
Fast Algorithms for Visualizing Fluid Motion in Steady Flow
on Unstructured Grids

S.K. Ueng and K. Sikorski
Department of Computer Science

University of Utah
Salt Lake City, Utah 84112

Abstract

The plotting of streamlines is an effective way of vi-
sualizing fluid motion in steady flows. Additional in-
formation about the flowfield, such as local rotation
and expansion, can be shown by drawing in the form
of a ribbon or tube. In this paper, we present efficient
algorithms for the construction of streamlines, stream-
ribbons and streamtubes on unstructured grids. A spe-
cialized version of the Runge-Kutta method has been
developed to speed up the integration of particle pathes.
We have also derived close-form solutions for calcu-
lating angular rotation rate and radius to construct
streamribbons and streamtubes, respectively. Accord-
ing to our analysis and test results, these formulations
are two to four times better in performance than pre-
vious numerical methods. As a large number of traces
are calculated, the improved performance could be sig-
nificant.

1 Introduction

Streamlines, streamribbons and streamtubes are very
powerful techniques for visualizing steady vector
fields. A streamline is the path of a massless parti-
cle which is released in a steady flow. The plotting
of the particle paths produces a streamline picture,
which is of both qualitative and quantitative value to
the engineer. Streamline pictures allow the engineer
to visualize fluid motion and to locate regions of high
and low velocity and, from these, zones of high and
low pressure.

Given a fluid flow with velocity field Z(?(t)), a
streamline is an integral curve of ii. That is, a stream-
line can be calculated by solving the following equa-
tion:

d?(t) - = qqt>>
dt

where t is a parameter along the streamline and is not
to be confused with time [ll].

Kwan-Liu Ma
ICASE, Mail Stop 132C

NASA Langley Research Center
Hampton, Virginia 23681

A streamribbon can show the translation, angular
rotation, and rates of shear deformation of the flow.
Ideally, it is constructed by tracing a set of streamlines
originated from multiple seed locations on a straight
line segment. That is, the path swept by the de-
formable line segment becomes a streamribbon. Volpe
[12] constructs a streamribbon in this fashion by trac-
ing a large number of adjacent streamlines. However,
the number of streamlines needed to form smooth rib-
bon surfatces could be tremendous and the correspond-
ing computational cost would be high. In practice,
the construction of streamribbons is simplified, though
some information such as shear deformation would be
lost. In [4], a streamribbon is generated by comput-
ing only a few streamlines and creating polygons be-
tween adjacent streamlines to form the surface of the
streamribbon. This method still requires complicated
algorithms to deal with the convergence, the diver-
gence and the splitting of streamribbons. Darmofal
and Hairnes [2], Ma and Smith [7], and Pargendarm
[9] use one streamline and vectors normal to the lo-
cal velocity to form a streamribbon. In this way, the
resulting ribbons only show the translation and an-
gular rotation of the flow. We adopt Darmofal and
Haimes’ algorithm by using two parallel edges to form
a streamribbon. First, a streamline is generated to
serve as the first edge of the streamribbon. A normal
vector is calculated at each point of the streamline by
rotating a constant length vector about the streamline.
Then the second edge of the streamribbon is formed
by connelcting the end points of the normal vectors.

Formally, a streamtube is defined as the surface
formed by all streamlines passing through a given
closed curve in the flow [ll]. Streamtubes are used
to visualize expansion, contraction and deformation of
the flow. In [2], a streamtube is created by connecting
the circular crossflow sections along a streamline. The
radius of a cross flow section is determined by the local
cross flow expansion rate. A streamtube constructed
in this manner does not reveal the deformation of the
flow. Again, this is a technique more computational

lo7o-mxi/95$4.00@ 1995IEEE

(See color plates, page CP-37)

313

Proceedings of the 6th IEEE Visualization Conference (VISUALIZATION '95)
1070-2385/95 $10.00 © 1995 IEEE

feasible and we adopt it in this work. In [7], to vi-
sualize both flow convection and diffusion, stat,istical
dispersion of the fluid element,s about a streamline is
computed by using added scalar information about
the root mea,n square value for the vector field and
it,s Lara.ngian time scale. The result defines the ra-
dius of t,he cross flow se&on a.nd also form a t,ube-like
surfa.ce. Schroeder et. a.1. [lo] int.roduce a technique
ca,lled Strea.m Polygon for visualizing 1oca.l deforma-
t,ion of t,he flow.

