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Abstract 

Visualizing three-dimensional unstructured data from 
aerodynamics calculations is challenging because the as- 
sociated meshes are typically large in size and irregular 
in both shape and resolution. The goal of this research 
is to develop a fast, efficient parallel volume rendering 
algorithm for massively parallel distributed-memory su- 
percomputers consisting of a large number of very pow- 
erful processors. We use cell-projection instead of ray- 
casting to provide maximum flexibility in the data dis- 
tribution and rendering steps. Effective static load bal- 
ancing is achieved with a round robin distribution of 
data cells among the processors. A spatial partition- 
ing tree is used to guide the rendering, optimize the 
image compositing step, and reduce memory consump 
tion. Communication cost is reduced by buffering mes- 
sages and by overlapping communication with rendering 
calculations as much as possible. Tests on the IBM SP2 
demonstrate that these strategies provide high render- 
ing rates and good scalability. For a dataset containing 
half a million tetrahedral cells, we achieve two frames 
per second for a 400x400-pixel image using 128 proces- 
sors. 

Keywords: volume rendering, parallel algorithms, un- 
structured grids, scientific visualization, hierarchical 
data structures, load balancing, asynchronous commu- 
nication, message passing, distributed memory. 

1 Introduction 

Three-dimensional aerodynamics calculations often use 
unstructured meshes to model objects with complex ge- 
ometry. By applying finer meshes only to regions re- 
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quiring high accuracy, both computing time and storage 
space can be reduced. This adaptive approach results 
in computational meshes containing data cells which are 
highly irregular in both size and shape. The lack of a 
simple indexing scheme for these complex grids makes 
visualization calculations on such meshes very expen- 
sive. Furthermore, in a distributed computing environ- 
ment, irregularities in cell size and shape make balanced 
load distribution difficult as well. 

The development of massively parallel rendering al- 
gorithms for irregular data has received comparatively 
little attention. Notably, Williams [23] developed a cell- 
projection volume rendering algorithm for finite element 
data running on a singlle SGI multiprocessor worksta- 
tion. Uselton [21] designed a volume ray-tracing algo- 
rithm for curvilinear gricls on a similar platform. In both 
cases, tests were performed with up-to eight processors 
and high parallel efficiency was obtained. Challinger [2] 
developed a parallel volume ray-tracing algorithm for 
nonrectilinear grids ancl implemented it on the BBN 
TC2000, a multiprocessor architecture with up to 128 
nodes. Note that all three of these renderers used 
shared-memory programming paradigms. 

Giertsen and Petersen [8] designed a scanline vol- 
ume rendering algorithm for distributed-memory sys- 
tems based on Giertsen's previous sweep-plane ap- 
proach [7], and implemented it on a network of work- 
stations. In their approach the volume dataset is repli- 
cated on each workstation, and a master-slave scheme 
is used to dynamically baalance the load. However, tests 
were performed with a maximum of four workstations, 
so the scalability of the algorithm and its implemen- 
tation for massively parallel processing has yet to be 
demonstrated. 

In recent work, Silva, Michell and Kaufman [18] pre- 
sented a more elaborate approach for rendering general 
irregular grids. Evolving from Giertsen's sweep-plane 
algorithm, their new strategy is careful to exploit spatial 
coherence. The algorithm is potentially parallelizable 
but tests were only performed on a Sun UltraSPARC- 
1. In addition, Wilhelmis et al. [22] developed a hier- 
archical and parallelizable volume rendering technique 
for irregular and multiple grids. This algorithm favors 
coarse-grain parallelism for a shared-memory MIMD ar- 
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chitecture. 
Palmer and Taylor [16] devised a true distributed- 

memory ray-casting volume renderer for unstructured 
grids and demonstrated it on Intel’s 512-node Touch- 
stone Delta system. Their algorithm incorporated an 
adaptive screen-space partitioning scheme designed to 
reduce data movement caused by changes in the view- 
point. Another distributed-memory unstructured-grid 
renderer was developed by Ma [12] for the Intel Paragon. 
This algorithm uses a graph-based partitioner to keep 
nearby cells together on the same processor, providing 
good locality during the ray-cast resampling process. 
The algorithm is somewhat tedious to use for post- 
processing visualization applications because it requires 
both a preprocessing step to derive cell-connectivity 
information and a pre-partitioning step whenever the 
number of processors changes. 

