
100 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 2, NO, 2> JUNE 1996

Construc

S h y h - K u a n g U e n g , Christopher Sikorski, and Kwan-Liu Ma, Member, /E€€

Abstract-Streamline construction is one of the most fundamental techniques for visualizing steady flow fields. Streamribbons and
streamtubes are extensions for visualizing the rotation and the expansion of the flow. This paper presents efficient algorithms for
constructing streamlines, streamribbons, and streamtubes on unstructured grids. A specialized Runge-Kutta method is developed to
speed up the tracing of streamlines. Explicit solutions are derived for calculating the angular rotation rates of streamribbons and the
radii of streamtubes. In order to simplify mathematical formulations and reduce computational costs, all calculations are carried out
in the canonical coordinate system instead of the physical coordinate system. The resulting speed-up in overall performance helps
explore large flow fields.

1 INTRODUCTION
TREAMLINES are paths of massless particles which are
released in a steady flow. Plotting of the particle paths

produces a streamline picture which allows engineers to
visualize fluid motion and to locate the regions of high and
low velocity and, from these, the zones of high and low
pressure. Additional information about the flow field, such
as local flow rotation and expansion, can be shown in the
form of a streamribbon and a streamtube.

Given a steady flow with velocity field ii(?(t)), a stream-
line can be calculated by solving the following ordinary
differential equation:

where t is the integration variable and is not to be confused
with time [l].

The path swept by a deformable line segment becomes a
streamribbon. Thus a streamribbon can reveal the transla-
tion, the angular rotation, and the rate of shear deformation
of the flow. Volpe 121 creates a streamribbon by tracing a
large number of adjacent streamlines. However, the num-
ber of streamlines needed to form smooth ribbon surfaces
could be tremendous and the corresponding computational
cost would be high. Therefore, in practice, the construction
is simplified, though some information such as shear de-
formation would be lost.

In [31, a stream-surface, which is similar to a streamribbon,
is generated by computing only a few streamlines and creat-
ing polygons between adjacent streamlines to form the sur-

* S . -K Ueng and C. Sikorski are with the Department of Computer Science,
University of Utah, Salt Lake City, UT 84112.
E-mail: iskueng, sikorski}@cs.utah.edu.

Engineeriug (ICASE), Mail S t o p 132C, NASA Langley Research Center,
Hampton, V A 23681. E-mail: kma@icase.edu.

e K.-L. Ma is with the Institutefor Computer Applications in Science and

For information on obtaining reprints of this article, please send e-mail to.
transvcg@computer.org, and reference IEEECS Log Number 1196016.

face of the stream-surface. This method requires complicated
algorithms to deal with convergence, divergence and split-
ting of a stream-surface. Darmofal and Haimes [41, Ma and
Smith [5], and Pagendarm [6] use one streamline and vectors
normal to the local velocity to form a streamribbon. In this
way, the resulting ribbons only represent the translation and
the angular rotation of the flow. We adopt their algorithms
by using two parallel edges to form a streamribbon.

Formally, a streamtube is defined as the surface formed
by all streamlines passing through a given closed curve in
the flow [l]. Streamtubes are used to visualize expansion,
contraction and deformation of the flow. In [41, a stream-
tube is created by connecting the circular crossflow sections
along a streamline. The radius of a cross flow section is de-
termined by the local cross flow expansion rate. The
streamtube constructed in this manner only reveals the
flow expansion rate along the streamline. Since this tech-
nique is more computationally feasible, we adopt it in this
work. In order not to be confused with the formal definition
of the streamtube concept, hereafter, we use the name iconic
stucamtube.

In [5], to visualize both flow convection and diffusion,
statistical dispersion of the fluid elements about a stream-
line is computed by using added scalar information about
the mean square root value of the vector field and its La-
grangian time scale. The result defines the radius of the
cross flow section and also forms a tube-like surface. In [7],
Schroeder et al. describe a technique called stream polygon
for visualizing local deformation and strain of the flow. In
their work, local flow field information is represented by
using a regular polygon which is perpendicular to the local
vector field. A streamtube can be generated by sweeping
the polygon along a streamline. The radius of the stream-
tube varies with the velocity magnitude, such that the mass
flow is a constant along the streamtube.

