
A Scalable Parallel Cell-Projection Volume Rendering Algorithm
for Three-Dimensional Unstructured Data

Kwan-Liu Ma and Thomas W. Crockett
Institute for Computer Applications in Science and Engineering"

Abstract

Visualizing three-dimensional unstructured data from
aerodynamics calculations is challenging because the as-
sociated meshes are typically large in size and irregular
in both shape and resolution. The goal of this research
is to develop a fast, efficient parallel volume rendering
algorithm for massively parallel distributed-memory su-
percomputers consisting of a large number of very pow-
erful processors. We use cell-projection instead of ray-
casting to provide maximum flexibility in the data dis-
tribution and rendering steps. Effective static load bal-
ancing is achieved with a round robin distribution of
data cells among the processors. A spatial partition-
ing tree is used to guide the rendering, optimize the
image compositing step, and reduce memory consump
tion. Communication cost is reduced by buffering mes-
sages and by overlapping communication with rendering
calculations as much as possible. Tests on the IBM SP2
demonstrate that these strategies provide high render-
ing rates and good scalability. For a dataset containing
half a million tetrahedral cells, we achieve two frames
per second for a 400x400-pixel image using 128 proces-
sors.

Keywords: volume rendering, parallel algorithms, un-
structured grids, scientific visualization, hierarchical
data structures, load balancing, asynchronous commu-
nication, message passing, distributed memory.

1 Introduction

Three-dimensional aerodynamics calculations often use
unstructured meshes to model objects with complex ge-
ometry. By applying finer meshes only to regions re-

'Mail Stop 403, 6 North Dryden Street, NASA Langley Re-
search Center, Hampton, Virginia 23681-0001, kmaQicase.edu,
tomQicase.edu

0-81 86-8265-5/97 $1 0.00 COPYRIGHT 1997 IEEE

quiring high accuracy, both computing time and storage
space can be reduced. This adaptive approach results
in computational meshes containing data cells which are
highly irregular in both size and shape. The lack of a
simple indexing scheme for these complex grids makes
visualization calculations on such meshes very expen-
sive. Furthermore, in a distributed computing environ-
ment, irregularities in cell size and shape make balanced
load distribution difficult as well.

The development of massively parallel rendering al-
gorithms for irregular data has received comparatively
little attention. Notably, Williams [23] developed a cell-
projection volume rendering algorithm for finite element
data running on a singlle SGI multiprocessor worksta-
tion. Uselton [21] designed a volume ray-tracing algo-
rithm for curvilinear gricls on a similar platform. In both
cases, tests were performed with up-to eight processors
and high parallel efficiency was obtained. Challinger [2]
developed a parallel volume ray-tracing algorithm for
nonrectilinear grids ancl implemented it on the BBN
TC2000, a multiprocessor architecture with up to 128
nodes. Note that all three of these renderers used
shared-memory programming paradigms.

Giertsen and Petersen [8] designed a scanline vol-
ume rendering algorithm for distributed-memory sys-
tems based on Giertsen's previous sweep-plane ap-
proach [7], and implemented it on a network of work-
stations. In their approach the volume dataset is repli-
cated on each workstation, and a master-slave scheme
is used to dynamically baalance the load. However, tests
were performed with a maximum of four workstations,
so the scalability of the algorithm and its implemen-
tation for massively parallel processing has yet to be
demonstrated.

In recent work, Silva, Michell and Kaufman [18] pre-
sented a more elaborate approach for rendering general
irregular grids. Evolving from Giertsen's sweep-plane
algorithm, their new strategy is careful to exploit spatial
coherence. The algorithm is potentially parallelizable
but tests were only performed on a Sun UltraSPARC-
1. In addition, Wilhelmis et al. [22] developed a hier-
archical and parallelizable volume rendering technique
for irregular and multiple grids. This algorithm favors
coarse-grain parallelism for a shared-memory MIMD ar-

95

http://kmaQicase.edu
http://tomQicase.edu

chitecture.
Palmer and Taylor [16] devised a true distributed-

memory ray-casting volume renderer for unstructured
grids and demonstrated it on Intel’s 512-node Touch-
stone Delta system. Their algorithm incorporated an
adaptive screen-space partitioning scheme designed to
reduce data movement caused by changes in the view-
point. Another distributed-memory unstructured-grid
renderer was developed by Ma [12] for the Intel Paragon.
This algorithm uses a graph-based partitioner to keep
nearby cells together on the same processor, providing
good locality during the ray-cast resampling process.
The algorithm is somewhat tedious to use for post-
processing visualization applications because it requires
both a preprocessing step to derive cell-connectivity
information and a pre-partitioning step whenever the
number of processors changes.