In t&his paper, we present efficient algorithms to
c0mput.e streamlines, streamribbons and streamtubes
on unstruct,ured grids. Our algorithms are mainly
based on those developed in [a]. Several new com-
put,ational techniques are derived and used to improve
performance. These new computational techniques in-
clude a, specialized version of Runge-Kutta method,
a simpler procedure to compute t,he angula,r rotation
rat,e of the flow a.nd an explicit solut.ion for calculating
t,he radius of st,reamt,ube. An overview of our algo-
rithms is described in Section 2. The new computa-
t.iona.l t.echniques a.re derived in Sect,ion 3. The data
&ruct,ures used a.nd the memory requirements for im-
plementing t,he algorithms for testing are described in
Section 4. Finally, we present some experimental re-
sults using three different data. sets t,o demonstrate the
time efficiency of the new particle tracing algorithm.

2 Overview of the Algorithms

In t,his paper, we a,ssume that all cells are tetrahe-
dra.. Other t,ypes of cells have to be decomposed into
t#etrahedra. in preprocessing stages. In a tetrahedral
cell, t#he three components of the vector field are linear
functions of t.he physical coordinates. Their int,erpo-
lation functions can be formulat,ed as:

wq(x, y, z) = U,IX + b,y + clz + dl,
wz(x, y, z) = azx + bay + czz + dz,
ws(x, y, z) = a3z + by + c3t + d3.

(2)

where wi, i = 1,2,3, a.re the three components of vec-
t#or field; a. b. c’ di, i = 1,2,3, are the coefficients of 2, zi z,
the int,erpolat,ion functions; Z, y, z are t.he physical co-
ordina,tes. The a.bove equations ca.n be re-written in a
concise form:

C(Z) = ss+cf (3)

B = (Et; $ g) (4)

d’ = [dl d2 d3 IT (5)

When calculating a st,reamline, it is necessary to
find t,he cell in which this st,rea.mline enters at. each
t#ime st,ep. A met.hod is given in [6] to solve t.his prob-
lem. In t,his met,hod, the physical coordinates of the

1
Transformation

>

Physical Coordinates Canonical Coordinates

Figure 1: Coordinate System Transforma.tion

point calculated at ea.ch time step are t.ransformed into
the canonical coordinates as shown in Figure 1. Then
the canonica,l coordinates are used to determine the
cell which the streamline enters. In this work, we
adopt a simpler method to convert the physical co-
ordinates into the canonical coordinates:

f = R&d (‘3)

R =
(

rl1 rl2 r13

r21 r22 r23 (7)
T3l r32 r33)

i = [kl k2 k3 IT (8)

where 2 is a physical coordinate vector and [is the
canonical coordinate vect#or of 5.

2.1 Streamline Construction

Given an initial point in a physical domain, a stream-
line can be calculated by solving Equation 1. The
4th order Runge-Kutta method is applied to int,egra.te
the equa.tion stepwise. After calcula,ting a point of
the streamline, Equation 6 is used to transform the
physical coordinates of the point into the canonical
coordinates. If a,11 the t>hree components of the canon-
ical coordinates are between 0.0 and 1.0, this point is
still inside the current cell where t,he comput,at,ion of
the point takes place. The coefficient,s of the interpola-
tion functions of the current cell are still valid for next
st,ep integration. Otherwise, a searching for a new cell
which cont,ains the point is startBed according to the
canonical coordinates. After finding the new cell, the
computation of next position can be performed. This
pattern of calcula.tion is repeated until the streamline
rea.ches a. physical bounda.ry or the number of t,ime
steps exceeds a pre-defined limit.

2.2 Streamribbon Construction

A streamribbon ha.s two edges as we have described.
The first edge of a streamribbon is constructed by cal-
culating a st,reamline, and t,he second edge is genera.ted
by connecting the end points of the norma, vect,ors of
the streamline. The normal vectors are ca,lcula.ted by

314

Proceedings of the 6th IEEE Visualization Conference (VISUALIZATION '95)
1070-2385/95 $10.00 © 1995 IEEE

x~(s~camlhe

X(i-1) X(i)

Figure 2: Example of Streamribbon Construction

rotating a constant length vector about the stream-
line at each point of the streamline. The constant
length vector can be any vector which is orthogonal
to the streamline at the initial point. The surface of
the streamribbon is then formed by connecting the end
points of the normal vectors and their corresponding
points on the streamline. An example is depicted in
Figure 2. The angle of rotating the constant length
vector is governed by:

d6’
z

= +) (9)

s’= ‘11
Ilu’ll

where % is the rotation angle. Equations 9 and 1 are
solved stepwise when constructing a streamribbon.