In this paper, we describe new computational methods
for fast streamline, streamribbon and iconic streamtube

1077-2626/96$05 00 01996 IEEE

mailto:sikorski}@cs.utah.edu
mailto:kma@icase.edu
mailto:transvcg@computer.org

UENG ET AL.: EFFICIENT STREAMLINE, STREAMRIBBON, AND STREAMTUBE CONSTRUCTIONS ON UNSTRUCTURED GRIDS 101

construction on unstiructured grids. We assume that all in-
put data cells are linear tetrahedra, which allows us to sim-
plify some of the formulations. Data cells of other types
must be decomposed into tetrahedra in a preprocessing
step. After the decomposition, the original vector field is
considered to be a piecewise linear vector field in the re-
sulting mesh. A method is illustrated in [8] to subdivide
hexahedral cells into tetrahedral cells.

In the finite element analysis, to achieve better computa-
tional efficiency, calculations are often done in the canoni-
cal coordinate system rather than in the physical coordinate
system. As further explained in the next section, cells in the
canonical coordinate system can be handled straightfor-
wardly since they are normalized and transformed to the
origin. In this work, we take the same approach. Test re-
sults show saving in both computational cost and memory
requirements when compared to results from our previous
research [9] which takes the the opposite approach. How-
ever, the results reported by Sadarjoen et al. [lo] show oth-
erwise. The main reason is that their test data are hexahe-
dron cells instead of tetrahedron cells. For deformed hexa-
hedra, the coefficients of the coordinate transformation
function cannot be accurately calculated by using simple
differencing methods;. In order to improve accuracy, more
sophisticated methods, thus more computationally expen-
sive, must be used.

Our algorithms consist of the following steps:
choose an initial point in the physical coordinate system.
find the cell containing the initial point.
transform the point to the canonical coordinate system.
while the streamline construction is not completed, do:
* compute the next point along the particle path.

for the streamribbon or the iconic streamtube con-
struction, additional calculations are carried out.

* calculate ancl store the physical coordinates of the
new results.

* locate the cell containing the point calculated in
this step.

For generating particle paths, a specialized version of the
fourth-order Runge-Kutta method (SRK4) is developed
which requires only one matrix-vector multiplication and one
vector-vector addition to calculate a new streamline point.
The angular rotation rate of streamribbons and the radius of
iconic streamtubes are governed by ordinary differential
equations which were solved numerically in the past. Explicit
solutions of these equations are now derived to speed up the
construction of streamribbons and iconic streamtubes. Test
results show our algorithms result in significant improve-
ment in performance over traditional algorithms.

2 COORDINATE TRANSFORMATION
We assume that the edges of the cells are straight line seg-
ments. Therefore, a cell is a linear tetrahedron in both coor-
dinate systems, and each canonical coordinate is regarded
as a linear polynomial of the physical coordinates. The co-
ordinate transformation function can be formulated as:

< = T * Z + k ,

a00 a01 a02
= [;;: ;;J,

(2)

where 5? is a physical coordinate vector and 5 = [<, 17, cl' is
the canonical coordinate vector of I. As depicted in Fig. 1,
after the coordinate transformation, the first vertex of the
cell is located at the origin, and the other three vertices are
located one unit away along the three axes, 5, ?,7, and & of
the canonical coordinate system.

T
= [ko k, k 2] I

s Transformation -lp(I

0 1 5 X

Physical Coordinates Canonical Coordinates

Fig. 1. Coordinate system transformation.

On the other hand, the physical coordinates can be rep-
resented as linear functions of the canonical coordinates,
too. Without loss of generality, we assume that the vertices
of the original cell are ordered as those of the unit cell in
Fig. 2. The inverse coordinate transformation function can
be expressed as:

Z = (1 - < - 7 7 - i) * 5 ? , + < * 5 ? * + 7 7 * Z . 2 + i * ~ 3 , (3)

where (, 7, and {are the canonical coordinates and Zi , i = 0,
..., 3 are the physical coordinates of the four vertices.

vertex 1 5
vertex0

Fig. 2. Unit tetrahedral cell in canonical coordinate system.

3 VECTOR FIELD INTERPOLATION
When calculating streamlines in the canonical coordinate
system, the velocity field might be transformed from the
physical coordinate system to the canonical coordinate
system before the calculation is taken place [lll. However,
in our work, the velocity field is not transformed. Instead, a

102 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 2, NO. 2, JUNE 1996

new governing equation of streamlines is deduced in the
next section to accommodate the change of coordinate sys-
tem. Therefore, the three components of the original vector
field are treated as three linear functions of the canonical
coordinates directly. Referring to the unit cell shown in Fig. 2,
the interpolation function of the velocity field can be for-
mulated as:

G * (E) = (l - < - q - <) * G o + (* G,+q i U * + < i 2 3

where 5, 7, and care the canonical coordinates, and ii,,
i = 0, ..., 3 are the velocity field values at the vertices. The
interpolation function can be expanded as:

2 = [Uo U" (4)

The elements of the matrix B can be computed directly
since the vector field values are stored at all vertices.

