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Abstract-Streamline construction is one of the most fundamental techniques for visualizing steady flow fields. Streamribbons and 
streamtubes are extensions for visualizing the rotation and the expansion of the flow. This paper presents efficient algorithms for 
constructing streamlines, streamribbons, and streamtubes on unstructured grids. A specialized Runge-Kutta method is developed to 
speed up the tracing of streamlines. Explicit solutions are derived for calculating the angular rotation rates of streamribbons and the 
radii of streamtubes. In order to simplify mathematical formulations and reduce computational costs, all calculations are carried out 
in the canonical coordinate system instead of the physical coordinate system. The resulting speed-up in overall performance helps 
explore large flow fields. 

1 INTRODUCTION 
TREAMLINES are paths of massless particles which are 
released in a steady flow. Plotting of the particle paths 

produces a streamline picture which allows engineers to 
visualize fluid motion and to locate the regions of high and 
low velocity and, from these, the zones of high and low 
pressure. Additional information about the flow field, such 
as local flow rotation and expansion, can be shown in the 
form of a streamribbon and a streamtube. 

Given a steady flow with velocity field ii(?(t)), a stream- 
line can be calculated by solving the following ordinary 
differential equation: 

where t is the integration variable and is not to be confused 
with time [l]. 

The path swept by a deformable line segment becomes a 
streamribbon. Thus a streamribbon can reveal the transla- 
tion, the angular rotation, and the rate of shear deformation 
of the flow. Volpe 121 creates a streamribbon by tracing a 
large number of adjacent streamlines. However, the num- 
ber of streamlines needed to form smooth ribbon surfaces 
could be tremendous and the corresponding computational 
cost would be high. Therefore, in practice, the construction 
is simplified, though some information such as shear de- 
formation would be lost. 

In [31, a stream-surface, which is similar to a streamribbon, 
is generated by computing only a few streamlines and creat- 
ing polygons between adjacent streamlines to form the sur- 
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face of the stream-surface. This method requires complicated 
algorithms to deal with convergence, divergence and split- 
ting of a stream-surface. Darmofal and Haimes [41, Ma and 
Smith [5], and Pagendarm [6] use one streamline and vectors 
normal to the local velocity to form a streamribbon. In this 
way, the resulting ribbons only represent the translation and 
the angular rotation of the flow. We adopt their algorithms 
by using two parallel edges to form a streamribbon. 

Formally, a streamtube is defined as the surface formed 
by all streamlines passing through a given closed curve in 
the flow [l]. Streamtubes are used to visualize expansion, 
contraction and deformation of the flow. In [41, a stream- 
tube is created by connecting the circular crossflow sections 
along a streamline. The radius of a cross flow section is de- 
termined by the local cross flow expansion rate. The 
streamtube constructed in this manner only reveals the 
flow expansion rate along the streamline. Since this tech- 
nique is more computationally feasible, we adopt it in this 
work. In order not to be confused with the formal definition 
of the streamtube concept, hereafter, we use the name iconic 
stucamtube. 

In [5], to visualize both flow convection and diffusion, 
statistical dispersion of the fluid elements about a stream- 
line is computed by using added scalar information about 
the mean square root value of the vector field and its La- 
grangian time scale. The result defines the radius of the 
cross flow section and also forms a tube-like surface. In [7], 
Schroeder et al. describe a technique called stream polygon 
for visualizing local deformation and strain of the flow. In 
their work, local flow field information is represented by 
using a regular polygon which is perpendicular to the local 
vector field. A streamtube can be generated by sweeping 
the polygon along a streamline. The radius of the stream- 
tube varies with the velocity magnitude, such that the mass 
flow is a constant along the streamtube. 

In this paper, we describe new computational methods 
for fast streamline, streamribbon and iconic streamtube 
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construction on unstiructured grids. We assume that all in- 
put data cells are linear tetrahedra, which allows us to sim- 
plify some of the formulations. Data cells of other types 
must be decomposed into tetrahedra in a preprocessing 
step. After the decomposition, the original vector field is 
considered to be a piecewise linear vector field in the re- 
sulting mesh. A method is illustrated in [8] to subdivide 
hexahedral cells into tetrahedral cells. 