2.3 Streamtube Construction

A streamtube is created by generating a streamline
and by connecting the circular crossflow sections along
the streamline. The radius of a streamtube is governed
by the following ordinary differential equation:

1 dr -- =
r dt

VT.li =

where T is the streamtube radius, VT . G is the local
cross flow divergence, and 5 represents the change
of velocity magnitude along the streamline. Equa-
tions 1,9 and 12 are solved stepwise when constructing
a streamtube. Equation 1 is used to calculate the cen-
ter of the streamtube, while Equations 9 and 12 are
used to calculate the angle of rotation and the radius
of the streamtube. Figure 3 contains an example of
constructing a streamtube.

3 New Computational Methods

In order to construct streamlines, streamribbons and
streamtubes, we need to solve the ODE’s mentioned
in the previous sections. Based on the interpolation
functions of linear tetrahedral cell, we had developed
specialized ODE solvers to speed up our algorithms.

Circular Crossflow Section

Figure 3: Example of Streamtube Construction

3.1 AL Specialized Version of the Runge-
Kutta Method for Streamline Con-
struction

By combining Equations 1 and 3 the governing equa-
tion of at streamline can be formulated as:

!y=f(z,t)=Bz’+d (14
The 4th order

solve this ODE:

qt -f h) =

FI =
F2 =
F3 =
F4 =

Runge-Kutta method is applied to

Z(t) + $(FI + 2Fz + 2F3 + F4)(15)

hf (2, t> (16)
hf(S + F1/2, t + h/2) (17)
hf(iJ + F22/2, t + h/2) (18)
hf(3 + F3, t + h) (19)

where h is the time step size. By substituting Equa-
tions 14 and 3 into the right hand sides, Equations 16
- 19 can be expanded as:

Fl q T: hf(Z, t)

q - h(BI+ c$
F2 q = hf(Z + Fl/2, t + h/2)

q = h(B(i+ Fl/2) + 4

q : (h2B/2 + h)(BZ + 4
Fs q = hf(j: + F2/2, t + h/2)

q = h(B(S + F2/2) + i)

=I (h3B2/4 + h2B/2 + h)(BZ’+ cij
F4 =I hf(S+Fs,t+h)

=: h(B(i+ F3) + cf)

=I (h4B3/4 + h3B2/2 + h2B + h)(BZ+ cf)

By using these equations, the Runge-Kutta method
shown in Equation 15 can be expressed as:

Z(t + h) = Z(t) + ;(FI + 2F2 + 2F3 + F4)

= (I+h;+q+q+@$)rjl)
hB ‘(hB)’

+h(l + 21 + -
+ .(hB)3 -’

3! . -+d

315

Proceedings of the 6th IEEE Visualization Conference (VISUALIZATION '95)
1070-2385/95 $10.00 © 1995 IEEE

= HIi + Hz2 (20)
= HIS(t) + il (21)

+
Since B and d are constants, HI and d; can be
calculated by using Horner’s algorithm [3]. Here-
after the computations of the 4th order Runge-Kutta
method require only a matrix-vector multiplication
and a vector-vector addition.

3.2 Explicit Solution for the Angular Ro-
tation Rate

The angular rotation rate is governed by the ODE for-
mulated in Equation 9. Since the velocity Z is linear
within a cell, the curl of u’ is a constant vector. Ac-
cording to Equation 3, we have:

w’ = curl(?q
= vxii
= Vx(BiT+d

= [b3 - c2 Cl - a3 ~2 -h IT

Then Equation 9 can be solved analytically:

db’
dt

J

h de
-dt = ;I$.

h

0 dt J s’dt
0

B(h) - 0(O) = $ii. (s’(h) + s’(O));

Q(h) = e(O) + $G. (& + &)

where Q(0) is the rotation angle at the previous time
step, e(h) is the rotation angle at the current time
step, u’(h) is the velocity at the current time step, and
ii(O) is the velocity at the previous time step. This
closed form solution is used to compute the rotation
angle of the normal vector about the streamline. The
only unknown values involved in this solution are u’(h)
and its velocity magnitude. Since G(h) can be cal-
culated by using Equation 3, the major cost of this
solution is reduced to a matrix-vector multiplication.