4 STREAMLINE CONSTRUCTION
Since the velocity field is not transformed from the physical
coordinate system to the canonical coordinate system, the
original governing equation of streamlines defined in the
physical coordinate system needs to be modified. By differ-
entiating both sides of (2) and applying (11, we have:

From (2), the above equation can be rewritten as:

= T * ii * (t))
where ii * is the vector field in the canonical coordinate
system, which is defined in (4). Therefore the governing
equation of streamlines can be written as:

= c * z + z . (5)

To solve (5), the fourth-order Runge-Kutta method is
usually applied. After obtaining a new point on the stream-
line, the cell containing this point needs to be located for
further calculation. A cell-searching method is described in
the next section. In addition, the physical coordinates of the
new point are computed by using (3). The physical coordi-

nates are used for constructing a graphical representation of
the streamline. After identifying the cell, the calculation of
the streamline can be continued. This procedure is repeated
until the streamline reaches a physical boundary or the
number of time steps exceeds a pre-defined limit.

4.1 Cell Searching
It is not a straight forward task to identify the cell contain-
ing a given streamline point. We use an algorithm pre-
sented in [12] to solve this cell searching problem. After a
new streamline point is calculated in the canonical coordi-
nate system, the cell containing this point can be located
based on the following rules:

If all the canonical coordinates belong to the interval
[0,1], and their sum (5 + 7 + 0 is less than or equal to
1, the point is resident in the current cell and the cell
searching is completed.
If any one of the canonical coordinates is less than 0,
the searching continues in the neighboring cell which
is in the half space where the canonical coordinate is
negative.
Otherwise, the neighboring cell with coordinate sum
greater than 1 is selected to replace the current cell
and the searching continues.

two-dimensional example is shown in Fig. 3.

Fig. 3. Cell searching in 2D canonical coordinate system

4.2 Step Size
In order to integrate a streamline, we need to select a proper
discretization step size. In [13], Buning proposed a method to
calculate the step size for streamline construction. In his
method, the step size is determined by the cell size and the
inverse of the velocity vector magnitude. We adopt a similar
method to compute the step size in the canonical coordinate
system. In our algorithm, we make the distance between two
consecutive streamline points in the canonical coordinate
system be less than 1, which is the shortest edge of the unit
cell in Fig. 2. Assume that the step size is h, the flow velocity
values at the four vertices are li,, li1, l i2, and l i3. Based on (5),
the step size is determined by:

< 1,

UENG ET AL.: EFFICIENT STREAMLINE, STREAMRIBBON, AND STREAMTUBE CONSTRUCTIONS ON UNSTRUCTURED GRIDS 103

where 11 . [I2 is the 2-norm of the vector field. In order to sat-
isfy this inequality, we select:

1
k = min-

OG<3 T * e. II 1112

The step size h can be computed and stored for each cell
based on the local velocity field. In our implementation, a
global step size, which is equal to the minimum value of h
over all cells, is used for the streamline construction.

5 STREAMRIBBON AND ICONIC STREAMTUBE
CONSTRUCTION

A streamribbon has two edges. The first edge of a stream-
ribbon is the calculated streamline, and the second edge is
generated by connecting the end points of the normal vec-
tors of the streamline. The normal vectors are calculated by
rotating a constant length vector about the streamline at
each point of the streamline. The constant length vector can
be any vector which is orthogonal to the streamline at the
initial point in the physical coordinate system. Since the
streamline construction is performed in the canonical coor-
dinate system, the constant normal vector is transformed
into the canonical coordinate system and rotated there. Af-
ter being rotated, the normal vector is transformed back to
the physical coordinate system.

The surface of the streamribbon is formed by connecting
the end points of the normal vectors and their corresponding
points on the streamline. An example is depicted in Fig. 4. The
angle of rotating the constant length vector is governed by:

d 0 1
2

- dt = -(w .S),

(6)

where B is the rotation angle. Equations (6) and (5) are
solved stepwise when constructing a streamribbon.