In the finite element analysis, to achieve better computa- 
tional efficiency, calculations are often done in the canoni- 
cal coordinate system rather than in the physical coordinate 
system. As further explained in the next section, cells in the 
canonical coordinate system can be handled straightfor- 
wardly since they are normalized and transformed to the 
origin. In this work, we take the same approach. Test re- 
sults show saving in both computational cost and memory 
requirements when compared to results from our previous 
research [9] which takes the the opposite approach. How- 
ever, the results reported by Sadarjoen et al. [lo] show oth- 
erwise. The main reason is that their test data are hexahe- 
dron cells instead of tetrahedron cells. For deformed hexa- 
hedra, the coefficients of the coordinate transformation 
function cannot be accurately calculated by using simple 
differencing methods;. In order to improve accuracy, more 
sophisticated methods, thus more computationally expen- 
sive, must be used. 

Our algorithms consist of the following steps: 
choose an initial point in the physical coordinate system. 
find the cell containing the initial point. 
transform the point to the canonical coordinate system. 
while the streamline construction is not completed, do: 
* compute the next point along the particle path. 

for the streamribbon or the iconic streamtube con- 
struction, additional calculations are carried out. 

* calculate ancl store the physical coordinates of the 
new results. 

* locate the cell containing the point calculated in 
this step. 

For generating particle paths, a specialized version of the 
fourth-order Runge-Kutta method (SRK4) is developed 
which requires only one matrix-vector multiplication and one 
vector-vector addition to calculate a new streamline point. 
The angular rotation rate of streamribbons and the radius of 
iconic streamtubes are governed by ordinary differential 
equations which were solved numerically in the past. Explicit 
solutions of these equations are now derived to speed up the 
construction of streamribbons and iconic streamtubes. Test 
results show our algorithms result in significant improve- 
ment in performance over traditional algorithms. 

2 COORDINATE TRANSFORMATION 
We assume that the edges of the cells are straight line seg- 
ments. Therefore, a cell is a linear tetrahedron in both coor- 
dinate systems, and each canonical coordinate is regarded 
as a linear polynomial of the physical coordinates. The co- 
ordinate transformation function can be formulated as: 

< = T * Z + k ,  

a00 a01 a02 
= [;;: ;;J, 

(2) 

where 5? is a physical coordinate vector and 5 = [<, 17, cl' is 
the canonical coordinate vector of I. As depicted in Fig. 1, 
after the coordinate transformation, the first vertex of the 
cell is located at the origin, and the other three vertices are 
located one unit away along the three axes, 5, ?,7, and & of 
the canonical coordinate system. 

T 
= [ko k, k 2 ]  I 

s Transformation -lp( I 

0 1 5  X 

Physical Coordinates Canonical Coordinates 

Fig. 1. Coordinate system transformation. 

On the other hand, the physical coordinates can be rep- 
resented as linear functions of the canonical coordinates, 
too. Without loss of generality, we assume that the vertices 
of the original cell are ordered as those of the unit cell in 
Fig. 2. The inverse coordinate transformation function can 
be expressed as: 

Z = ( 1 - < - 7 7 - i ) * 5 ? , + < * 5 ? * + 7 7 * Z . 2 + i * ~ 3 ,  (3) 

where (, 7, and {are the canonical coordinates and Zi , i = 0, 
..., 3 are the physical coordinates of the four vertices. 

vertex 1 5 
vertex0 

Fig. 2. Unit tetrahedral cell in canonical coordinate system. 

3 VECTOR FIELD INTERPOLATION 
When calculating streamlines in the canonical coordinate 
system, the velocity field might be transformed from the 
physical coordinate system to the canonical coordinate 
system before the calculation is taken place [lll. However, 
in our work, the velocity field is not transformed. Instead, a 
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new governing equation of streamlines is deduced in the 
next section to accommodate the change of coordinate sys- 
tem. Therefore, the three components of the original vector 
field are treated as three linear functions of the canonical 
coordinates directly. Referring to the unit cell shown in Fig. 2, 
the interpolation function of the velocity field can be for- 
mulated as: 

G * ( E ) = ( l - < - q - < )  * G o + (  * G,+q i U * + <  i 2 3 

where 5, 7, and care  the canonical coordinates, and ii,, 
i = 0, ..., 3 are the velocity field values at the vertices. The 
interpolation function can be expanded as: 

2 = [Uo U" (4) 

The elements of the matrix B can be computed directly 
since the vector field values are stored at all vertices. 