3.3 Explicit Solution for the Radius of
Streamtube

The governing equation of streamtube radius is shown
in Equation 12. This ODE can be solved analytically:

J hid 1
r = -

0 r J h’

2 0 VT . iidt

h(rh) - ln(re) = f lh VT . iidt

ln(rh) = ln(rs) + ;(A” V. fidt - 1” $dt)

From Equations 3 and 1, the divergence of Z is:

and

Therefore,

V . u’= al + bz + c3

dz’ = u’dt

(22)

(23)

ln(rh) = ln(rc) + i((ui + bz + cs)h - J “dd)
0 u’

rh = rg exp(i(ur + bz + cs)h - In(&) + ln(ub)>

7-h = ro exp(i(ul -I- b2 -t es)h)* (24)

Equation 24 is used to compute the radius of stream-
tube, where rh is the streamtube radius at the current
time step,, rc is the radius at the previous time step,
ub and u,, are the magnitudes of velocity at the pre-
vious step and the current step. Since the magnitude
of velocity at current step has been calculated when
computing the angle of rotation, there is no unknown
value in the right hand side of this equation. The cost
of calculating rh composes only a few multiplications.

3.4 Integration Step Size

The value of h is crucial for integration of particle
paths. In [l], Buning suggested to choose this time
step size based on the cell size and the inverse of ve-
locity magnitude. Darmofal [2] used a similar method
to determine the value of h for tracing particle paths,
but for constructing streamribbons, h is furthered re-
stricted by the angle of rotation to produce smoother
ribbon surface. In our current implementation, h is
fixed for the entire streamline. A default step size is
determined for the overall domain by using Buning’s
method at the preprocessing stage, though h can be
interactively modified.

4 Data Structures

To implement the above methods, the major data
structures are composed of a list of cell records and a
list of node records. To further speed up the construc-
tion of streamlines, streamribbons and streamtubes,
at the expense of more memory space, we precompute
and store the coefficients of the vector field interpola-
tion function, coordinate transformation function, and
the specialized Runge-Kutta method during the pre-
processing stage.

As a result, a cell record has three coefficient ma-
trices, four node numbers and four cell numbers. The
four node numbers are indices of nodes that comprise
this tetrahedral cell. The four cell numbers are indices

316

Proceedings of the 6th IEEE Visualization Conference (VISUALIZATION '95)
1070-2385/95 $10.00 © 1995 IEEE

of cells that are adjacent to this cell. The values stored
in a node record include the physical coordinates of
the node as well as the vector field on the node. After
the preprocessing stage, node records become redun-
dant and can be deleted since the cell records contain
all the information needed for performing the particle
tracing.

Using our tracing method, each cell record takes

(3 matrices + 4 node indices + 4 cell indices)
1(137;(443)+4+4)x4 bytes

es

For a typical 500,000-cell data, about 88 megabytes
are needed. If memory becomes a problem, the matri-
ces for the interpolation and the transformation func-
tions can be computed on the fly, but the curl and
divergence for each cell then must be stored at the ex-
pense of much less memory space, and the memory
requirement for each cell becomes 96 bytes.

In order to compare the performance of the new
algorithms with the conventional Runge-Kutta meth-
ods, we have also implemented the second and the
fourth order Runge-Kutta methods. Similarly, to
speedup the tracing as much as possible, the matrices
for the interpolation and transformation functions are
precomputed and stored. Therefore, each cell record
takes

(2 matrices + 4 node indices + 4 cell indices)
= 128 bytes

However, the list of node records is needed during the
tracing stage. On the other hand, without storing
these two matrices, the memory requirement becomes
only 32 bytes per cell record, and 24 bytes per node
record. To cope with the high memory requirements
for visualizing on unstructured grids, some divide-and-
conquer strategies must be taken to make possible vi-
sualization of large data sets such as those with mil-
lions of cells.

5 Test Results

To study the performance of our algorithms, we
compare experimentally our specialized Runge-Kutta
method (SRK4) with both the conventional second
and fourth-order Runge-Kutta methods (RK2 and
RK4) for integrating particle paths. To derive fair
measurements, as described in previous section, all the
needed matrices are precomputed and stored for the
implementation of each method. Three data sets are
used for our tests. The first data set was generated
analytically; it contains 68,921 nodes uniformly posi-
tioned in a cubic domain, in which there are totally
320,000 tetrahedra. The vector fields on a node is de-

termined by evaluating three linear functions:

ul(z, y, z) = -0.52 - 6.Oy,
u2(2, y, z) = 6.02 - 0.5y,
u3(z, y, 2) = -2.02 + 20.5.

