
Parallel Volume Rendering Using 
Binary-Swap Compositing 

xisting volume rendering methods, though capable of very E effective visualizations, are computationally intensive and 
therefore fail to achieve interactive rendering rates for large 
data sets. Although computing technology continues to advance, 
computer processing power never seems to catch up to the in- 
creases in data size. 

Several observations motivated the work we describe here. 
First, volume data sets can be quite large, often too large for a 
single-processor machine to hold in memory at once. Moreover, 
high-quality volume renderings normally take minutes to hours 
on these machines, and the rendering time usually grows linearly 
with the data size. To achieve interactive rendering rates, users 
often must reduce the original data, which produces inferior vi- 
sualization results. Second, many acceleration and data explo- 
ration techniques for volume rendering trade memory for time, 
which increases memory use by another order of magnitude. 
Third, motion is one of the most effective visualization cues, 
but an animation sequence of volume visualization normally 
takes hours to days to generate. Finally, we notice the avail- 
ability of massively parallel computers and hundreds of high- 
performance workstations in our computing environments. 
These workstations frequently sit idle for many hours a day. 

These observations led us to investigate ways of distributing 
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This algorithm distributes 

data and computations to 

individual processing nodes 

for rendering subimages, 

then composites the final 

image with a method that 

uses all nodes at all times. 

the increasing amount of data as well as the time-consuming 
rendering process to the tremendous distributed computing re- 
sources available to us. In this article, we describe the resulting 
parallel volume-rendering algorithm, which consists of two 
parts: parallel ray tracing and parallel compositing. In our cur- 
rent implementation on Connection Machine's CM-5 and net- 
worked workstations, the parallel volume renderer evenly 
distributes data to the computing resources available. Without 
the need to communicate with other processing units, each sub- 
volume is ray traced locally and generates a partial image. The 
parallel compositing process then merges all resulting partial 
images in depth order to produce the complete image. 

Our compositing algorithm is particularly effective for mas- 
sively parallel processing, as it always uses all processing units by 
repeatedly subdividing the partial images and distributing them 
to the appropriate processing units. Our test results on both the 
CM-5 and the workstations are promising. They do, however, 
expose different performance issues for each platform. 

Background 
Many parallel algorithms for volume rendering have been 

developed re~ent1y.l.~ The major algorithmic strategy for par- 
allelizing volume rendering is the divide-and-conquer paradigm. 
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Figure 1. k-D tree subdivision of 
a data volume. 

The subdivision can occur either in data space or in image space. 
Data-space subdivision assigns the computation associated with 
particular subvolumes to processors, while image-space subdi- 
vision distributes the computation associated with particular 
portions of the image space. Data-space subdivision is usually 
applied to a distributed-memory parallel computing environ- 
ment, while image-space subdivision is often used in shared- 
memory multiprocessing environments. Our method and 
similar methods developed independently by Hsu,’ Camahort? 
and Neumann3 can be considered hybrid methods because they 
subdivide both data space (during rendering) and image space 
(during compositing). 

The basic idea behind our algorithm and other similar meth- 
ods is very simple: Divide the data into smaller subvolumes and 
distribute the subvolumes to multiple processors, render them 
separately and locally, and combine the resultingimages in an in- 
cremental fashion. The memory demands on each processor are 
modest, since each one holds only a subset of the total data set. 

In earlier work we used this approach to render high-resolu- 
tion data sets in a computing environment that had many 
midrange workstations (for example, equipped with 16 Mbytes 
of memory) on a local area n e t w ~ r k . ~  Many computing envi- 
ronments have an abundance of such workstations, which could 
be harnessed for volume rendering if the memory usage on each 
machine was reasonable. 

