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The advent of supercomputers gives scientists the 
power to understand the evolution of the universe, 
predict climate change and variability, design more 
efficient energy, and study many other complex 
scientific phenomena and engineering design 
problems with numerical simulations. As the speed 
and capacity of supercomputers continue to 
increase, scientists begin to model physical 
phenomena and chemical processes at an 
unprecedented level of detail and accuracy, 
making possible new discoveries and 
breakthroughs in many areas of study.  The rate of 
increase in supercomputing power is not slowing 
down. For example, the U.S. Department of 
Energy has made a significant investment through 
its SciDAC (Scientific Discovery through Advanced 
Computing) program on computational science 
research, scientific computing software tools, and 
hardware infrastructure. Similar investments are 
being made in China, Japan, and some of the 
European countries.  Petascale computers, 
capable of performing 1015 operations per second, 
have become available and we are moving toward 
exascale computing (i.e., achieving 1018 
operations per second).  While making a 
simulation code utilize the full power of a petascale 
supercomputer remains a daunting task, a bigger 
challenge facing scientists is handling and 
analyzing the output of the simulation.  The current 
practice is to dump a temporal subset of the data 
to disk and examine the data in an offline post-
processing step using a dedicated visualization 
machine, as shown in Figure 1. A large-scale 
simulation typically runs from tens to hundreds of 
thousand time-steps but scientists cannot afford to 
store every time-step output. They usually only 
save every 3-5 hundred time-steps, resulting in 
several terabytes of data. At petascale and 
exascale, the amount of data would be several 
orders of magnitude greater, making the 
simulation spend most of the supercomputing time 
doing I/O and take much longer to finish.    Even in 
the case that scientists can afford to keep most of 
the data for analysis, they must transfer the data 
to a machine that has sufficient capacity and 
processing power to do the desired visualization 
and analysis jobs. However, the data transferring 

cost is likely too high to be acceptable and the 
visualization machine would need to be almost as 
powerful as the supercomputer producing the 
data. The alternative is keeping and looking at an 
even smaller temporal subset (and in some cases 
also a spatial subset) of the data, which defeats 
the purpose of performing the original high-
resolution simulation enabled by petascale 
computing.   
 

 
Figure 1. Transferring the whole data generated 
by a petascale simulation to a storage device for 
post-processing visualization or a visualization 
machine for co-processing could become a 
serious bottleneck because I/O would take most of 
the supercomputing time.  
 
A better approach is not to move the raw data, or 
to keep the data that must be stored and moved to 
a minimum. One strategy is to have both 
simulation and visualization calculations run on the 
same parallel supercomputer so the data can be 
shared, as shown in Figure 2. Such simulation-
time co-processing can render images directly or 
extract features - which are much smaller than the 
full raw data - to store for later examination. As a 
result, reducing both the data storage and transfer 
cost early in the data analysis pipeline optimizes 
the overall scientific discovery process.  Such 
simulation-time visualization, also known as in situ 
visualization, is not a new concept. In practice, 
however, this approach was seldom adopted 



because of two reasons. First, most scientists 
were reluctant to use their supercomputer time for 
visualization calculations, especially when the 
calculations are expensive.  Second, it could take 
a significant effort to couple the parallel simulation 
code with the visualization code. In particular, the 
domain decomposition optimized for the simulation 
is often unsuitable for parallel visualization, 
resulting in the need to replicate data for speeding 
up the visualization calculations.  Nevertheless, it 
becomes clear that in situ visualization is a 
feasible solution for the upcoming extreme-scale 
data problem presented by scientific 
supercomputing.  It is a particularly desirable 
solution because during the simulation time all 
relevant data about the simulated field and any 
embedded geometry are readily available for the 
visualization calculations.  All such relevant data 
and information would be prohibitively expensive 
to collect again and compute during a post-
processing step. We can conduct in situ 
processing to compress data, extract salient 
features from the data, create a data hierarchy, 
and/or build indexing for fast data access. We can 
conduct in-situ visualization to achieve runtime 
monitoring and even steering of the simulation, or, 
based on domain knowledge, to create snapshot 
images or an animation characterizing the 
simulation.  Figure 3 displays selected time steps 
from in situ visualization of a turbulent combustion 
simulation running on the Cray XT5 
supercomputer operated at the Oak Ridge 
National Laboratory [1].   
 