The second data set is the blunt fin data set ob-
tained from the National Aerodynamic Simulation Fa-
cility at the NASA Ames Research Center. This data
set was -from a computational fluid dynamics simula-
tion of air flow over a flat plate with a blunt fin rising
from the plate [5]. The flow is symmetrical about a
plane through the center of the fin, so only one half
of the complete geometry is present. Note that origi-
nally the computational grid was a single, curvilinear,
structured block grid. We converted it into an un-
structured grid by splitting each hexahedron into six
tetrahedra. The resulting unstructured grid contains
224,874 tetrahedral cells and 40,960 nodes.

We obtained the third data set from the NASA Lan-
gley Research Center. It was from a computational
fluid dynamics simulation of transonic flow abount an
ONERA-M6 wing with free-stream Mach-number 0.84
and 3.06 degrees angle of attack [8]. There are 287,962
tetrahedral cells and 53,961 nodes in this data set.

On each data set, one hundred seed points are ran-
domly selected. Then, streamlines are constructed by
using these seed points. The streamline constructions
are stopped when either the streamlines reach domain
boundaries or the number of time step exceeds a pre-
defined limit (e.g. 1,500).

Since the major function evaluations of all the three
methods are of the same kind, i.e. matrix-vector mul-
tiplication, we can predict their performances by cal-
culating the number of function evaluations used in
these ml&hods. For a single step integration, only
one function evaluation is required by using the SRK4
method while four function evaluations are needed if
the RK4 method is applied and two function evalua-
tions are performed if the RK2 method is used. Theo-
retically, the SRK4 method should be faster than the
RK2 method by a factor of 2.0, and faster than the
RK4 method by a factor of 4.0.

The testing results for the three data sets are shown
in Figure 4, Figure 5, and Figure 6. Numbers are
seconds and the measurements were performed on a
Sun SparclO Model 51 (50MHz). Only the core of
the integration algorithms was measured. The test
results agree with our analysis; the SRK4 method is
the fastest method while the RK4 is the slowest one.

The average cost of computing a single step inte-
gration by using these three methods are listed in Ta-
ble 1. Note that now the time unit used is microsec-
ond. According to the timing results listed in Table 1,
the speeQup achieved by using the SRK4 method is
slightly higher than 2.0 when compared with the RK2
method but may be lower than 4.0 when compared

317

Proceedings of the 6th IEEE Visualization Conference (VISUALIZATION '95)
1070-2385/95 $10.00 © 1995 IEEE

Time

(=I
3

40 en
Number of Streamlines

Figure 4: Timing of Constructing Streamlines on Data
Set 1

Time

C-c)

0 20 40 60 RO 100
Number of Streamlines

Figure 5: Timing of Conskucting Strea.mlines on Data
Set, 2

Time

(4

411 60
Number of Streamlines

Figure 6: Timing of Construct,ing Streamlines on Da.ta
Set 3

Table 1: Execution Time of a Single Time Step
I

with the RK4 met,hod. The lower speed-up numbers
and t.he differences between different da.ta sek could
be due to both the timing calculations and the over-
head for fetching the coefficient,s of the interpolation
functions, etc.

Some visualiza.tion resulk generated by using t#he
algorit*hms described in t,his paper are presented in
Figure 7. Figure 7 (a,) shows a streamribbon ima.ge of
the ana.lytical da.ta. set. From this image, we can see
the st.rea.mribbons spiral toward a critical point which
is a saddle point in the vector field. The streamrib-
bons are colored according to the velocit,y magnitudes.
Figure 7 (b) shows an image of plotting streamkrbes
in the same da.ta set and using the same initial seed
points. This image reveals not only rot,ation of the
flow but also expansion and contraction of the flow.

Figure 7 (c) and (d) show t,he streamribbon and
streamtube visualizat5ion of the blunt fin dat,a set.
For both images, the view is selected such that t,he
blunt fin is laid down toward the viewer and the plane
surface becomes orthogona.1 to the viewing direction.
From these t,wo ima.ges, some interesting flow move-
ments a.re revealed near the leading edge of the fin
a.nd the plane.

Figure 7 (e) a,nd (f) display t,he strea.mribbon and
the st,rea,mtube visualization of the ONERA-M6 wing

318

Proceedings of the 6th IEEE Visualization Conference (VISUALIZATION '95)
1070-2385/95 $10.00 © 1995 IEEE

data set. It is shown in the images that the forma-
tion of a wing tip vortex caused by the flow expand-
ing around the wing tip due to pressure differences
between the the upper and lower surfaces of the wing.