A divide-and-conquer algorithm 
The starting point of our algorithm is the volume ray-tracing 

technique presented by Levoy.h This technique constructs an 
image in image order by casting rays from the eye through the 
image plane and into the volume. One ray per pixel is generally 
sufficient, provided the image sample density exceeds the data 
sample density. The technique uses a discrete rendering model 
to sample the data at evenly spaced points along the ray, usu- 
ally at a rate of one to two samples per voxel. The data is inter- 
polated to these sample points, generally using a trilinear 
interpolant. Color and opacity are determined by applying a 
transfer function to the interpolated data values-a table 
lookup can do this. Intensity is assigned by applying a shading 
function such as the Phong lighting model. You can use the nor- 
malized gradient of the data volume as the surface normal for 
shading calculations. 

Sampling continues until the volume is exhausted or until 
the accumulated opacity reaches a threshold cut-off value. The 
final image value corresponding to each ray is formed by com- 
positing, front to back, the colors and opacities of the sample 
points along the ray. We base the colorlopacity compositing for 
our algorithm on Porter and Duff‘s “over” operator.’ It is easy 
to verify that this operator is associative-that is, 

a over (b over c) = (a over b) over c 

The associativity of the over operator lets us break a ray into 
segments, process the sampling and compositing of each seg- 

ment independently, and combine the results from each seg- 
ment via a final compositing step. 

Data subdiivision/load balancing 
The divide-and-conquer algorithm requires us to  partition 

the input data into subvolumes. There are many ways to do 
this. For example, Neumann compared block, slab, and shaft 
data distrib~tion.~ Ideally, we would like each subvolume to re- 
quire about the same amount of computation. We would also 
like to minimize the amount of data that must be communi- 
cated between processors during compositing. 

The simplest method is probably to partition the volume along 
planes parallel to the coordinate planes of the data. If the view- 
point is fixed and known when partitioning the data, we can de- 
termine the coordinate plane most nearly orthogonal to the view 
direction and subdivide the data into “slices” orthogonal to this 
plane. Orthographic projection tends to produce subimages with 
little overlap and, therefore, little communication during com- 
positing. If the view point is not known a priori, or if perspective 
projection is used, it is better to partition the volume equally 
along all coordinate planes. This block data distribution can be 
done by gridding the data equally along each 

We instead use a k-D tree structure for data subdivision,* 
with alternating binary subdivision of the coordinate planes at 
each level in the tree as indicated in Figure 1. When the num- 
ber of processors is a power of eight, the volume divides equally 
among all three dimensions. Hence, this is equivalent to the 
gridding method described above for block data distribution. If 
the number of processors is not a power of eight, the volume 
splits unevenly in the three dimensions, but never by more than 
a factor of two. 

As shown later, the k-D tree structure provides a convenient 
hierarchical structure for image compositing. Note that with 
trilinear interpolation, the data lying on the boundary between 
two subvolumes must be replicated and stored with both sub- 
volumes. 

Parallel rendering 
Each processor performs local rendering independently- 

that is, no data communications are required during subvol- 
ume rendering. We use ray-casting-based volume rendering. 
All subvolumes are rendered using an identical view position, 
and only rays within the image region covering the corre- 
sponding subvolume are cast and sampled. 

In principle, we could use any volume-rendering algorithm 
for local rendering. However, some care must be taken to avoid 
visible artifacts where subvolumes meet. For example, in ray 
casting, we sample along each ray at a fixed predetermined in- 
terval. We must ensure consistent sampling locations for all 

60 IEEE Computer Graphics and Applications 



Paraai’lel Volume Rendering Usmg Binary-Swap Cornpositing 

Eye I 
Subvolume 1 Subvolume 2 

L 

subvolumes so that we can reconstruct the original volume. As 
shown in Figure 2, for example, we should calculate the location 
of the first sample S,(1) on the ray shown in subvolume 2 cor- 
rectly so that the distance between S,(1) and S,(n)  equals the 
predetermined interval. Without careful attention to the sam- 
ple spacing, even across subvolume boundaries, the subvolume 
boundaries can become visible as artifacts in the final image. 