 
 
Figure 2. A more feasible approach to data 
analysis at extreme scale is to reduce and prepare 
the data in situ for subsequent visualization and 
data analysis tasks. The reduced data, which 
typically are several orders of magnitude smaller 
than the raw data, can greatly lower the following 
data transferring and storage costs.  

 

 

 

 
Figure 3. In situ visualization of a large-scale 
turbulent combustion simulation running on 6,480 
processors of a Cray XT5. Four selected time 
steps are displayed to show mixing of Y_HO2 
concentration and particle data colored based on 
Y_OH. (Image was created by Hongfeng Yu of the 
Sandia National Laboratories and the SciDAC 
Institute for Ultrascale Visualization, and data was 
provided by Jacqueline Chen of the Sandia 
National Laboratories.) 
 
In situ visualization presents many new challenges 
to both the simulation and visualization scientists.  
Before this approach can be realized, several 
questions must be answered first: 
 

• How do simulation and visualization 
calculations share the same processor, 
memory space, and domain 
decomposition? 

• What fraction of the supercomputer time 



should be devoted to in situ data 
processing/visualization?  As in situ 
visualization becomes a necessity rather 
than an option, scientists need to accept 
visualization as an integral part of the 
simulation.  

• What are the data processing tasks and 
visualization operations best performed in 
situ? To what the extent does the 
monitoring scenario stay relevant, and 
how is monitoring effectively coupled with 
knowledge-driven data reduction. 

• What are the unique requirements of in 
situ visualization algorithms?  

• As we store less raw data to disk, what 
supplemental information should be 
generated in situ? 

• To provide generic support for in situ 
visualization, how do we abstract out the 
complexity of the simulation, mesh 
structures, parallel implementation, etc.? 

• Can existing commercial and open-source 
visualization software tools be directly 
extended to support in situ visualization at 
extreme scale? 

 
To answer these questions, and to understand the 
impact of this new approach on the simulations 
and subsequent visualization tasks, we must 
embark upon a new line of research investigations 
with close collaboration with simulation scientists. 
The U.S. National Science Foundationʼs cross-
cutting programs such as the Cyber-Enabled 
Discovery and Innovation and the Department of 
Energyʼs SciDAC program encourage such 
research efforts and open many opportunities for 
visualization researchers. The remaining sections 
of this article address two crucial research topics: 
parallel algorithms and data reduction methods. 
 
Parallel Algorithms 
Since all large-scale simulations run on parallel 
supercomputer computers, parallel algorithms for 
both data reduction and rendering must be 
devised to realize in situ visualization.  Due to the 
increasing scale of the hardware, simulations, and 
output data, the parallel algorithms must be highly 
scalable.  Some of the parallel visualization 
algorithms developed previously were no longer 
usable. For example, parallel image compositing 
algorithms such as binary swap and SLIC only 
scale up to hundreds of processors. Even though 
refined algorithms are being introduced recently 
showing improved performance using thousands 
of processors [2], petascale computing involving 
several hundred thousands of processors 

demands new and more scalable algorithms.  
 
It is challenging to design scalable parallel in situ 
visualization algorithms because of several 
reasons.  First, as pointed out earlier, the 
visualization algorithms should use the same 
domain decomposition made by the simulation to 
avoid data duplication and interprocessor 
communication as much as possible. Even though 
the same domain decomposition is used, most 
distributed visualization algorithms still require 
duplicating data at partition boundary. The 
resulting memory overhead must be minimized. 
For in situ processing, communicating data as 
needed rather than replicating data up front likely 
gives better results.  Second, when using tens of  
thousands of processors, interprocessor 
communication, if not carefully managed, would 
become a bottleneck, making the associated 
visualization solution not acceptable. An effective 
approach seems to be precomputing an optimal 
schedule for packing and ordering communication. 
Third, the visualization computation should take a 
small fraction of the overall simulation time. 
Sophisticated visualization methods though 
offering visually compelling results often are not 
acceptable.  A plausible direction to pursue is 
making use of domain knowledge whenever 
possible to subsample the data to reduce the 
amounts of computation. On the other hand, as in 
situ visualization technology becomes more 
mature and its benefit becomes substantial, 
scientists will be willing to trade off simulation time 
for more analysis. In fact, in situ visualization 
suggests scientists to rethink the computational 
scientific discovery process. Finally, for volume 
rendering, how do we derive appropriate color and 
opacity transfer functions to best characterize the 
modeled phenomena in both the spatial and 
temporal domains of the data? It is clear we need 
to develop an adaptive method without constantly 
acquiring global information about the spatial and 
temporal domains.  
 