4 STREAMLINE CONSTRUCTION 
Since the velocity field is not transformed from the physical 
coordinate system to the canonical coordinate system, the 
original governing equation of streamlines defined in the 
physical coordinate system needs to be modified. By differ- 
entiating both sides of (2) and applying (11, we have: 

From (2), the above equation can be rewritten as: 

= T * ii * (t)) 
where ii * is the vector field in the canonical coordinate 
system, which is defined in (4). Therefore the governing 
equation of streamlines can be written as: 

= c * z + z .  (5 )  

To solve (5), the fourth-order Runge-Kutta method is 
usually applied. After obtaining a new point on the stream- 
line, the cell containing this point needs to be located for 
further calculation. A cell-searching method is described in 
the next section. In addition, the physical coordinates of the 
new point are computed by using (3). The physical coordi- 

nates are used for constructing a graphical representation of 
the streamline. After identifying the cell, the calculation of 
the streamline can be continued. This procedure is repeated 
until the streamline reaches a physical boundary or the 
number of time steps exceeds a pre-defined limit. 

4.1 Cell Searching 
It is not a straight forward task to identify the cell contain- 
ing a given streamline point. We use an algorithm pre- 
sented in [12] to solve this cell searching problem. After a 
new streamline point is calculated in the canonical coordi- 
nate system, the cell containing this point can be located 
based on the following rules: 

If all the canonical coordinates belong to the interval 
[0,1], and their sum ( 5  + 7 + 0 is less than or equal to 
1, the point is resident in the current cell and the cell 
searching is completed. 
If any one of the canonical coordinates is less than 0, 
the searching continues in the neighboring cell which 
is in the half space where the canonical coordinate is 
negative. 
Otherwise, the neighboring cell with coordinate sum 
greater than 1 is selected to replace the current cell 
and the searching continues. 

two-dimensional example is shown in Fig. 3. 

Fig. 3. Cell searching in 2D canonical coordinate system 

4.2 Step Size 
In order to integrate a streamline, we need to select a proper 
discretization step size. In [13], Buning proposed a method to 
calculate the step size for streamline construction. In his 
method, the step size is determined by the cell size and the 
inverse of the velocity vector magnitude. We adopt a similar 
method to compute the step size in the canonical coordinate 
system. In our algorithm, we make the distance between two 
consecutive streamline points in the canonical coordinate 
system be less than 1, which is the shortest edge of the unit 
cell in Fig. 2. Assume that the step size is h, the flow velocity 
values at the four vertices are li,, li1, l i2, and l i3. Based on (5), 
the step size is determined by: 

< 1, 
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where 11 . [I2 is the 2-norm of the vector field. In order to sat- 
isfy this inequality, we select: 

1 
k = min- 

OG<3 T * e. II 1112 

The step size h can be computed and stored for each cell 
based on the local velocity field. In our implementation, a 
global step size, which is equal to the minimum value of h 
over all cells, is used for the streamline construction. 

5 STREAMRIBBON AND ICONIC STREAMTUBE 
CONSTRUCTION 

A streamribbon has two edges. The first edge of a stream- 
ribbon is the calculated streamline, and the second edge is 
generated by connecting the end points of the normal vec- 
tors of the streamline. The normal vectors are calculated by 
rotating a constant length vector about the streamline at 
each point of the streamline. The constant length vector can 
be any vector which is orthogonal to the streamline at the 
initial point in the physical coordinate system. Since the 
streamline construction is performed in the canonical coor- 
dinate system, the constant normal vector is transformed 
into the canonical coordinate system and rotated there. Af- 
ter being rotated, the normal vector is transformed back to 
the physical coordinate system. 

The surface of the streamribbon is formed by connecting 
the end points of the normal vectors and their corresponding 
points on the streamline. An example is depicted in Fig. 4. The 
angle of rotating the constant length vector is governed by: 

d 0  1 
2 

- dt = -(w .S), 

(6) 

where B is the rotation angle. Equations (6) and ( 5 )  are 
solved stepwise when constructing a streamribbon. 

Normal Veclor 

Streamline 
X(1-11 XU) 

Fig. 4. Example of streamribbon construction. 