lmaqe composition 
The final step of our algorithm is to merge ray segments and 

thus all partial images into the final image. To merge subim- 
ages, we must store not only the color at each pixel but also the 
accumulated opacity. As described earlier, we base the rule for 
merging subimages on the “over” compositing operator. When 
all subimages are ready, they are composited in a front-to-back 
order. For a straightforward one-dimensional data partition, 
this order is also straightforward. When using the k-D tree struc- 
ture, we can determine this front-to-back image compositing 
order hierarchically by a recursive traversal of the k-D tree 
structure, visiting the “front” child before the “back” child. 
This is similar to well-known front-to-back traversals of BSP- 
trees.’ In addition, the hierarchical structure provides a natural 
way to accomplish the compositing in parallel: It lets us pro- 
cess sibling nodes in the tree concurrently. 

Binary compositing is a naive approach for parallel merging of 
the partial images. By pairing up processors in order of com- 
positing, this method produces a new subimage for each disjoint 
pair. Thus, after the first stage, we are left with the task of com- 
positing only n/2 subimages. Then we use half the number of the 
original processors and pair them up for the next level of com- 
positing. Continuing similarly, we obtain the final image after 
log n stages. One problem with this method is that many proces- 
sors become idle during the compositing process. At the top of the 
tree, only one processor is active, doing the final composite for the 
entire image. We found that compositing two 512 x 512 images 
required 1.44 seconds on one CM-5 scalar processor. One of our 
goals was interactive volume rendering, which requires subsec- 
ond rendering times, so this method was unacceptable. 

The compositing phase must exploit more parallelism. To 
this end, we generalized the binary compositing method so that 
every processor participates in all stages of the compositing 
process. We call the new scheme binary-swap compositing. The 
key idea is that, at each compositing stage, the two processors 

Figure 2. Correct ray sampling. 

involved in a composite operation split the image plane into 
two pieces, and each processor takes responsibility for one of 
the two pieces. 

In the early phases of the binary-swap algorithm, each pro- 
cessor is responsible for a large portion of the image area, but 
the data coverage in the image area is usually sparse because 
only a few processors have contributed to it. In later phases of 
the algorithm, as we move up the compositing tree, the proces- 
sors are responsible for a smaller and smaller portion of the im- 
age area, but the density of data coverage increases because an 
increasing number of processors have contributed image data. 
At the top of the tree, all processors have complete information 
for a small rectangle of the image. The final image can be con- 
structed by tiling these subimages onto the display. 

This approach can exploit the sparsity of image data, since 
compositing needs to occur only where nonblank image data is 
present. Each processor maintains a screen-aligned bounding 
rectangle of the nonblank subimage area. The processors only 
store and composite within this bounding rectangle. Two forces 
affect the size of the bounding rectangle as we move up the 
compositing tree: The bounding rectangle grows due to the con- 
tributions from other processors, but it shrinks due to the sub- 
division of the image plane as we move up the tree. The net 
effect is analyzed in greater detail in the next section. 

Figure 3 (on the next page) illustrates the binary-swap com- 
positing algorithm graphically for four processors. When all 
four processors finish rendering locally, each processor holds a 
partial image, as depicted in Figure 3a. Each partial image is 
subdivided into two half-images by splitting along the x axis. As 
shown in Figure 3b, processor 1 keeps only the left half-image 
and sends its right half-image to its immediate-right sibling, 
which is processor 2. Conversely, processor 2 keeps its right 
half-image and sends its left half-image to processor 1. Both 
processors then composite the half image they keep with the 
half image they receive. A similar exchange and compositing of 
partial images occurs between processors 3 and 4. 