In many applications, it is desirable to visualize 
and understand the intrinsic interaction between 
different variables over time. There may be tens or 
even hundreds of variables and chemical species 
used in a simulation. Such multivariate 
visualization is thus best done in situ since all 
relevant data are available.  In situ visualization 
enables scientists to visualize the full extent of 
their data in combination and at the fidelity and 
density not possible with postprocessing methods. 
Figure 4 shows simultaneous visualization of three 
variables from the same turbulent combustion 



simulation used in Figure 3. Figure 5 shows 
simultaneous pathline visualization and volume 
rendering of the magnitude of angular momentum 
from a supernova simulation. This visualization 
was made based on two vector fields: velocity and 
angular momentum.  The corresponding animation 
allows the scientists to see how the bundles of 
counter rotating flow lines interact with the 
horizontally moving shock.  Such type of 
visualization is more costly to make since it 
requires six times more data as well as 
calculations that are difficult to parallelize. The 
visualization in Figure 3 was created in an offline 
postprocessing step using a scalable parallel 
pathline visualization algorithm was introduced [3], 
but that parallel algorithm is not suited for in situ 
visualization. We need to develop either a clever 
way to trace particles in situ or a new way to depict 
vector fields that will scale with the size of the 
supercomputer.   
 
 

 

 
Figure 4. Simultaneous visualization of 
temperature, fuel, and mixture fraction isosurface 
from a turbulent combustion simulation. Top: 
Temperature and mixture fraction isosurface 
representing the most active reaction layer. 
Bottom: Adding fuel concentration to the picture to 
show how it relates to temperature change and the 
reacting flow. (Image was created by Hongfeng 
Yu, and data was provided by Jacqueline Chen.) 
 
Data Reduction Methods 
For petascale simulations, reducing data in situ is 
very appealing since the reduction can benefit all 
the subsequent data movement and processing.  
Data reduction may be achieved with compression 
or by extracting features in the data. What exactly 
is a feature? Different disciplines clearly carry 
different definitions of features. Generally 
speaking, a feature is a small subset of the raw 

data isolated with domain knowledge and 
represents a particular physical structure, pattern, 
or event of interest. Some examples include 
vortices, shocks, eddies, critical points, etc. These 
features can be categorized, and used to 
characterize and break down the overall modeled 
physical phenomenon. The saving in storage 
space with feature extraction with or without 
contextual information can be very significant, 
much greater than the compression based 
methods; however, scientists do not always know 
completely what to extract and track in their data. 
In three-dimensional volume visualization, for 
example, a feature is commonly referred to as a 
certain space-time coherent region or object of 
interest. Basic visualization algorithms exist for 
feature identification, extraction, and tracking, 
which incorporate principles from image 
processing, computer vision, and machine 
learning. Feature extraction and tracking is a very 
common approach to visualizing time-varying flow 
data [4]. In order to track features through time, 
features must be correlated across a sequence of 
time steps. This task is frequently referred to as 
the correspondence problem. Many of the 
previous algorithms correspond features based on 
whether or not their regions overlap in adjacent 
time steps. Other algorithms correspond features 
based on attributes of the region such as position, 
size, shape, orientation, or topology. All these 
correspondence based, feature tracking algorithms 
have to make special cases for regions that split or 
merge over time. They also have to be careful with 
features that move far enough between time steps 
such that their regions do not overlap in 
consecutive time regions. A novel and more 
universally applicable approach is to employ 
learning-based or evolutionary methods. The basic 
idea is to capture scientistsʼ domain knowledge 
through interactive visualization augmented with 
an intelligent system, and then apply that 
knowledge to feature extraction and tracking. 
Better results can be obtained as more knowledge 
is accumulated over time. However, the 
robustness of this approach remains to be 
determined.   
 