Normal Veclor

Streamline
X(1-11 XU)

Fig. 4. Example of streamribbon construction.

An iconic streamtube is created by generating a stream-
line and by connecting the circular crossflow sections along
the streamline. The radius of an iconic streamtube, Y, is
governed by the following ordinary differential equation:

1 dr 1
r d t 2
_ _ = -v, . * ' (7)

where V r .
fined as:

* is the local cross flow divergence and is de-

along the streamline. This ordinary differential equation
says that the change rate of the local flow volume is
equivalent to the local flow divergence. Equations (5) and
(7) are solved stepwise when constructing an iconic
streamtube. Equation (5) is used to calculate the center of
the tube, while (7) is used to calculate the tube radius. Fig. 5
contains an example of constructing an iconic streamtube.

Circular Crossflow Section

Fig. 5. Example of iconic streamtube construction.

5.1 The Curl and Divergence of the Vector Field
In the canonical coordinate system, the partial derivative d f

of a linear function f in a unit cell can be calculated by using
the following equation:

_ - af h-fo
a< -m

= fl - f0 l

where fo and fi are the function values at vertices 0 and 1 of
the cell, respectively, and to and t, are the 5 coordinates of
these two vertices. By applying the same deduction steps,
we have:

where f2 and f3 are the function values at vertices 2 and 3.
Assume ii* = [u*,v*,w*JT is the vector field defined in the
canonical coordinate system. Equation (4) implies:

in which represents the change of velocity magnitude

104 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 2, NO. 2, JUNE 1996

6 NEW COMPUTATIONAL METHODS Therefore,

In order to create streamlines, streamribbons and iconic
streamtubes, we need to solve the ordinary differential
equations mentioned in the previous sections. Based on the
interpolation functions of a linear tetrahedral cell, we de-
velop explicit solutions of the ordinary differential equa-
tions to speed up the computation.

6.1 A Specialized Version of the Runge-Kutta

The governing equation of a streamline in canonical coor-
dinate system, as given in (5), is:

Method

- = f (< , t) = c * t + z
dt

The fourth-order Runge-Kutta method is given by:
1

F, = k f (t , t) ,

t (t + k) = t (t) + Z(F, + 2F2 + 2F3 + F4),

F2 = kf(< + F1/2 , t + k /2) ,

F3 = k f (t + F2/2 , t + h/2) ,

F4 = k f (t + F3, t + k).

By replacing f with C * 5 + Z, F1, F2, F3, and F4 can be ex-
panded as:

t(t + k) = H,t (t) + Z,, (10)

where

(kc)' (kC)3 (/ z C) ~
H, = I + k C + T + - + - 3 ! 4! '

e, = k I+-+- - [2 ! 3 !

Since C and Z are constants, HI and Z1 can be calculated by
using Horner's algorithm 1141 and stored in the preproc-
essing stage. Hereafter the computations of the fourth-order
Runge-Kutta method require only a matrix-vector multipli-
cation and a vector-vector addition.

6.2 Explicit Solution for Computing the Angular
Rotation Rate

The angular rotation rate is governed by the ODE formu-
lated in (6). Since the velocity ii * is linear within a cell, the
curl of ii * is a constant vector, which can be calculated by
using (9):

F1 = k f (<, t) By using the Trapezoid rule, (6) can be solved explicitly:

= h(C< + Z),
F2 = h f (t + F1/2, t + k /2)

= k(C(< + F1/2) + Z)
= (h2C/2 + h) (C t + z),

F3 = kf(? + F 2 / 2 , t + k / 2)

= k(C(< + F,/2) + Z)

= (h3 C 2 / 4 + h2 C / 2 + k)(CE + 2). where go) is the rotation angle at the previous time step,
f l k) is the rotation angle at the current time step, ii * (<,I is

F4 = hf(t + F3, t + h)

= k(C@ + F3) + 2)

= (k4 C3/4 + k 3 C 2 / 2 + k2C + k)(C< + 2).

the velocity at the current time step, ii * (Z0) is the velocity
at the previous time step, and k is the time step size. This
closed form solution is used to compute the rotation angle
of the normal vector about the streamline. The only un-
known values involved in this solution are ii * (th) and its
velocity magnitude. Once a new point th of a streamline is
computed, ii * (E h) can be calculated by using (4). The major
computational costs of this solution include a vector field
interpolation, a vector-vector addition and a vector inner

By using these equations, the Runge-Kutta method can be
expressed as:

1
t (t + k) = <(t) + z(F, + 2F2 + 2F3 + F4)

product.