After the first stage, each processor holds only a partial im- 
age, half the size of the original one. In the next stage, proces- 
sor 1 alternates the image subdivision direction. This time it 
keeps the upper half-image and sends the lower half-image to 
its second-to-right sibling, which is processor 3, as shown in Fig- 
ure 3c. Conversely, processor 3 trades its upper half-image for 
processor 1’s lower half-image for compositing. Concurrently, 
a similar exchange and compositing occurs between processor 
2 and 4. After this stage, each processor holds only one-fourth 
of the original image. This completes the processing for this ex- 
ample, so each processor sends its image to the display device. 
The final composited image is shown in Figure 3d. It has been 
brought to our attention that Mackerras’” independently de- 
veloped a similar merging algorithm. 

In our current implementation, the number of processors 
must be a perfect power of two. This simplifies the calculations 
needed to identify the compositing partner at each stage of the 
compositing tree and ensures that all processors are active at 
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Figure 3. Parallel compositing 
process. 
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son, operating only on the nonempty pixels in the portion of the 
image plane assigned to it. Some reduction in the total number 
of pixels will occur due to the depth overlap resolved in this 
compositing stage. 

On average, resolution of the depth overlap reduces the total 
number of pixels at each compositing phase by a factor of 
2-I". To see this, consider what happens over three compositing 
phases. The k-D tree partitioning of the data set will split each of 
the coordinate planes in half over three levels in the tree. Or- 
thogonal projection onto any plane will have an average depth 
overlap of 2. For example, assume the viewpoint is selected so 
that we are looking straight down the z axis. The x and y axis splits 
of the data will completely eliminate depth overlap in the image 
plane, while the z split will result in complete overlap. This cuts the 
total number of pixels in half. Thus, over three compositing phases, 
the image size is reduced by a factor of ID. The average over each 
phase then is 2-'", so when three stages are invoked (cubing the 
per-stage factor), we get the required factor of 1/2. 

This process repeats through log n phases. If we number the 
phases from i = 1 to log n, each phase begins with 2-('-')"n1/3p pix- 
els and ends with 2-'" pixels. The last phase therefore ends 
with 2-(log 4 i 3  n1/3 p = n-ln n1/3 p = p pixels, as expected. At each 
phase, half the pixels are communicated. Summing up the pix- 

els communicated over all phases: 

The 2-(-l)l3 term accounts for depth overlap resolution. The 
n113 p term accounts for the initial local rendered image size, 
summed over all processors. The factor of 112 accounts for the 
fact that only half the active pixels are communicated in each 
phase. This sum can be bounded by pulling out the terms that 
don't depend on i and noticing that the remaining sum is a geo- 
metric series which converges: 

5 2.43n"'p 
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Comparisons with other algodthms 
Alternatives for parallel compositing have been developed si- 

multaneously and independently of our work. One, which we 
will call direct send, subdivides the image plane and assigns each 
processor a subset of the total image pixels. Hsu’ and Neumann3 
use this approach. It sends each rendered pixel directly to  the 
processor assigned that portion of the image plane. Proces- 
sors accumulate these subimage pixels in an array and com- 
posite them in the proper order after all rendering is 
completed. The total number of pixels transmitted with this 
method is n1/3p  (1 - lh), as reported by N e ~ m a n n . ~  Asymp- 
totically, this is comparable to our result, but with a smaller 
constant factor. 

In spite of the somewhat higher count of pixels transmitted, 
our method has some advantages over direct send. Direct send 
requires that each rendering processor send its rendering results 
to, potentially, every other processor. Indeed, Neumann rec- 
ommends interleaving the image regions assigned to different 
processors to ensure good load balance and network 
utilization. Thus, direct-send compositing could require trans- 
mitting n(n - 1) messages. In binary-swap compositing, each 
processor sends exactly log n messages, albeit larger ones, so the 
total number of messages transmitted is n log n. When per-mes- 
sage overhead is high, it can be advantageous to reduce the to- 
tal message count. 