Since scientists typically store only one out of 
every few hundred time steps due to the storage 
space limitation, the resulting temporal gaps 
compound the problem of feature tracking.  A 
longer time interval between time steps means 
that a feature must move farther enough to be 
trackable. Therefore, it is very beneficial to perform 
feature extraction and tracking at the simulation 
time, so that the tracking algorithm can utilize all 



the time steps that would otherwise be skipped or 
discarded in a post-processing setting.  While 
scientists need to understand the benefit of in situ 
visualization comes at certain cost, it is possible to 
reduce the cost.  For example, we should make 
tracking use information from the smallest possible 
time interval. As such, correspondence-based 
feature tracking algorithms would not work well 
because they require the calculation of regions in 
each time step independently before any tracking 
is performed.  In addition, the storage overhead of 
these algorithms and those based on machine 
learning is often too high to make them suitable for 
in situ processing.  A new prediction-correction 
algorithm recently introduced for tracking 
volumetric features has shown great promise.  It 
makes the best guess of the feature region in the 
next time step, followed by growing and shrinking 
the border of the predicted region to coherently 
extract the actual feature of interest [5]. This 
algorithm makes use of the temporal-space 
coherency of the data to accelerate the extraction 
process while implicitly solving the tedious 
correspondence problem. Most importantly, this 
algorithm is straightforward to parallelize. The 
development of similar algorithms is needed for 
visualizing other types of features. In situ feature 
visualization can guide the scientists to set the 
appropriate level of data reduction, leading better 
data throughput of the simulations. 
 
If data has to be reduced as a result of either 
subsetting or feature extraction, the corresponding 
information loss must be conveyed to the users. 
Quality assessment thus plays a crucial role in 
large-scale data analysis and visualization since in 
many cases the reduced version of data, rather 
than the original version, is used for evaluating the 
simulation and modeled phenomena. To compare 
the quality of the reduced or distorted data, it is 
imperative to identify and quantify the loss of data 
quality. Most existing data quality metrics, such as 
the mean square error and the peak signal-to-
noise ratio, require access to the original data. 
Although these metrics are easy to compute, they 
do not correlate well with perceived quality 
measurement [6].  More importantly, these metrics 
are not applicable to petascale applications simply 
because the original data is too large to acquire or 
compare in an efficient way. One viable approach 
is to compute feature information in situ [7]. Then 
we are able to use it as the basis metric for offline 
quality assessment without the need to access the 
original data. This may be achieved by computing 
the distance of feature components of the reduced 
or distorted version of data with those derived from 

the original data, which gives us an indication of 
quality loss in relation to the original data. Such 
feature information also enables us to perform a 
cross-comparison of data with different reduction 
or distortion types.  
 
Finally, to enable interactive data analysis and 
visualization of the reduced data, efficient 
organization of the data to facilitate fast access is 
key. Data subsets need to be indexed rather than 
stored as flat files [9]. 
 

 
Figure 5. Simultaneous pathline visualization and 
volume rendering of the magnitude of angular 
momentum from a supernova simulation. Such 
visualization is desirable, but generating it in situ 
with the simulation requires the development of 
new scalable parallel algorithms, which are not 
available to date. (Image was made by Hongfeng 
Yu and data was provided by John Blondin at the 
North Carolina State University.) 
 
Summary 
High performance computing systems running at 
sustained petaflop speeds are becoming 
increasingly available for scientists and engineers 
to perform simulations at the peta- and exa-scale. 
To possibly understand such extreme-scale 
simulations and extract meaning from petabytes of 
the simulation output, it is imperative that 
simulation scientists and visualization researchers 
begin to work closely together so a viable solution 
will be ready. Otherwise, much of the value of 
petascale and exascale simulations will go 
underutilized.  
 
In situ visualization is clearly a promising solution 
for ultrascale simulations. While we have seen 



some success in realizing this solution [1,8] and 
also ongoing efforts to add support for in situ 
visualization to open source visualization toolkits 
such as ParaView and VisIt, further research and 
experimental studies are needed to derive a set of 
guidelines and usable visualization software 
components for others to adopt the in situ 
approach.  If successful, this will lead to a new 
visualization and data understanding 
infrastructure, potentially change how scientists do 
their work, and accelerate the process of scientific 
discovery.  
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