6.3 Explicit Solution for Computing the Radius
\ /

The governing equation of the iconic streamtube radius is
shown in (7). This ODE can be solved analytically:

UENG ET AL.: EFFICIENT STREAMLINE, STREAMRIBBON, AND STREAMTUBE CONSTRUCTIONS ON UNSTRUCTURED GRIDS

From (8), the divergence of 2 * is a constant:
V . U" = bo, + b,, + b,,,

and

d5' = U " ' d t .

Therefore,

where rll is the iconic streamtube radius at the current step,

yo is the radius at the previous step, and u0 and uh are the
velocity magnitudes at the previous step and the current
step. Since there is no unknown value in the right hand side
of the equation, the cost of calculating yh is composed of
only a few scalar multiplications and two function calls.
From this equation, we can see that faster velocity results in
a smaller radius. For incompressible flow, where the diver-
gence of the velocity is zero, our result is equivalent to that
obtained in 171.

*' *'

7 IMPLEMENTATIONI
The major data structures of our program contain a list of
cell records and a list of vertex records. To further speed up
the computation, we precompute and store the connectwi-
ties among data cells along with the coefficients of the co-
ordinate transformation function and the coefficients of the
specialized Runge-Ku tta method. Consequently, a cell rec-
ord contains the coefficients of the coordinate transforma-
tion function, the coefficients of the specialized Runge-
Kutta method, the four vertex indices of this cell, and the
four indices of cells which are adjacent to this cell. Thus 24
floats and eight integers are stored in a cell record, and the
size of a cell record is 128 bytes. The values stored in a ver-
tex record include thLe physical coordinates of the vertex
and the velocity value at the vertex.

In order to study the performance of the specialized
Runge-Kutta, SRK4, method, we have also implemented the
second-order, RK2, and the fourth-order, RK4, methods.
The cell connectivity information and the coordinate trans-
formation function used in the SRK4 method are also used
by the RK2 and the R.K4 methods to make the comparison
fair. Thus 12 floats and eight integers are stored in a cell

105

record for the RK2 and the RK4 methods. ThLe size of a cell
record is 80 bytes.

8 TEST RESULTS
Three data sets are used in our testing. The first data set is
artificially created. It contains 68,921 vertices uniformly
positioned in a cube and 320,000 tetrahedra. The memory
requirement for this data set is about 40 MI-ga-bytes. The
vector field at a vertex is calculated by evaluating three lin-
ear functions:

U(X, y, 2) = -0 .5~ - 6.0y,
V(X, y, 2) = 6 . 0 ~ - 0.5y,

W (X , y, Z) = -2.02 + 20.5.

The second data set is the blunt fin data set provided by re-
searchers at the NASA Ames Research Center. It is generated
from a computational fluid dynamics simulation of air flow
over a flat plate with a blunt fin rising from the plate. The
flow is symmetrical about a plane through the center of the
fin, so only one half of the complete geometry is present.
Note that the data set is originally on a structured curvilinear
grid. We convert it into an unstructured grid by splitting
each hexahedron into six tetrahedra. The resulting un:jtruc-
tured-grid data set contains 224,874 tetrahedral cells and
40,960 vertices. This data set requires 28 Mega-bytes memory
space. The third data set is provided by Dr. Mavriplis ,at IC-
ASE. It is obtained from a computational fluid dynamics
simulation of transonic flow about an ONERA.-M6 wing. The
free-stream Mach number equals 0.84, and the angle of attack
is 3.06 degree:;. There are 287,962 tetrahedral cells and 53,961
vertices in this data set. The memory requirement for this
data set is about 36 Mega-bytes.

Each test begins by randomly selecting one hundred ini-
tial points. Then the corresponding streamllines are con-
structed. The maximum number of time :steps for each
streamline construction is set to 5,000. An IBM RS-6000
Model 560 workstation is used for our testing,.