Our current research is inspired by the trend to- 
ward larger numbers of processors in large-scale scien- 
tific computing platforms, as typified by the terascale 
architectures being installed for the U.S. Department of 
Energy’s ASCI program. To support applications which 
use these systems, we must develop visualization tools 
which are appropriate to the architectures. We focus 
on scalability and flexibility as two key design criteria. 
To address these issues, we propose a static load bal- 
ancing scheme coupled with an asynchronous c o m u -  
nication strategy which overlaps the rendering calcula- 
tions with transfer of ray segments. Our results indi- 
cate that this approach compares favorably with previ- 
ous unstructured-grid volume rendering algorithms for 
similar architectures. 

Another problem shared by many exieting visualiza- 
tion algorithms for unstructured data is the need for a 
significant amount of preprocessing. One step extracts 
additional information about the mesh, such as connec- 
tivity, in order to speed up later visualization calcula- 
tions. Another step may be needed to partition the data 
based on the particular parallel computing configura- 
tion being used (number of processors, communication 
parameters, etc.). To reduce the user “hassle factor” 
as much as possible and avoid increasing the data size 
or replicating data, we want to eliminate these prepro- 
cessing steps. While this provides flexibility and conve- 
nience, it also means less information is available for o p  
timizing the rendering computations. We have elected 
to sacrifice a small amount of performance in favor of 
enhanced usability. 

In the remainder of the paper, we describe the strate- 
gies we have developed to achieve both scalability and 
flexibility for volume rendering of unstructured data. 
We also present detailed experimental performance re- 
sults obtained with up to 128 nodes on an IBM SP2. We 
conclude with a discussion of plans for future work, in- 

iuriicate 
xhir 

processcjrs 

t 

Figure 1: The volume rendering pipeline. This proce- 
dure is replicated on each processor. 

cluding opportunities for improving the algorithms pre- 
sented here. 

2 Overview of the Algorithm 

Our new parallel rendering algorithm performs a se- 
quence of tasks as shown in Figure 1. The volume data 
is distributed in round robin fashion with the intention 
of dispersing nearby cells as widely as possible among 
processors. The image space is partitioned using a sim- 
ple scanline interleaving scheme. 

A preprocessing step then performs a parallel, syn- 
chronized partitioning of the volume data to produce 
a hierarchical representation of the data space. This 
spatial tree is used in the rendering step to optimize 
the compositing process and to reduce runtime memory 
consumption. 

To offer maximum freedom in data distribution, a 
cell-projection rendering method is used. However, data 
cells are not pre-sorted in depth order. Instead, each 
processor scan converts its local cells to produce many 
ray segments, which are routed to their final destin& 
tions in image space for merging. A double-buffering 
scheme is used in conjunction with asynchronous send 
and receive operations to reduce overheads and overlap 
communication of ray segments with rendering compu- 
tations. Scan conversion of data cells and merging of 
ray segments proceed together in multiplexed fashion. 
When scan conversion and ray-segment merging are fin- 
ished, each processor sends its completed subimage to 
a host computer which assembles them for display. A 
detailed description of each of the steps of the algorithm 
is given in the following sections. 
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3 Data Distribution 

Ideally, data should be distributed in such a way that ev- 
ery processor requires the same amount of storage space 
and incurs the same computational load. There are sev- 
eral factors which affect this. For the sake of concrete- 
ness, we assume meshes composed of tetrahedral cells; 
similar considerations apply to other types of unstruc- 
tured grids. First, there is some cost for scan convert- 
ing each cell. Variations in the number of cells assigned 
to each processor will produce variations in workloads. 
Second, cells come in different sizes and shapes. The 
difference in size can be as large as several orders of 
magnitude due to the adaptive nature of the mesh. As 
a result, the projected image area of a cell can vary 
dramatically, which produces similar variations in scan 
conversion costs. Furthermore, the projected area of a 
cell also depends on the viewing direction. Finally, voxel 
values are mapped to both color and opacity values. 
An opaque cell can terminate a ray early, thereby sav- 
ing further merging calculations, but introducing fur- 
ther variability in the workload. 