An iconic streamtube is created by generating a stream- 
line and by connecting the circular crossflow sections along 
the streamline. The radius of an iconic streamtube, Y, is 
governed by the following ordinary differential equation: 

1 dr 1 
r d t  2 
_ _  = -v, . * ' (7) 

where V r  . 
fined as: 

* is the local cross flow divergence and is de- 

along the streamline. This ordinary differential equation 
says that the change rate of the local flow volume is 
equivalent to the local flow divergence. Equations (5) and 
(7) are solved stepwise when constructing an iconic 
streamtube. Equation (5) is used to calculate the center of 
the tube, while (7) is used to calculate the tube radius. Fig. 5 
contains an example of constructing an iconic streamtube. 

Circular Crossflow Section 

Fig. 5. Example of iconic streamtube construction. 

5.1 The Curl and Divergence of the Vector Field 
In the canonical coordinate system, the partial derivative d f  

of a linear function f in a unit cell can be calculated by using 
the following equation: 

_ -  af h-fo 
a< -m 

= fl - f0 l  

where fo and fi are the function values at vertices 0 and 1 of 
the cell, respectively, and to and t, are the 5 coordinates of 
these two vertices. By applying the same deduction steps, 
we have: 

where f2 and f3 are the function values at vertices 2 and 3. 
Assume ii* = [u*,v*,w*JT is the vector field defined in the 
canonical coordinate system. Equation (4) implies: 

in which represents the change of velocity magnitude 
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6 NEW COMPUTATIONAL METHODS Therefore, 

In order to create streamlines, streamribbons and iconic 
streamtubes, we need to solve the ordinary differential 
equations mentioned in the previous sections. Based on the 
interpolation functions of a linear tetrahedral cell, we de- 
velop explicit solutions of the ordinary differential equa- 
tions to speed up the computation. 

6.1 A Specialized Version of the Runge-Kutta 

The governing equation of a streamline in canonical coor- 
dinate system, as given in (5), is: 

Method 

- = f ( < , t ) = c * t + z  
dt 

The fourth-order Runge-Kutta method is given by: 
1 

F, = k f ( t , t ) ,  

t ( t  + k )  = t ( t )  + Z(F, + 2F2 + 2F3 + F4), 

F2 = kf(< + F1/2 ,  t + k /2) ,  

F3 = k f ( t  + F2/2 ,  t + h/2) ,  

F4 = k f ( t  + F3, t + k). 

By replacing f with C * 5 + Z, F1, F2, F3, and F4 can be ex- 
panded as: 

t(t + k )  = H,t ( t )  + Z,, (10) 

where 

(kc)' (kC)3  ( / z C ) ~  
H, = I + k C + T + - + -  3 !  4! ' 

e, = k I+-+- - [ 2 !  3 !  

Since C and Z are constants, HI and Z1 can be calculated by 
using Horner's algorithm 1141 and stored in the preproc- 
essing stage. Hereafter the computations of the fourth-order 
Runge-Kutta method require only a matrix-vector multipli- 
cation and a vector-vector addition. 

6.2 Explicit Solution for Computing the Angular 
Rotation Rate 

The angular rotation rate is governed by the ODE formu- 
lated in (6). Since the velocity ii * is linear within a cell, the 
curl of ii * is a constant vector, which can be calculated by 
using (9): 

F1 = k f (<, t )  By using the Trapezoid rule, (6) can be solved explicitly: 

= h( C< + Z), 
F2 = h f ( t  + F1/2, t + k /2 )  

= k(C(< + F1/2) + Z) 
= (h2C/2 + h) (C t  + z), 

F3 = kf(? + F 2 / 2 ,  t + k / 2 )  

= k(C(< + F,/2) + Z) 

= (h3 C 2 / 4  + h2 C / 2  + k)(CE + 2). where go) is the rotation angle at the previous time step, 
f l k )  is the rotation angle at the current time step, ii * (<,I is 

F4 = hf( t  + F3, t + h)  

= k(C@ + F3) + 2) 

= ( k4  C3/4 + k 3  C 2 / 2  + k2C + k)(C< + 2). 

the velocity at the current time step, ii * (Z0) is the velocity 
at the previous time step, and k is the time step size. This 
closed form solution is used to compute the rotation angle 
of the normal vector about the streamline. The only un- 
known values involved in this solution are ii * (th) and its 
velocity magnitude. Once a new point th of a streamline is 
computed, ii * ( E h )  can be calculated by using (4). The major 
computational costs of this solution include a vector field 
interpolation, a vector-vector addition and a vector inner 

By using these equations, the Runge-Kutta method can be 
expressed as: 

1 
t ( t  + k )  = <(t) + z(F, + 2F2 + 2F3 + F4) 

product. 