8.1 Canonical Coordinate System Versus Physical

In our previous research [9], similar formulations were
used but most of the calculations, except cell searching,
were carried out in the physical coordinat'e system. It is
interesting to compare computational cost between the new
and the old implementations of the SRK4 method. In the
old implementation, the size of a cell record is 176 bytes. In
the new implementation the size of a cell record is reduced
to 128 bytes. To derive accurate numbers for comparing the
performance of the SRK4 method in the two different coor-
dinate systems, we have rerun the tests for the previous
implementation by using a more careful timing procedure.
The average cost of computing one strea:mline point is
measured for the two SRK4 programs. This average cost
includes the calculation of the coordinates of a streamline
point, the cell searching operation and the co'ordinate trans-
formation. TFie timing results, in ,LE, are giver1 in Table 1.

Coordinate System

106 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 2, NO. 2, JUNE 1996

time @Is})
data set 1
data set 2
data set 3

Canonical Coord. Physical Coord.
11.53 22.16
10.46 17.49
13.28 17.43

The new SRK4 program is always faster than the old
SRK4 program. We find that the cell searching operation
makes the old program slower. About 60% more searching
is done by the old SRK4 implementation. In the new im-
plementation, streamline points are calculated in the ca-
nonical coordinate system. Based on the canonical coordi-
nates of a streamline point, it is easier to verify whether a
new cell should be searched. Therefore unnecessary cell
searching calculation is avoided.

8.2 SRK4 Method Versus RK4 and RK2 Methods
The execution times, in seconds, of constructing from 1 to
100 streamlines by using the SRK4, the RK4, and the RK2
methods are plotted in Figs. 6, 7, and 8. The execution time
includes the cost of streamline point calculation, cell
searching and coordinate transformation. To make the
comparison fair, the RK2 and the RK4 programs are im-
plemented based on the framework of the SRK4 program.
That is, all information used by the SRK4 program is also
used in the RK2 and the RK4 programs. Some effort is un-
dertaken to optimize the RK2 and RK4 implementation; for
example, if the computations at the current step and the
previous step occur in the same cell, all interpolation func-
tion coefficients calculated for the previous step are reused
in the computation of the current step.

15

10

-
U

m
I

2
.ri

5

I I I I I

RK4 +
RK2 L

RK4 +

0 2 0 4 0 60 80 1 o c
Number of Streamlines

Fig. 6. Timing of constructing streamlines on data set 1.

1 5 r - - - - - - S R K 4 +

0 2 0 4 0 E O 80 100
Number of Streamlines

Fig. 7. Timing of constructing streamlines on data set 2

I I I I I

RK4
RK2 L

:RK4 +

0 2 0 4 0 E 0 80 100
Number of Streamlines

Fig. 8. Timing of constructing streamlines on data set 3.

Since the major function evaluations of all three methods
are of the same kind, i.e., matrix-vector multiplication, we
can predict their performance by counting the number of
function evaluations used in each method. For calculating a
new point in a streamline, only one function evaluation is
needed for the SRK4 method, while four function evalua-
tions are needed for the RK4 method and two function
evaluations are needed for the RK2 method. Therefore, the
SRK4 method is supposed to be faster than the RK2 method
by a factor of 2.0, and faster than the RK4 method by a fac-
tor of 4.0. Since the costs of cell searching and coordinate
transformation are included in the cost, and the RK2 and

UENG ET AL.: EFFICIENT STREAMLINE, STREAMRIBBON, AND STREAMTUBE CONSTRUCTIONS ON UNSTRUCTURED GRIDS

~

107

the RK4 programs are optimized to avoid unnecessary cal-
culation, the performance of the SRK4 method depicted in
the figures is not that much better. However, it is still at
least 1.7 times faster than the RK2 method and 2.5 times
faster than the RK4 method. The average cost of computing
a streamline point is presented in Table 2.

TABLE 2
EXECUTION TIME OF A SINGLE TIME STEP
OF SRK4 AND RK2 AND RK4 METHODS

We also implemented the RK2 and the RK4 methods
without optimization, i.e. all interpolation function coeffi-
cients are re-calculated at each step. Test results of these
two methods are compared with those of the SRK4 method
and shown in Fig. 9 for the first data set. According to the
results, the SRK4 prop,ram is now much faster than the RK2
and the RK4 programs. Specifically, the SRK4 method is at
least 4 times faster than RK2 method and 5 times faster than
RK4 method. Table 3 shows the average cost of a single slep
computation. The purpose of this test is to reveal the supe-
riority of the SRK4 inethod over the RK2 and the RK4
methods in an extreme situation, in which no two consecu-
tive points of a streamline locate at the same cell.