If ray-cast rendering were used, we would want to as- 
sign groups of connected cells to each processor so that 
the rendering process can be optimized by exploiting 
cell-to-cell coherence. But connected cells are often sim- 
ilar in size and opacity, so that grouping them together 
exacerbates load imbalances, making it very difficult 
to obtain satisfactory partitionings. We have therefore 
chosen to take the opposite approach, dispersing con- 
nected cells as widely as possible among the processors. 
Thus each processor is loaded with cells taken from the 
whole spatial domain rather than from a small neigh- 
borhood as shown in Figure 2. Satisfactory scattering of 
the input data can generally be achieved with a simple 
round robin assignment policy. With sufficiently many 
cells, the computational requirements for each proces- 
sor tend to average out, producing an approximate load 
balance. 

This approach also satisfies our requirement for flexi- 
bility, since the data distribution can be computed triv- 
ially for any number of processors, without the need for 
an expensive pre-processing step. 

By dispersing the grid cells among processors, we 
also facilitate a very important visualization operation 
for unstructured data-zoom-in viewing. Because of 
the highly adaptive nature of unstructured meshes, the 
most important simulation results are usually associated 
with a relatively small portion of the overall spatial do- 
main. The viewer normally takes a peek at the overall 
domain and then immediately focuses on localized re- 
gions of interests, such as areas with high velocity or gra- 
dient values. This zooming operation introduces chal- 
lenges for efficient visualization in a distributed comput- 

Figure 2: Local load imb(a1ances are reduced by process- 
ing cells from throughout the spatial domain. 

ing environment. First, locating all of the cells which 
reside within the viewing region can be an expensive 
operation. Our solution, described in the next section, 
is to employ a spatial partitioning tree to speed up this 
cell searching. Second, if data cells are distributed to 
processors as connected components, zooming in on a 
local region will result in severe load imbalances, as a 
few processors are left with all of the rendering calcula- 
tions while others go idle (Figure 3). 

An alternative approach is to distribute clusters of 
connected cells to each ]processor and hope that some 
data can be shared and some ray segments can be 
merged locally. This approach has several drawbacks. 
First, an appropriate heuristic must be found for de- 
termining the optimal cluster size. Second, the data 
must be preprocessed to compute cell connectivity in- 
formation. Finally, the (data must be partitioned in a 
way which preserves loca,lity and maintains a relatively 
balanced load across processors. The cost and inconve- 
nience of these additional steps can make this approach 
unattractive. 

Although the round-robin distribution discourages 
data sharing, our rendering algorithm only requires min- 
imum data-the cell and node information. No connec- 
tivity data are needed. Each cell takes 16 bytes to store 
four node indices and each node takes 16 bytes to store 
three coordinates and a scalar value. As a result, in the 
worst case of no sharing of any node information, 80n 
bytes of data must be transferred in order to distribute 
n cells to a processor. By way of example, distributing a 
dataset of 1 million cells across 128 processors requires 
an average of 640,000 bytes of data to be transferred to 
and stored at each processor. 
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Figure 3: Zoomed-in viewing results in severe load im- 
balances when connected cells are grouped together. 

In addition to the object space operations on mesh 
cells, we also need to evenly distribute the pixel-oriented 
ray-merging computations. Local variations in cell sizes 
within the mesh lead directly to variations in depth com- 
plexity in image space. Therefore we need an image 
partitioning strategy which disperses the ray-merging 
operations as well. In our current implementation, we 
assign successive scanlines to processors in round-robin 
fashion, a technique often known as scanline interleav- 
ing. This works reasonably well as long as the vertical 
resolution of the image is several times larger than the 
number of processors. With more processors, we conjec- 
ture that a finer-grained pixel interleave may be advan- 
tageous. At each pixel location, we maintain a linked 
list of ray segments, which are merged to form the final 
pixel value. The pixel merging process is described in 
more detail in subsequent sections. 