Furthermore, binary-swap compositing can exploit faster 
nearest neighbor communications paths when they exist. In 
early phases of the algorithm, processors exchange messages 
with nearest neighbors. This is exactly when the number of pix- 
els transmitted is largest, since little depth resolution has oc- 
curred. On the other hand, binary-swap compositing requires 
log n communications phases, while the direct-send method 
sends each partial ray segment result only once. In an asyn- 
chronous message passing environment, direct-send latency 
costs are O(1). In a synchronous environment, they are O(n) be- 
cause the processor must block until each message is received 
and acknowledged. Binary-swap latency costs grow by O(log n) 
with either synchronous or asynchronous communications. 

Camahort and Chakravarty have developed a different par- 
allel compositing algorithm, which we call the projection 
method? Their rendering method uses a 3D grid decomposition 
of the volume data. It accomplishes parallel compositing by 
propagating ray segment results front-to-back along the path of 
the ray through the volume to the processors holding the neigh- 
boring parts of the volume. Each processor composites the in- 
coming data with its own local subimage data before passing the 
results on to its neighbors in the grid. The final image is pro- 
jected onto a subset of the processor nodes-those assigned 
outer back faces in the 3D grid decomposition. 

Like the other methods, the projection method requires a 
total of O(n1’3 p )  pixels to be transmitted. Camahort and 
Chakravarty observe that each processor sends its results to, at 
most, three neighboring processors in the 3D grid. Thus, by 
buffering pixels, the projection method can be implemented 

with only three message sends per processor as compared to 
log n for binary swap and n - 1 for direct send. However, it re- 
quires the routing of each final image pixel through .In proces- 
sor nodes, on average, on its way to a face of the volume. This 
means that the message latency costs grow by O(nIf3). 

Implementation of the renderer 
We implemented two versions of our distributed volume ren- 

dering algorithm: one on the CM-5 and another on groups of 
networked workstations. Our implementation consists of three 
major pieces of code: a data distributor, a renderer, and an im- 
age compositor. Currently, the data distributor is a part of the 
host program, which reads data piece by piece from disk and dis- 
tributes it to each participating machine. Alternatively, each 
node program can read its piece from disk directly if parallel I/O 
facilities exist. 

Our renderer is a basic one and not highly tuned for the best 
performance. Data-dependent volume rendering acceleration 
techniques tend to be less effective in parallel volume renderers 
than in uniprocessor implementations, since they may acceler- 
ate the progress on some processors more than others. For ex- 
ample, a processor tracing through empty space will probably 
finish before another processor working on a dense section of the 
data. We are currently exploring data distribution heuristics that 
can take the complexity of the subvolumes into account when 
distributing the data to ensure equal loads on all processors. 

For shading the volume, we use central differencing to ap- 
proximate surface normals as local gradients. We trade mem- 
ory for time by precomputing and storing the three components 
of the gradient at each voxel. For example, a data set of size 256 
x 256 x 256 requires more than 200 megabytes to store both the 
data and the precomputed gradients. This memory requirement 
prevents us from sequentially rendering this data set on most of 
our workstations. 

CM-5 and CMMD 3.0 
The CM-5 is a massively parallel supercomputer that sup- 

ports both the single instruction, multiple data (SIMD) and 
multiple instruction, multiple data (MIMD) programming mod- 
els.Il The CM-5 in the Advanced Computing Laboratory at Los 
Alamos National Laboratory has 1,024 nodes, each a Sparc mi- 
croprocessor with 32 Mbytes of local RAM and four 64-bit- 
wide vector units. With four vector units, each node can perform 
up to 128 operations from a single instruction. This yields a the- 
oretical speed of 128 Gflops for a 1,024-node CM-5. The nodes 
can be divided into partitions whose size must be a power of two. 
Each user program operates within a single partition. 

Our CM-5 implementation of the parallel volume renderer 
takes advantage of the CM-5’s MIMD programming features. 
MIMD programs use CMMD (Connection Machine multiple 
instruction, multiple data), a message-passing library for com- 
munications and synchronization, which supports either a host- 
less model or a hosthode model. 