Our current research is inspired by the trend to-
ward larger numbers of processors in large-scale scien-
tific computing platforms, as typified by the terascale
architectures being installed for the U.S. Department of
Energy’s ASCI program. To support applications which
use these systems, we must develop visualization tools
which are appropriate to the architectures. We focus
on scalability and flexibility as two key design criteria.
To address these issues, we propose a static load bal-
ancing scheme coupled with an asynchronous c o m u -
nication strategy which overlaps the rendering calcula-
tions with transfer of ray segments. Our results indi-
cate that this approach compares favorably with previ-
ous unstructured-grid volume rendering algorithms for
similar architectures.

Another problem shared by many exieting visualiza-
tion algorithms for unstructured data is the need for a
significant amount of preprocessing. One step extracts
additional information about the mesh, such as connec-
tivity, in order to speed up later visualization calcula-
tions. Another step may be needed to partition the data
based on the particular parallel computing configura-
tion being used (number of processors, communication
parameters, etc.). To reduce the user “hassle factor”
as much as possible and avoid increasing the data size
or replicating data, we want to eliminate these prepro-
cessing steps. While this provides flexibility and conve-
nience, it also means less information is available for o p
timizing the rendering computations. We have elected
to sacrifice a small amount of performance in favor of
enhanced usability.

In the remainder of the paper, we describe the strate-
gies we have developed to achieve both scalability and
flexibility for volume rendering of unstructured data.
We also present detailed experimental performance re-
sults obtained with up to 128 nodes on an IBM SP2. We
conclude with a discussion of plans for future work, in-

iuriicate
xhir

processcjrs

t

Figure 1: The volume rendering pipeline. This proce-
dure is replicated on each processor.

cluding opportunities for improving the algorithms pre-
sented here.

2 Overview of the Algorithm

Our new parallel rendering algorithm performs a se-
quence of tasks as shown in Figure 1. The volume data
is distributed in round robin fashion with the intention
of dispersing nearby cells as widely as possible among
processors. The image space is partitioned using a sim-
ple scanline interleaving scheme.

A preprocessing step then performs a parallel, syn-
chronized partitioning of the volume data to produce
a hierarchical representation of the data space. This
spatial tree is used in the rendering step to optimize
the compositing process and to reduce runtime memory
consumption.

To offer maximum freedom in data distribution, a
cell-projection rendering method is used. However, data
cells are not pre-sorted in depth order. Instead, each
processor scan converts its local cells to produce many
ray segments, which are routed to their final destin&
tions in image space for merging. A double-buffering
scheme is used in conjunction with asynchronous send
and receive operations to reduce overheads and overlap
communication of ray segments with rendering compu-
tations. Scan conversion of data cells and merging of
ray segments proceed together in multiplexed fashion.
When scan conversion and ray-segment merging are fin-
ished, each processor sends its completed subimage to
a host computer which assembles them for display. A
detailed description of each of the steps of the algorithm
is given in the following sections.

96

3 Data Distribution

Ideally, data should be distributed in such a way that ev-
ery processor requires the same amount of storage space
and incurs the same computational load. There are sev-
eral factors which affect this. For the sake of concrete-
ness, we assume meshes composed of tetrahedral cells;
similar considerations apply to other types of unstruc-
tured grids. First, there is some cost for scan convert-
ing each cell. Variations in the number of cells assigned
to each processor will produce variations in workloads.
Second, cells come in different sizes and shapes. The
difference in size can be as large as several orders of
magnitude due to the adaptive nature of the mesh. As
a result, the projected image area of a cell can vary
dramatically, which produces similar variations in scan
conversion costs. Furthermore, the projected area of a
cell also depends on the viewing direction. Finally, voxel
values are mapped to both color and opacity values.
An opaque cell can terminate a ray early, thereby sav-
ing further merging calculations, but introducing fur-
ther variability in the workload.