6 Conclusions

The fourth order Runge-Kutta method is the fun-
damental procedure for constructing streamlines. A
new computational method has been derived to speed
up the Runge-Kutta method. A closed form formula
is deduced to compute the angular rotation rate of
flow for making streamribbons. We have also de-
rived an explicit solution for computing the radius of
streamtube that is governed by an ordinary differen-
tial equation. The performance of the new methods
were measured by using three different data sets on
a Sun SparclO. The test results match our analytic
predictions. The speed-up currently achieved can be
significant resulting in better interaction when tracing
a large number of particles and in a large data space.

While we have improved particle tracing calcula-
tions, the use of parallel processing can further speed
up the tracing of a significantly large number of parti-
cles. In addition, for data sets that do not fit into the
main memory of an average workstation, the design of
out-of-core or distributed-memory parallel algorithms
is needed just to make visualization possible. We are
currently designing an out-of-core particle tracing al-
gorithm.

Acknowledgments

This work has been supported in part by the
NSF/ACERC and the National Aeronautics and
Space Administration under NASA contract NASl-
19480. Thanks go to Dimitri Mavriplis for the Wing
data set. Thanks also go to David Darmofal and
the anonymous Visualization ‘95 Conference review-
ers who provided many useful suggestions on ways to
improve the manuscript.

References

[l] BUNING, P. Sources of Error in the Graphical
Analysis of CFD Results. Journal of Scientific
Computing 3, 2 (1988), 149-164.

[2] DARMOFAL, D., AND HAIMES, R. Visualization
of 3-D Vector Fields: Variations on a Stream,
January. 1992. AIAA Paper No. 92-0074, AIAA
30th Aerospace Science Meetingand Exhibit.

[3] GOLUB, G. H., AND VAN LOAN, C. F. Ma-
trix Computations. The John Hopkins University
Press, 1989.

[4] HULTQUIST, J. P. M. Constructing stream sur-
face in steady 3d vector fields. In Proceeding of
Visualization ‘92 (1992), IEEE Computer Soci-
ety, pp. 171-178.

[5] HUNG, C.-M., AND BUNING, P. Simulation
of Ellunt-Fin Induced Shock Wave and Turbu-
lent Boundary Layer Separation, January. 1984.
AIAA Paper No. 84-0457, AIAA Aerospace Sci-
ence Conference.

[6] LOHNER, R., AND AMBROSIANO, J. A Vec-
torized Particle Tracer for Unstructured Grids.
Journal of Computational Physics 91 (1990), 22-
31.

[7] MA, K.-L., AND SMITH, P. Cloud Tracing
in Convection-Diffusion Systems. In Proceeding
of Visualization ‘93 Conference (October 1993),
pp. 253-260.

[8] MAVRIPLIS, D. Unstructured Mesh Algorithms
for Aerodynamic Calculations. In Proceeding of
the 13th Int. Conference on Numerical Meth-
ods in Fluid Dynamics (1992), Springer-Verlag,
pp. 62-68.

[9] PAGENDARM, H.-G., AND WALTER, B. Feature
Detection from Vector Quantities in a Numeri-
cally Simulated Hypersonic Flow Field in Com-
bination with Experimental Flow Visualization.
In Proceeding of Visualization ‘94 (1994), IEEE
Comlputer Society, pp. 117-123.

PO1 s CHIROEDER, w. J., VOLPE, c. R., AND
LORENSEN, W. E. The Stream Polygon: A Tech-
nique for 3D Vector Field Visualization. In Pro-
ceeding of Visualization ‘91 (1991), IEEE Com-
puter Society, pp. 126-132.

[ll] VENNARD, J., AND STREET, R. Elementary
Fluid Mechanics. John Wiley & Sons, Inc., 1975.

[12] VOLPE, G. Streamlines and Streamribbons in
Aero’dynamics, January 1989. AIAA Paper No.
89-0140, AIAA 27th Aerospace Science Meeting.

319

Proceedings of the 6th IEEE Visualization Conference (VISUALIZATION '95)
1070-2385/95 $10.00 © 1995 IEEE

(4 (b)

Cd)

@I
Figure 7: Vector-field Visualization.

320

(0

Proceedings of the 6th IEEE Visualization Conference (VISUALIZATION '95)
1070-2385/95 $10.00 © 1995 IEEE