We chose the hosthode programming model of CMMD be- 
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cause we wanted the option of using X Windows to display di- 
rectly from the CM-5. The host program determines which data- 
space partitioning to  use, based on the number of nodes in the 
CM-5 partition, and sends this information to the nodes. The 
host then optionally reads in the volume to be rendered and 
broadcasts it to the nodes. 

Alternatively, the data can be read directly from the 
DataVault or Scalable Disk Array into each node’s local mem- 
ory. The host then broadcasts the opacitylcolormap and the 

Figure 4. Head data set and parallel compositing process. 

Figure 5. Vessel data set. 

Figure 6. Vorticity data set. 
transformation information to the nodes. Finally, the host per- 
forms an I/O servicing loop, which receives the rendered por- 
tions of the image from the nodes. 

The node program begins by receiving its data-space parti- 
tioning information and its portion of the data from the host. It 
then updates the transfer function and the transform matrices. 
Following this step, the nodes all execute their own copies of the 
renderer. They synchronize after the rendering and before en- 
tering the compositing phase. Once the compositing is finished, 
each node has a portion of the image that it then sends back to 
the host for display. 

Networked workstations and PVM 3.1 
Unlike a massively parallel supercomputer dedicating uniform 

and intensive computing power. a network computing environ- 
ment provides nondedicated and scattered computing cycles. 
Thus, using a sct of high-performance workstations connected by 
an Ethernet, our goal was to set up a volume rendering facility for 
handling large data sets and batch animation jobs. That is, we 
hope that using many workstations concurrently will allow us to 
decrease the rendering time linearly and to render data sets that 
are too large to render on a single machine. Note that real-time 
rendering is generally not achievable in such an environment. 

We use PVM (Parallel Virtual Machine),’* a parallel pro- 
gram development environment, to implement the data com- 
munications in our algorithm. PVM lets us implement our 
algorithm portably for use on a variety of workstation plat- 
forms. To run a program under PVM, the user first executes a 
daemon process on the local host machine, which in turn initi- 
ates daemon processes on all other remote machines used. Then 
the user’s application program (the node program), which 
should reside on each machine used, can be invoked on each re- 
mote machine by a local host program via the daemon pro- 
cesses. Communication and synchronization between these user 
processes are controlled by the daemon processes, which guar- 
antee reliable delivery. 

We also used a hostlnode model. As a result, the implemen- 
tation is nearly identical to that on the CM-5. In fact, the only 
distinct difference between the workstation and CM-5 imple- 
mentations (source program) is the communication calls. Basi- 
cally, for most of the basic communication functions, PVM 3.1 
and CMMD 3.0 have one-to-one equivalence. 

Tesb 
We used three different data sets for our tests. The vorticity 

data set is a 256 x 256 x 256 voxel computational fluid dynam- 
ics (CFD) data set, computed on a CM-200, showing the onset 
of turbulence. The head data set is the now-classic University of 
North Carolina at Chapel Hill magnetic resonance (MR) head 
at a size of 128 x 128 x 128. The vessel data set is a 256 x 256 x 
128 voxel magnetic resonance angiography (MRA) data set 
showing the vascular structure within the brain of a patient. 
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Figure 4 illustrates the compositing process described in Fig- 
ure 3, using the images generated with the head data set and 
eight processors. In Figure 4, each row shows the images from 
one processor, while the columns show-from left to right-the 
intermediate images before each composite phase. The right- 
most column shows the final results, still divided among the eight 
processors. The final tiled image is blown up and displayed on the 
right. Figures 5 and 6 show images of the other two data sets 
rendered in parallel using the algorithm described here. 

CM-5 
We performed multiple experiments on the CM-5 using par- 

tition sizes of 32,64,128,256, and 512 nodes. When these tests 
were run, a 1,024 partition was not available. Figure 7 shows the 
speedup results for a 512 x 512 image on each data set. Note that 
the speedup is relative to the 32-node running time. 