6.3 Explicit Solution for Computing the Radius 
\ / 

The governing equation of the iconic streamtube radius is 
shown in (7). This ODE can be solved analytically: 
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From (8), the divergence of 2 * is a constant: 
V . U" = bo, + b,, + b,,, 

and 

d5' = U " ' d t .  

Therefore, 

where rll is the iconic streamtube radius at the current step, 

yo is the radius at the previous step, and u0 and uh are the 
velocity magnitudes at the previous step and the current 
step. Since there is no unknown value in the right hand side 
of the equation, the cost of calculating yh is composed of 
only a few scalar multiplications and two function calls. 
From this equation, we can see that faster velocity results in 
a smaller radius. For incompressible flow, where the diver- 
gence of the velocity is zero, our result is equivalent to that 
obtained in 171. 

*' *' 

7 IMPLEMENTATIONI 
The major data structures of our program contain a list of 
cell records and a list of vertex records. To further speed up 
the computation, we precompute and store the connectwi- 
ties among data cells along with the coefficients of the co- 
ordinate transformation function and the coefficients of the 
specialized Runge-Ku tta method. Consequently, a cell rec- 
ord contains the coefficients of the coordinate transforma- 
tion function, the coefficients of the specialized Runge- 
Kutta method, the four vertex indices of this cell, and the 
four indices of cells which are adjacent to this cell. Thus 24 
floats and eight integers are stored in a cell record, and the 
size of a cell record is 128 bytes. The values stored in a ver- 
tex record include thLe physical coordinates of the vertex 
and the velocity value at the vertex. 

In order to study the performance of the specialized 
Runge-Kutta, SRK4, method, we have also implemented the 
second-order, RK2, and the fourth-order, RK4, methods. 
The cell connectivity information and the coordinate trans- 
formation function used in the SRK4 method are also used 
by the RK2 and the R.K4 methods to make the comparison 
fair. Thus 12 floats and eight integers are stored in a cell 
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record for the RK2 and the RK4 methods. ThLe size of a cell 
record is 80 bytes. 

8 TEST RESULTS 
Three data sets are used in our testing. The first data set is 
artificially created. It contains 68,921 vertices uniformly 
positioned in a cube and 320,000 tetrahedra. The memory 
requirement for this data set is about 40 MI-ga-bytes. The 
vector field at a vertex is calculated by evaluating three lin- 
ear functions: 

U(X, y, 2) = -0 .5~  - 6.0y, 
V(X, y, 2) = 6 . 0 ~  - 0.5y, 

W ( X ,  y, Z )  = -2.02 + 20.5. 

The second data set is the blunt fin data set provided by re- 
searchers at the NASA Ames Research Center. It is generated 
from a computational fluid dynamics simulation of air flow 
over a flat plate with a blunt fin rising from the plate. The 
flow is symmetrical about a plane through the center of the 
fin, so only one half of the complete geometry is present. 
Note that the data set is originally on a structured curvilinear 
grid. We convert it into an unstructured grid by splitting 
each hexahedron into six tetrahedra. The resulting un:jtruc- 
tured-grid data set contains 224,874 tetrahedral cells and 
40,960 vertices. This data set requires 28 Mega-bytes memory 
space. The third data set is provided by Dr. Mavriplis ,at IC- 
ASE. It is obtained from a computational fluid dynamics 
simulation of transonic flow about an ONERA.-M6 wing. The 
free-stream Mach number equals 0.84, and the angle of attack 
is 3.06 degree:;. There are 287,962 tetrahedral cells and 53,961 
vertices in this data set. The memory requirement for this 
data set is about 36 Mega-bytes. 

Each test begins by randomly selecting one hundred ini- 
tial points. Then the corresponding streamllines are con- 
structed. The maximum number of time :steps for each 
streamline construction is set to 5,000. An IBM RS-6000 
Model 560 workstation is used for our testing,. 