35

3 0

2 5

U 20
1

U1
I

2
E 15
-4

10

5

I I I I I

P
RK4 +
RK2 L
RK4 +
RK4 +
RK2 L
RK4 +

0 20 40 60 80 100
N u m b e r of Streamlines

Fig. 9. Testing results by using data set 1 with nonoptimized codes.

TABLE 3
EXECUTION TIME OF A SINGLE STEP OF THE SRK4,

(NONOPTIMIZED) RK2 AND (NONOPTIMIZED) RK4 METHODS

data set 1 11.53 49.44 55.44
data set 2 10.46 48.49 54.73
data set 3 10.48 49.41 55.69

time @{.SI)

8.3 Visualization Results
Some visualization results generated by our programs are
displayed in the two color plates. The upper left image in
Plate 1 shows, a streamribbon visualization od the first data
set. In this image, the streamribbons spiral toward a ciritical
point which is a saddle point in the vector field. The
streamribbons are colored according to velocity magni-
tudes. The upper right image shows an iconic streamtube
visualization of the same data set. This image reveals not
only the rotation of the flow but also the expansion and
contraction of the flow. The streamribbon and iconic
streamtube visualization of the blunt fin data set are shown
in the lower half of Plate 1. Some irregular flow movements
have been revealed near the vertical boundary of the physi-
cal domain.

The pair of the images in the upper half of Plate 2 dis-
play the streamribbon and iconic streamtube visualimtion
of the ONERA-M6 wing data set. We can see that the flow
rotates around the wing tip while it moves smoothly klefore
and after pas:sing of the wing tip. Finally, the bottom two
images in Plate 2 show the streamribbon and the iconic
streamtube images of a fourth data set provided by re-
searchers at the NASA Langley Research Ce:nter. This data
set is generated from a computational fluid dynamics
simulation of flow about a wing with a trailing-edge flap in
a wind tunnel. There are about two million cells in this, data
set. Fifty Streamlines are constructed by using fifty initial
points which are randomly selected in the physical domain.
From this image, we can see that the flow pattern is
changed when the flow passes above the deflected trailing-
edge flap. A secondary flow that takes place through the
gap between the wing and the flap is showrl in this image
too. For a large data set containing several millions of cells,
a large number of streamlines can be traced and stored in a
batch mode or by using a parallel computer. Researchers
then examine the stored streamlines using an interactive
viewer.

9 CONCLUSIONS
The plotting of streamlines is an effective way of visualiz-
ing fluid motion in steady flow. We derive a new computa-
tional method which greatly simplifies the conventional
fourth-order Runge-Kutta method. Explicit solutions are
derived for computing the angular rotation rate of flow and
the flow expinsion rate to speed up the construction of
streamribbons and iconic streamtubes, respectively. In or-
der to simplify mathematical formulations, reduce memory
usage and further improve the performance of our special-
ized RK4 method, the computation is performed in the ca-
nonical coordinate system instead of the physical coordi-
nate system. These new computational methods and their
implementation are evaluated by using three data sets. Test
results show that the SRK4 method is indeed superior to
the more conventional methods. Moreover, the explicit so-
lutions derived also significantly reduce the overall execu-
tion time.

While we have improved particle tracing calculations,
the computational and memory requirements of tracing in a
large data set are high. For example, when using our algo-

108 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 2, NO. 2, JUNE 1996

rithm, a data set of three million cells would take over 350
megabytes of memory. For such a data set which do not fit
into the main memory of an average workstation, we have
developed an out-of-core tracing strategy with which all
data are stored on disk and only a subset of the data is
loaded into the main memory upon demand. A prototype
implementation of the out-of-core approach demonstrates
interactive particle tracing in very large data sets on a 64-
megabyte workstation. On the other hand, if a parallel
computer is available, both data and tracing can be distrib-
uted to multiple processors.

ACKNOWLEDGMENTS
This work has been supported in part by the Advanced
Combustion Engineering Research Center and the National
Aeronautics and Space Administration under NASA con-
tract NAS1-19480. Thanks go to the anonymous reviewers
who provided many useful suggestions on ways to im-
prove the manuscript.