Because there is no communication in the rendering step, 
you might expect linear speedup when utilizing more proces- 
sors. As the three speedup graphs show, this is not always the 
case due to load-balance problems. The vorticity data set is rel- 
atively dense (that is. it contains few empty voxels) and there- 
fore exhibits nearly linear speedup. On the other hand, both 
the head and the vessel data sets contain many empty voxels 

~~ 

Table 1. CM-5 time breakdown (in seconds), vorticity data 
set, 512 x 512 image size. 

Figure 7. CM-5 speedup for 512 x 512 image size. 

Figure 8. CM-5 runtimes by data set, 512 x 512 image size. 
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Figure 9. CM-5 runtimes by image size, vessel data. 
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that unbalance the load. These data sets therefore do not exhibit 
the best speedup. 

Figure 8 shows timing results for all data sets, using an image 
size of 512 x 512, and Figure 9 shows the results for the vessel 
data set at several image sizes. All times are given in seconds. 
The times shown in the graphs are the maximum times for all the 
nodes for the two steps of the core algorithm: rendering and 
compositing. The graphs do not include times for data distri- 
bution or image gathering. 

Table 1 shows a time breakdown by algorithm component- 
data distribution (dist), rendering (rend), compositing compu- 
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tation time (comp), compositing communications (comm), and 
image gathering (send)-on a 512 x 512 rendering of the vor- 
ticity data. It is easy to see that rendering time dominates the 
process. Note that this implementation does not take advan- 
tage of the CM-5 vector units. We expect much faster compu- 
tation rates for both the renderer and compositor when the 
vectorized code is complete. 

The communication time varied from about 10 percent to 
about 3 percent of the total compositing time. As the image 
size increases, both the compositing time and the communica- 
tion time also increase. For a fixed image size, increasing the par- 
tition size lowers the communication time because each node 
contains a proportionally smaller piece of the image and be- 
cause the total communications bandwidth of the machine 
scales with the partition size. 

The data distribution time includes the time it takes to read 
the data over Network File System (NFS) at Ethernet speeds on 
a loaded Ethernet. The image gathering time is the time it takes 
the nodes to send their composited image tiles to the host. While 
other partitions were also running, the data distribution time 
could vary dramatically due to the disk and Ethernet con- 
tention. Taking the vorticity data set as an example, the data dis- 
tribution varied from 40 to 90 seconds regardless of the partition 
size. Both the data distribution and image gathering times will 
be mitigated by use of the parallel storage and the use of the 
HiPPI frame buffer. 

Networked workstations 
For our workstation tests, we used a set of 32 high-perfor- 

mance workstations. The first four machines were IBM 
RSl6000-550 workstations equipped with 512 Mbytes of mem- 
ory. These workstations are rated at 81.8 SPECfp92. The next 
12 machines were HP9000/730 workstations, some with 32 
Mbytes and others with 64 Mbytes. These machines are rated 
at 86.7 SPECfp92. The remaining 16 machines were Sun Sparc- 
10130 workstations equipped with 32 Mbytes, which are rated at 
45 SPECfp92. 

The tests on one, two, and four workstations used only the 
IBMs because of their memory capacity. The tests with eight 

Figure 10. PVM runtimes by data set, 512 x 512 image size. 

I Table 2. PVM time breakdown (in seconds), 
vorticity data set, 512 x 512 image size. I 

comm 

and 16 used a combination of the HPs and IBMs. We used the 
16 Suns for the 32-machine tests. We could not assure absolute 
quiescence on each machine, because they are in a shared en- 
vironment with a large shared Ethernet and file systems. Dur- 
ing the testing period, there was network traffic from network 
file system activity and across-the-net tape backups. In addi- 
tion, the workstations lie on different subnets, increasing com- 
munications times when the subnet boundary must be crossed. 
Thus, the communication performance was highly variable and 
difficult to characterize. 