4 Space Partitioning Tree 

As described in the previous section, our round-robin 
data distribution scheme helps to achieve flexibility and 
produces an approximate static load balance. However, 
it totally destroys the spatial relationship between mesh 
cells, making an unstructured dataset even more irregu- 
lar. We would like to restore some ordering so that the 
rendering step may be performed more efficiently. 

The central idea ia to have all processors render 
the cells in the same neighborhood at about the same 
time. Ray segments generated for a particular region 
will consequently arrive at their image-space destina- 
tions within a relatively short window of time, allowing 
them to be merged early. This early merging tends to 
limit the length of the ray-segment list maintained by 

Figure 4: A global spatial partitioning assigns cells to 
subregions for rendering. 

each processor, which benefits the rendering process in 
two ways: first, a shorter list reduces the cost of insert- 
ing a ray segment in its proper position within the list; 
and second, the memory needed to store unmerged ray 
segments is reduced. 

To provide the desired ordering, data cells can be 
grouped into local regions using a hierarchical spatial 
data structure such as an octree [lo] or k-d tree [l]. 
We prefer the k-d tree since it supports adaptive par- 
titioning along orthogonal coordinate planes and allows 
straightforward determination of the depth ordering of 
the resulting regions. Figure 4 shows rendering of a 
region within such a partitioning, where the different 
colored cells are stored and scan converted by different 
processors. 

The tree should be constructed cooperatively so that 
the resulting spatial partitioning is exactly the same on 
every processor. After the data cells are initially dis- 
tributed, all processors participate in a synchronized 
parallel partitioning process. The algorithm works as 
follows: 

0 Each processor examines its local collection of cells 
and establishes a cutting position such that the 
two resulting sub-regions contain about the same 
number of cells. The direction of the cut is the 
same on each processor and alternates at each 
level of the partitioning. 

0 The proposed local cutting positions are commu- 
nicated to a designated host node which averages 
them together to obtain a global cutting position. 
This information is then broadcast to each pro- 
cessor, along with the host’s choice of the next 
subregion to be partitioned. A cell which inter- 
sects the cut boundary is assigned to the region 
containing its centroid. 
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Figure 5: Cell projection rendering. 

The procedure repeats until the desired number 
of regions have been generated. 

At the end of the partitioning process, each processor 
has an identical list of regions, with each region repre- 
senting approximately the same rendering load as the 
corresponding region on every other processor. If all 
processors render their local regions in the same order, 
loose synchronization will be achieved due to the simi- 
lar workloads, allowing early ray-merging to take place 
within the local neighborhoods. The k-d tree also al- 
lows for fast searching of cells within a spatial region 
specified by a zoom-in view. Note that our current im- 
plementation does not guarantee a well-balanced tree, 
but the extra searching overhead is insignificant com- 
pared to the time required for the rendering calcula- 
tions. We also observe that the spatial regions can also 
serve as workload units should we ever need to perform 
dynamic load balancing. 

5 Rendering 

Direct volume rendering algorithms can be classified 
into either ray-casting [6, 11, 12, 201 or projection meth- 
ods [15, 171. Projection methods may be further cat- 
egorized as cell-projected [22], slice-projected [24], or 
vertex-projected [14]. We have chosen a cell-projection 
method similar to [15] because it offers more flexibility 
in data distribution and is more accurate. 

During rendering, processors follow the same path 
through the spatial partitioning tree, processing all of 
the cells at each leaf node of the tree. Each cell is scan- 
converted independently, and the resulting ray segments 
are routed to the processor which owns the correspond- 
ing image scanline. As adjacent ray segments are re- 
ceived, they are merged using the standard Porter-Duff 
over operator. Figure 5 illustrates the process. 

Since the ray segments which contribute to a given 
pixel arrive in unpredictable order, each ray segment 

must contain not only a sample value and pixel coordi- 
nates, but also starting and ending depth values which 
are used for sorting and merging within the pixel’s ray 
segment list. For the types of applications currently en- 
visioned, we expect from lo6 to 10’ ray segments to be 
generated for each image; at 16 bytes per segment, ag- 
gregate communication requirements are on the order 
of lo7 to lo9 bytes per frame. Clearly, efficient manage- 
ment of the communication is essential to the viability 
of our approach. The next section presents our solution 
to this problem. 