REFERENCES
111

PI

131

[41

151

161

171

181

191

1101

1111

1121

1131

t141

J.K. Vennard and R.L. Street, Elementary Fluid Mechanics. John
Wiley & Sons, 1975.
G. Volpe, ”Streamlines and Streamribbons in Aerodynamics,”
P m c . AIAA 27th Aerospace Science Meeting, Reno, Nev., Jan. 1989.
J. Hultquist, ”Interactive Numerical Flow Visualization Using
Stream Surfaces,” PhD thesis, Univ. of North Carolina, Chapel
Hill, Technical Report TR95-014,1995.
D. Darmofal and R. Haimes, “Visualization of 3-D Vector Fields:
Variations on a Stream,” PYOC. A I A A 30th Aerospace Science Meeting
and Exhibit, Reno, Nev., Jan. 1992.
K.-L. Ma and P.J. Smith, ”Cloud Tracing in Convection-Diffusion
Systems,” Proc. Visualization ’93 Coni., pp. 253-260. IEEE CS Press,
1993.
H.-6. Pagendarm and B. Walter, ”Feature Detection from Vector
Quantities in a Numerically Simulated Hypersonic Flow Field in
Combination with Experimental Flow Visualization,” Proc. Visu-
alization ’94 Conf., pp. 117-123. IEEE CS Press, 1994.
W.J. Schroeder, C.R. Volpe, and W.E. Lorensen, “The Stream
Polygon: A Technique for 3D Vector Field Visualization,” Proc.
Visualization ’91 Coizf., pp. 126-132. IEEE CS Press, 1991.
M.P. Garrity, “Raytracing Irregular Volume Data,” PYOC. Sniz Diego
Wor/tshop Volume Visiialization, pp. 35-40, San Diego, Dec. 1990.
S.K. Ueng, K. Sikorski, and K.-L. Ma, ”Fast Algorithms for Visu-
alizing Fluid Motion in Steady Flow on Unstructured Grids,”
Proc. Visualization ’95 Col$., pp. 313-320. IEEE CS Press, 1995.
A. Sadarjoen, T. van Walsum, A.J.S. Hin, and F.H. Post, ”Particle
Tracing Algorithms for Curvilinear Grids,” Proc. F i f t h Eurogvaphics
Workshop Visualization in Scientific Computing, Rostock, Germany,
May 1994.
B. Hamann, D. Wu, and R. Moorhead, ”Flow Visualization with
Surface Particles,” I E E E T ~ a n s . Visualization and Computev Gmphics,
vol. 1, no. 3, pp. 210-217, Sept. 1995.
R. Lohner and J. Ambrosiano, “A Vectorized Particle Tracer for
Unstructured Grids,”]. Computational Physics, vol. 91, pp. 22-31,
1990.
P. Buning, “Sources of Error in the Graphical Analysis of cfd Re-
sults,”]. Scientific Computing, vol. 3, no. 2, pp. 149-164, 1988.
G.H. Golub and C.F. van Loan, Matrix Computations. Johns Hop-
kins Univ. Press, 1989.

Shyh-Kuang Ueng received his BS from Soochow
University, Taipei, Taiwan, in 1985, and his MS
in computer science from National Taiwan Uni-
versity, Taipei, Taiwan, in 1988. He is currently
a PhD student in computer science at the Uni-
versity of Utah. His research interests include
scientific computing, scientific visualization, and
algorithms.

Christopher Sikorski holds the PhD degree
from the University of Utah in scientific compu-
tation with a special emphasis on computational
complexity and algorithm design. He is an asso-
ciate professor of computer science at the Uni-
versity of Utah. His research interests concen-
trate on parallel scientific computation, compu-
tational complexity for continuous problems, 3D
visualization algorithms, and applications in
computational fluid dynamics, combustion engi-
neering, and geophysics modeling.

Dr. Sikorski is the author or coauthor of two research monographs,
one lecture notes, numerous journal articles, and several papers in
conference proceedings. His graduate students are or were holding
positions at Columbia University, the University of Utah, Lehigh Uni-
versity, National Taiwan University, National Korean University, and
NASA Langley Research Center.

Kwan-Liu Ma received his BS, MS, and PhD
degrees in computer science from the University

of Utah. He is a staff scientist at the Institute of
Computer Applications for Science and Engi-

neering (CASE) and an adjunct assistant pro-
fessor of computer science at Old Dominion

University, where he teaches scientific visuali-
zation. His research interests include computer

graphics, scientific visualization, and parallel
and distributed computing. Dr. Ma is a member

of the IEEE, ACM, and Phi Kappa Phi.

UENG ET AL.: EFFICIENT S,TREAMLINE, STREAMRIBBON, AND STREAMTUBE CONSTRUCTIONS ON UNSTRUCTURED GRIDS

PLATE 1

109