8.1 Canonical Coordinate System Versus Physical 

In our previous research [9], similar formulations were 
used but most of the calculations, except cell searching, 
were carried out in the physical coordinat'e system. It is 
interesting to compare computational cost between the new 
and the old implementations of the SRK4 method. In the 
old implementation, the size of a cell record is 176 bytes. In 
the new implementation the size of a cell record is reduced 
to 128 bytes. To derive accurate numbers for comparing the 
performance of the SRK4 method in the two different coor- 
dinate systems, we have rerun the tests for the previous 
implementation by using a more careful timing procedure. 
The average cost of computing one strea:mline point is 
measured for the two SRK4 programs. This average cost 
includes the calculation of the coordinates of a streamline 
point, the cell searching operation and the co'ordinate trans- 
formation. TFie timing results, in ,LE, are giver1 in Table 1. 

Coordinate System 
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time @Is}) 
data set 1 
data set 2 
data set 3 

Canonical Coord. Physical Coord. 
11.53 22.16 
10.46 17.49 
13.28 17.43 

The new SRK4 program is always faster than the old 
SRK4 program. We find that the cell searching operation 
makes the old program slower. About 60% more searching 
is done by the old SRK4 implementation. In the new im- 
plementation, streamline points are calculated in the ca- 
nonical coordinate system. Based on the canonical coordi- 
nates of a streamline point, it is easier to verify whether a 
new cell should be searched. Therefore unnecessary cell 
searching calculation is avoided. 

8.2 SRK4 Method Versus RK4 and RK2 Methods 
The execution times, in seconds, of constructing from 1 to 
100 streamlines by using the SRK4, the RK4, and the RK2 
methods are plotted in Figs. 6, 7, and 8. The execution time 
includes the cost of streamline point calculation, cell 
searching and coordinate transformation. To make the 
comparison fair, the RK2 and the RK4 programs are im- 
plemented based on the framework of the SRK4 program. 
That is, all information used by the SRK4 program is also 
used in the RK2 and the RK4 programs. Some effort is un- 
dertaken to optimize the RK2 and RK4 implementation; for 
example, if the computations at the current step and the 
previous step occur in the same cell, all interpolation func- 
tion coefficients calculated for the previous step are reused 
in the computation of the current step. 

15 

10 

- 
U 

m 
I 

2 
.ri 

5 

I I I I I 

RK4 + 
RK2 L 

RK4 + 

0 2 0  4 0  60  80  1 o c  
Number of Streamlines 

Fig. 6. Timing of constructing streamlines on data set 1. 

1 5 r - - - - - -  S R K 4  + 

0 2 0  4 0  E O  80  100 
Number of Streamlines 

Fig. 7. Timing of constructing streamlines on data set 2 

I I I I I 

RK4 
RK2 L 

:RK4 + 

0 2 0  4 0  E 0  80 100 
Number of Streamlines 

Fig. 8. Timing of constructing streamlines on data set 3. 

Since the major function evaluations of all three methods 
are of the same kind, i.e., matrix-vector multiplication, we 
can predict their performance by counting the number of 
function evaluations used in each method. For calculating a 
new point in a streamline, only one function evaluation is 
needed for the SRK4 method, while four function evalua- 
tions are needed for the RK4 method and two function 
evaluations are needed for the RK2 method. Therefore, the 
SRK4 method is supposed to be faster than the RK2 method 
by a factor of 2.0, and faster than the RK4 method by a fac- 
tor of 4.0. Since the costs of cell searching and coordinate 
transformation are included in the cost, and the RK2 and 
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the RK4 programs are optimized to avoid unnecessary cal- 
culation, the performance of the SRK4 method depicted in 
the figures is not that much better. However, it is still at 
least 1.7 times faster than the RK2 method and 2.5 times 
faster than the RK4 method. The average cost of computing 
a streamline point is presented in Table 2. 

