	Strided	Unstructured Grid		
	Separated			

Arbitrary Compositions for Flexibility

- EAVL allows clients to construct data sets from cell and point arrangements that exactly match their original data
 - In effect, this allows for hybrid and novel mesh types
- Native data results in great accuracy and efficiency

		Point Arrangement		
Cells	Coordinates	Explicit	Logical	Implicit
Structured	Strided			
	Separated			
Unstructured	Strided			
	Separated			

Other Data Model Gaps Addressed in EAVL

Low/high dimensional data (7D GenASiS)

Multiple cell groups in one mesh

Multiple coordinate systems (lat/lon + XY)

Non-physical data (graphs, sensor, etc)

Novel and hybrid mesh types (quadtree grid from MADNESS)

Mixed topology (atoms+bonds)

Example: Memory and Algorithmic Efficiency

Threshold regular grid: 35 < pressure < 45

Traditional Data Model

Fully unstructured grid

- Explicit points
- Explicit cells

EAVL Data Model

Hybrid implicit/explicit grid

- Implicit points
- Explicit cells

Memory and Algorithmic Efficiency

EAVL: 7X reduction in memory usage

EAVL: 4-5x performance improvement

Data Parallel Programming

- This can be very difficult to do
- Simple example: Threshold operator

Threshold on a CPU


```
mesh = new unstructured mesh
for each cell in Orig_Mesh
{
   if density(cell) in [35,45]
     mesh.AddCell(cell)
}
```

- Data-parallel method is a VERY different story
- Following slides courtesy of Jeremy Meredith

Threshold on a GPU

- Data-parallel method is a VERY different story
- Following slides courtesy of Jeremy Meredith

Which Cells to Include?


```
Evaluate a Map operation with this functor:
struct InRange {
  float lo, hi;
  InRange(float l, float h) : lo(l), hi(h) { }
  int operator()(float x) { return x>lo && x<hi; }
}</pre>
```


How Many Cells in Output?

Evaluate a Reduce operation using the Add<> functor.

We can use this to create output cell length arrays.

Where Do the Output Cells Go?

How do we create this mapping?

Create Input-to-Output Indexing?

Exclusive Scan (exclusive prefix sum) gives us the output index positions.

Create Output-to-Input Indexing?

We want to work in the shorter output-length arrays and use gathers. A specialized scatter in EAVL creates this reverse index.

Gather Input Mesh Arrays to Output?

We can now use simple gathers to pull input arrays (density, pressure) into the output mesh.

Heterogeneous Computing

Runtimes for Surface Normal Calculations

Surface Normal Scaling on Xeon Phi

See: "A Distributed Data-Parallel Framework for Analysis and Visualization Algorithm Development", Workshop on General Purpose Processing on Graphics Processing Units (GPGPU5), 2012.

Advanced Rendering

- Advanced rendering capabilities
 - raster/vector, ray tracing, volume rendering
 - all GPU accelerated using EAVL's data parallel API
 - parallel rendering support via MPI and IceT
- Examples: ambient occlusion lighting effects highlight subtle shape cues for scientific understanding
- Example: direct volume rendering achieves high accuracy images with GPU-accelerated performance

Shear-wave perturbations in SPECFEM3D_GLOBAL code

Direct volume rendering from Shepard global interpolant

Tightly-coupled In Situ

- Zero-copy host and device
- Parallel rendering infrastructure
- Examples:
 - LULESH (Hydrodynamics)
 - Xlotal (Fusion)

Data Staging with ADIOS

Data Staging with EAVL, ADIOS, and XGCI

How to run

job script

S = <server configuration>

mpirun -np N₁ app

mpirun -np N₂ staging_server S

mpirun -np N₃ vis_app S

Source code

File based visualization

```
f = adios_read_open("data.bp",
    READ_METHOD_BP,
    MPIComm);

for t in f->nSteps
    adios_schedule_read(f, ...., &data);
    Do_EAVL_Stuff(data);

adios_read_close(f);
```

Staging based visualization

```
f = adios_read_open("data.bp",
    READ_METHOD_DATASPACES,
    MPIComm);

while ! f->endOfStream
    adios_schedule_read(f, ...., &data);
    Do_EAVL_Stuff(data);

adios_read_close(f);
```


Fusion Test case

 XGCI: gyrokinetic particle code for simulations of tokamak physics

ITER

Loosely coupled In Situ with XGC Field Data

- Application de-coupled from visualization using ADIOS and Data Spaces
 - EAVL plug-in reads data using ADIOS API from staging nodes
 - EAVL plug-in performs visualization operations

Parallel Rendering of XGC Field Data

Scaling study of parallel rendering of XGC field data using MPI and IceT compositing

32 tasks

64 tasks

128 tasks

See: "Towards Scalable Visualization Plugins for Data Staging Workflows", SC BDAC Workshop, 2014.

Future Work: XGC Particle Data

- Using identical ADIOS, EAVL workflow
- XGC configured to write particles to Data Server
- EAVL plug-in filters particles of interest and renders data

Conclusions and Future Directions

- EAVL provides a viable path for light weight visualization plugin-ins for in situ environments
 - EAVL to be integrated with Dax and PISTON into new VTK-m initiative
- Early scaling studies show scalability with ADIOS data staging methods
- Extend and study characteristics with different ADIOS staging methods
- Explore ADIOS self describing data streams via the visualization schema
- Continue work in particle visualization

Thanks to our funding sources

- Oak Ridge Leadership Computing Facility
- The SciDAC Institute for Scalable Data
 Mangement, Analysis and Visualization. Funded through DOE ASCR
- XVis. Funded through DOE ASCR