6 Task Management with 
Asynchronous Communication 

Good scalability and parallel efficiency can only be 
achieved if the parallelization penalty and communica- 
tion cost are kept low. As described above, our design 
reduces computational overheads due to parallelization 
by eliminating the need it0 pre-sort the cells and by low- 
ering the post-sorting cost and memory consumption. 

To manage communication costs, we adopt an asyn- 
chronous communication strategy which was originally 
developed for a parallel polygon renderer [5] and later 
improved for use in the PGL rendering system [3,4]. In 
the current context, the key features of this approach 
include: 

asynchronous operation, which allows processors 
to proceed independently of each other during the 
rendering computations; 

multiplexing of the object-space cell computations 
with the image-space ray merging computations; 

overlapped computation and communication, 
which hides data transfer overheads and spreads 
the communication load over time; and 

buffering of intermediate results to amortize com- 
munication overheads. 

During the course of rendering, there are two main tasks 
to be performed: scan conversion and image composit- 
ing. High efficiency is attained if we can keep all pro- 
cessors busy doing either of these two tasks. Logically, 
the scan conversion and merging operations represent 
separate threads of contiro1, operating in different com- 
putational spaces and using different data structures. 
For the sake of efficiency and portability, however, we 
have chosen to interleave these two operations using a 
polling strategy. Figure 6 illustrates at a high level the 
management of the two tasks and the accompanying 
communication. Each processor starts by scan convert- 
ing one or more data cells. Periodically the processor 
checks to see if incoming ray segments are available; if 

99 



Figure 6: Task management with asynchronous com- 
munication. 

so, it switches to the merging task, sorting and merging 
incoming rays until no more input is pending. 

Due to the large number of ray segments generated, 
the overhead for communicating each of them individu- 
ally would be prohibitive in most architectures. Instead, 
it is better to buffer them up l’ocally and send many ray 
segments together in one operation. To supplement this, 
we employ asynchronous send and receive operations, 
which allow us to overlap communication and computa- 
tion, reduce data copying overheads in message-passing 
systems, and decouple the sending and receiving tasks. 
We have found that this strategy is most effective when 
two or more ray segment buffers are provided for each 
destination. While a send operation is pending for a 
full buffer, the scan conversion process can be placing 
additional ray segments in its companion buffer. In the 
event that both buffers for a particular destination fill 
up before the first send completes, we can switch to the 
ray merging task and process incoming segments while 
we wait for the outbound congestion to clear (in fact, 
this is essential to prevent deadlock). 

There are two parameters that the user may specify 
to control the frequency of task switching and commu- 
nication. The first parameter is the polling interval, 
i.e., the number of cells to be processed before checking 
for incoming ray segments. If polling is too frequent, 
excessive overheads will be introduced; if it isn’t often 
enough, the asynchronous communication scheme will 
perform poorly as outbound buffers clog up due to pend- 
ing send operations. The second parameter is the buffer 
depth, which indicates how many ray segments should 
be accumulated before an asynchronous send is posted. 
If the buffer size is too small, the overheads for initiating 
send and receive operations will be excessive, resulting 
in lowered efficiency. On the other hand, buffers that are 
too large can introduce delays for processors which have 

finished their scan conversion work and are waiting for 
ray segments to merge. Large buffers are also less effec- 
tive at spreading the communication load across time, 
resulting in contention delays in bandwidth-limited sys- 
tems. 

The most effective choice of buffer size depends on the 
number of processors in use, the number of ray segments 
to be communicated, and the characteristics of the tar- 
get architecture. As one may suspect, the polling fre- 
quency should be selected in accordance with the buffer 
size. As a general rule, polling should be performed 
more frequently with smaller buffer sizes or larger num- 
bers of processors. We present empirical results illus- 
trating this relationship in the next section. 