TABLE 2 
EXECUTION TIME OF A SINGLE TIME STEP 
OF SRK4 AND RK2 AND RK4 METHODS 

We also implemented the RK2 and the RK4 methods 
without optimization, i.e. all interpolation function coeffi- 
cients are re-calculated at each step. Test results of these 
two methods are compared with those of the SRK4 method 
and shown in Fig. 9 for the first data set. According to the 
results, the SRK4 prop,ram is now much faster than the RK2 
and the RK4 programs. Specifically, the SRK4 method is at 
least 4 times faster than RK2 method and 5 times faster than 
RK4 method. Table 3 shows the average cost of a single slep 
computation. The purpose of this test is to reveal the supe- 
riority of the SRK4 inethod over the RK2 and the RK4 
methods in an extreme situation, in which no two consecu- 
tive points of a streamline locate at the same cell. 

35 
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Fig. 9. Testing results by using data set 1 with nonoptimized codes. 

TABLE 3 
EXECUTION TIME OF A SINGLE STEP OF THE SRK4, 

(NONOPTIMIZED) RK2 AND (NONOPTIMIZED) RK4 METHODS 

data set 1 11.53 49.44 55.44 
data set 2 10.46 48.49 54.73 
data set 3 10.48 49.41 55.69 

time @{.SI) 

8.3 Visualization Results 
Some visualization results generated by our programs are 
displayed in the two color plates. The upper left image in 
Plate 1 shows, a streamribbon visualization od the first data 
set. In this image, the streamribbons spiral toward a ciritical 
point which is a saddle point in the vector field. The 
streamribbons are colored according to velocity magni- 
tudes. The upper right image shows an iconic streamtube 
visualization of the same data set. This image reveals not 
only the rotation of the flow but also the expansion and 
contraction of the flow. The streamribbon and iconic 
streamtube visualization of the blunt fin data set are shown 
in the lower half of Plate 1. Some irregular flow movements 
have been revealed near the vertical boundary of the physi- 
cal domain. 

The pair of the images in the upper half of Plate 2 dis- 
play the streamribbon and iconic streamtube visualimtion 
of the ONERA-M6 wing data set. We can see that the flow 
rotates around the wing tip while it moves smoothly klefore 
and after pas:sing of the wing tip. Finally, the bottom two 
images in Plate 2 show the streamribbon and the iconic 
streamtube images of a fourth data set provided by re- 
searchers at the NASA Langley Research Ce:nter. This data 
set is generated from a computational fluid dynamics 
simulation of flow about a wing with a trailing-edge flap in 
a wind tunnel. There are about two million cells in this, data 
set. Fifty Streamlines are constructed by using fifty initial 
points which are randomly selected in the physical domain. 
From this image, we can see that the flow pattern is 
changed when the flow passes above the deflected trailing- 
edge flap. A secondary flow that takes place through the 
gap between the wing and the flap is showrl in this image 
too. For a large data set containing several millions of cells, 
a large number of streamlines can be traced and stored in a 
batch mode or by using a parallel computer. Researchers 
then examine the stored streamlines using an interactive 
viewer. 

9 CONCLUSIONS 
The plotting of streamlines is an effective way of visualiz- 
ing fluid motion in steady flow. We derive a new computa- 
tional method which greatly simplifies the conventional 
fourth-order Runge-Kutta method. Explicit solutions are 
derived for computing the angular rotation rate of flow and 
the flow expinsion rate to speed up the construction of 
streamribbons and iconic streamtubes, respectively. In or- 
der to simplify mathematical formulations, reduce memory 
usage and further improve the performance of our special- 
ized RK4 method, the computation is performed in the ca- 
nonical coordinate system instead of the physical coordi- 
nate system. These new computational methods and their 
implementation are evaluated by using three data sets. Test 
results show that the SRK4 method is indeed superior to 
the more conventional methods. Moreover, the explicit so- 
lutions derived also significantly reduce the overall execu- 
tion time. 

While we have improved particle tracing calculations, 
the computational and memory requirements of tracing in a 
large data set are high. For example, when using our algo- 
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rithm, a data set of three million cells would take over 350 
megabytes of memory. For such a data set which do not fit 
into the main memory of an average workstation, we have 
developed an out-of-core tracing strategy with which all 
data are stored on disk and only a subset of the data is 
loaded into the main memory upon demand. A prototype 
implementation of the out-of-core approach demonstrates 
interactive particle tracing in very large data sets on a 64- 
megabyte workstation. On the other hand, if a parallel 
computer is available, both data and tracing can be distrib- 
uted to multiple processors. 
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