Figure 10 shows timing using all three data sets and an image 
size of 512 x 512. Again, the graphs do not include data distri- 
bution and image gathering times. In a heterogeneous envi- 
ronment, it is less meaningful to use speedup graphs to study the 
performance of our algorithm and implementation, so speedup 
graphs are not provided. 

For large images (say, 512 x 512) in the workstation envi- 
ronment, it is worthwhile to compress the subimages used in the 
compositing process. We incorporated a compression algorithm 
into our communications library using an algorithm described 
in William~. '~ The compression ratio was about four to one, re- 
sulting in about 80 percent faster communication rates for the 
32-workstation case. With fewer processors, computation tends 
to dominate over communications and compression is not as 
much of an advantage. The timing results shown in Figure 10 in- 
clude the effects of data compression. 

Table 2 shows a time breakdown by algorithm component: 
rendering (rend), compositing computation time (comp), and 
compositing communications (comm). From the test results, 
we see that the rendering time still dominates when using eight 
or fewer workstations. It is also less beneficial to render smaller 
images due to the overhead costs associated with the rendering 
and compositing steps. Unlike the CM-5 results, tests on work- 
stations show that the communication component is the 
dominant factor in the compositing costs. O n  average, com- 
munication takes about 97 percent of the overall compositing 
time. On the CM-5, a large partition improved the overall com- 
munications time, partly because the network bandwidth scales 
with the partition size. This is not true for a local area network, 
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such as an Ethernet, that has a fixed bandwidth available re- 
gardless of the number of machines used. On a LAN, commu- 
nication costs of the algorithm increase with increasing numbers 
of machines. 

The data distribution and image gathering times varied 
greatly, due to the variable load on the shared Ethernet. The 
data distribution times varied from 17 seconds to 150 seconds, 
while the image gathering times varied from an average of 0.06 
seconds for a 64 x 64 image to a high of 8 seconds for a 512 x 512 
image. These test results were based on Version 3.1 of PVM. 
Our initial tests using PVM 2.4.2 show a much higher commu- 
nication cost, more than 70 percent higher. 

In a shared computing environment, the communication 
costs for our algorithm are highly variable due to the many fac- 
tors over which we have no control. For example, an overloaded 
network and other users’ processes competing with our ren- 
dering process for CPU and memory usage can greatly degrade 
the algorithm’s performance, We could improve performance 
by carefully distributing the load to each computer according to 
data content, the computer’s performance, and its average us- 
age by other users. Moreover, communications costs are ex- 
pected to drop with higher speed interconnection networks (for 
example, FDDI) and on clusters isolated from the larger local 
area network. 

Conclusions 
Our algorithm can render data sets that are too large to fit into 

memory on a single uniprocessor. Its binary-swap compositing 
method is particularly suitable for massively parallel processing, 
and it is simple to implement with the use of the k-D tree struc- 
ture. The algorithm’s implementation on a CM-5 showed good 
speedup characteristics, with only a small fraction of the total 
rendering time spent in communications, indicating the success 
of the parallel compositing method. 

Several directions appear ripe for further work. The host data 
distribution, image gather, and display times are bottlenecks 
on the current CM-5 implementation. We can alleviate these 
bottlenecks by exploiting the parallel 110 capabilities of the 
CM-5. Rendering and compositing times on the CM-5 can also 
be reduced significantly by taking advantage of the vector units 
available at each processing node. We hope to achieve real- 
time rendering rates at medium to high resolution with these 
improvements. 

Better load balancing could improve the performance 
achieved in the distributed workstation implementation of the 
algorithm. While linear speedup in a heterogeneous environ- 
ment with shared workstations is difficult, we are investigating 
data distribution heuristics that account for varying workstation 
computation power and workload. 0 
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