The asynchronous nature of the communication algo- 
rithm makes it impossible for a processor to determine 
by itself whether rendering is complete. Care must be 
taken to avoid deadlock or loss of ray segments. We sug- 
gest a procedure similar to that described in [ 5 ] ,  in which 
a designated node coordinates the termination process 
by collecting local termination messages and broadcast- 
ing a global termination signal. A final global synchro- 
nization operation ends the overall rendering process. 

7 Test Results 

For convenience, we have used a small unstructured 
grid dataset containing about 0.5 million tetrahedral 
cells for our initial experiments. The dataset represents 
flow over an aircraft wing with an attached missile. All 
test results are based on the average time of rendering 
this dataset into a 400x400 pixel image for six differ- 
ent viewing directions. The surface mesh of the wing 
dataset is displayed in Figure 7, illustrating the large 
variations in cell size and density which often arise in 
unstructured grids. Plate 1 shows a volume-rendered 
view of the overall data domain, in which the area of 
the wing is relatively small. Plate 2 shows a zoomed-in 
view of the flow surrounding the wing. Feature lines [13] 
have been added to assist in relating the shocks to the 
structure of the wing. We plan to conduct further tests 
using a larger dataset with several million cells. 

We implemented our volume renderer in the C lan- 
guage using the MPI message passing interface [19] for 
interprocessor communication. All tests were run on 
IBM SP2 systems located at NASA’s Ames and Langley 
Research Centers. The SP2 [9] is a distributed-memory 
architecture which employs a switch-based processor in- 
terconnect. The NASA SP2s are populated with “wide” 
nodes based on a 66.7 MHz POWER2 chip set and in- 
corporate a second-generation switch with a peak node- 
to-node bandwidth of about 34 MB/s. 

Figure 8 plots rendering time in seconds vs. the num- 
ber of processors. With 128 nodes we can render our 
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Figure 7: Surface mesh structure of the aircraft wing 
dataset. 

test dataset at two frames per second (excluding dis- 
play time). The annotations to the right of the data 
points indicate the buffer depth (in number of ray seg- 
ments) and polling frequency (high, medium, or low). 
Our experiments indicate that with large numbers of 
processors (32 and above), two different strategies for 
setting the buffer depth and polling frequency provide 
equivalent performance. The reasons for this are not 
completely clear; however our previous experience with 
parallel polygon renderers indicates that the polling fre- 
quency is not a critical parameter. Furthermore, the 
communication algorithm has a built-in feedback mech- 
anism: if sending becomes blocked due to full buffers, 
the processor switches to the ray merging task and be- 
gins receiving, regardless of the value of the polling in- 
terval. 

A better picture of the parallel performance is ob- 
tained from Figure 9, which shows the speedups and 
parallel efficiencies obtained as the number of processors 
varies from 1 to 128. With 128 processors, we achieve a 
speedup of 90, for a parallel efficiency of 70%. Some of 
this degradation is due to load imbalance, as shown in 
Figure 10. However, the static load balancing scheme 
employed here compares favorably with our earlier algo- 
rithm [12] for the Intel Paragon, particularly for smaller 
numbers of processors. To obtain a better understand- 
ing of the remaining load imbalance and other parallel 
overheads, we need to examine the performance charac- 

Figure 8: Rendering time. 

teristics of the renderer in more detail. 
Plates 3 and 4 show the per-processor contribu- 

tions of various execution time components. These are 
measured by inserting calls to a high-resolution, low- 
overhead assembly language event timer at strategic lo- 

Figure 9: Speedup and parallel efficiency. 
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Figure 10: Time delay due to imbalanced load. 

cations in the code. The overhead for the timer calls 
is deducted to yield accurate estimates of the actual 
runtime due to each component. Each of the eleven 
components is described in Table 1. 

As the graphs show, the object-space computations 
(viewing transformations and scan conversion) are well- 
balanced, with only minor variations in execution time. 
However the image-space operations (ray merging) show 
a distinct pattern, with the higher- and lower-numbered 
processors having somewhat more work to do. We be- 
lieve that this is caused by “hot spots” in the volume 
data, i.e., small regions with high cell densities that map 
to only a few scanlines in the final image. If we translate 
the viewpoint up or down slightly, the peaks and val- 
leys of the t-merge component shift cyclically, confirm- 
ing our hypothesis. This suggests that a finer-grained 
image distribution (e.g., pixel interleaving) could p r e  
vide better static load balancing with large numbers of 
processors. 

The graphs also show the effect of the polling fie- 
quency and buffer size parameters. Plate 3 shows exe- 
cution times with a buffer depth of 25 and polling after 
each cell is scan converted; the conditions for Plate 4 
are identical except that the buffers can accommodate 
eight times as many segments and polling is performed 
after every four cells. We see that larger buffers and 
longer polling intervals significantly reduce the send- 
ing, receiving, and polling components. However, larger 
buffers also lead to increases in idle time (send-wait, 
recv-wait and sync-wait), presumably because idle pro- 
cessors have to wait longer for new work to arrive. The 
net result is that larger buffers and longer polling in- 
tervals provide only slight improvements in the total 

t-init Time to perform viewing transfor- 

t-scvt 
t-merge 

t-mise 

t-copy 

t-poll 

t-send 
t-recv 

send-wait 

recv-wait 

sync-wait 

mations on the cell data, and other 
beginning-of-frame initializations. 
Time to scan convert local cells. 
Time to sort and merge ray segments. 
Other computation: tree traversal, 
control flow, etc. 
Overhead for placing ray segments in 
output buffers. 
Time required to check for incoming 
messages. 
Time for sending ray buffers. 
Time for receiving ray buffers. 
Idle time when outgoing send buffers 
are blocked and no incoming ray seg- 
ments are available for merging. 
Idle time waiting for ray segments to 
arrive after all local cells have been 
processed. 
Time for termination detection and 
end-of-frame synchronization. 

Table 1: Execution time components. 

rendering time. We suspect that some of this idle time 
can be eliminated by tuning our current termination al- 
gorit hm . 

Finally, we note that the send-wait time is negligi- 
ble in both cases. This is not always the case. We have 
seen instances in which the spatial partitioner generates 
regions which have very small projected areas in image 
space. The result is that all of the message t r f i c  gen- 
erated for that region bombards a few nodes, creating 
congestion which causes the output buffers to back up. 
Since the traffic is focused in a very limited portion of 
the image, most nodes have no incoming ray segments to 
process, and thus fall idle. There are several strategies 
which are useful in combating this problem. First, pixel 
interleaving could be expected to distribute the load 
across more processors, unless the regions become tiny 
(a distinct possibility with highly adaptive grids). Sec- 
ond, the parameters on the partitioner can be adjusted 
so that regions are not allowed to fall below a certain 
size. Alternatively, the partitioner could be configured 
to produce regions with high aspect ratios, resulting in 
larger footprints in image space. 

Unfortunately, this last approach would partially de- 
feat the purpose of using a partitioner in the first place, 
i.e., to facilitate early ray merging. To gauge the effec- 
tiveness of our partitioning strategy, we have collected 
statistics on the maximum number of unmerged ray seg- 
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ments which must be stored on any processor during the 
rendering process. Our experiments indicate that with 
64 regions, the number of unmerged segments on any 
given processor is at most 15-20% of the total number 
received. 

8 Conclusions 

By combining a spatial partitioning scheme with tech- 
niques which were originally developed for parallel poly- 
gon rendering, we have produced a volume renderer for 
unstructured meshes which employs inexpensive static 
load balancing to achieve high performance and reason- 
able efficiency with modest memory consumption. We 
believe that our algorithm is currently the most effec- 
tive one available for rendering complex unstructured 
grids on distributed-memory message-passing architec- 
tures. Detailed performance experiments with up to 128 
processors lead us to believe that further improvements 
are possible. 

We plan to conduct additional tests with larger 
datasets, different image sizes, more processors, and 
other architectures. With larger datasets, the number of 
ray segments generated may increase significantly, and 
we need to assess the impact of this additional commu- 
nication load on overall performance. We also want to 
investigate the potential for finer-grained image parti- 
tionings and improved termination strategies to improve 
the parallel efficiency of our approach. The ultimate 
goal is a fast, scalable volume renderer which can han- 
dle tens of millions of grid cells using a large number of 
high-performance processors. 
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