If ray-cast rendering were used, we would want to as-
sign groups of connected cells to each processor so that
the rendering process can be optimized by exploiting
cell-to-cell coherence. But connected cells are often sim-
ilar in size and opacity, so that grouping them together
exacerbates load imbalances, making it very difficult
to obtain satisfactory partitionings. We have therefore
chosen to take the opposite approach, dispersing con-
nected cells as widely as possible among the processors.
Thus each processor is loaded with cells taken from the
whole spatial domain rather than from a small neigh-
borhood as shown in Figure 2. Satisfactory scattering of
the input data can generally be achieved with a simple
round robin assignment policy. With sufficiently many
cells, the computational requirements for each proces-
sor tend to average out, producing an approximate load
balance.

This approach also satisfies our requirement for flexi-
bility, since the data distribution can be computed triv-
ially for any number of processors, without the need for
an expensive pre-processing step.

By dispersing the grid cells among processors, we
also facilitate a very important visualization operation
for unstructured data-zoom-in viewing. Because of
the highly adaptive nature of unstructured meshes, the
most important simulation results are usually associated
with a relatively small portion of the overall spatial do-
main. The viewer normally takes a peek at the overall
domain and then immediately focuses on localized re-
gions of interests, such as areas with high velocity or gra-
dient values. This zooming operation introduces chal-
lenges for efficient visualization in a distributed comput-

Figure 2: Local load imb(a1ances are reduced by process-
ing cells from throughout the spatial domain.

ing environment. First, locating all of the cells which
reside within the viewing region can be an expensive
operation. Our solution, described in the next section,
is to employ a spatial partitioning tree to speed up this
cell searching. Second, if data cells are distributed to
processors as connected components, zooming in on a
local region will result in severe load imbalances, as a
few processors are left with all of the rendering calcula-
tions while others go idle (Figure 3).

An alternative approach is to distribute clusters of
connected cells to each]processor and hope that some
data can be shared and some ray segments can be
merged locally. This approach has several drawbacks.
First, an appropriate heuristic must be found for de-
termining the optimal cluster size. Second, the data
must be preprocessed to compute cell connectivity in-
formation. Finally, the (data must be partitioned in a
way which preserves loca,lity and maintains a relatively
balanced load across processors. The cost and inconve-
nience of these additional steps can make this approach
unattractive.

Although the round-robin distribution discourages
data sharing, our rendering algorithm only requires min-
imum data-the cell and node information. No connec-
tivity data are needed. Each cell takes 16 bytes to store
four node indices and each node takes 16 bytes to store
three coordinates and a scalar value. As a result, in the
worst case of no sharing of any node information, 80n
bytes of data must be transferred in order to distribute
n cells to a processor. By way of example, distributing a
dataset of 1 million cells across 128 processors requires
an average of 640,000 bytes of data to be transferred to
and stored at each processor.

97

Figure 3: Zoomed-in viewing results in severe load im-
balances when connected cells are grouped together.

In addition to the object space operations on mesh
cells, we also need to evenly distribute the pixel-oriented
ray-merging computations. Local variations in cell sizes
within the mesh lead directly to variations in depth com-
plexity in image space. Therefore we need an image
partitioning strategy which disperses the ray-merging
operations as well. In our current implementation, we
assign successive scanlines to processors in round-robin
fashion, a technique often known as scanline interleav-
ing. This works reasonably well as long as the vertical
resolution of the image is several times larger than the
number of processors. With more processors, we conjec-
ture that a finer-grained pixel interleave may be advan-
tageous. At each pixel location, we maintain a linked
list of ray segments, which are merged to form the final
pixel value. The pixel merging process is described in
more detail in subsequent sections.

4 Space Partitioning Tree

As described in the previous section, our round-robin
data distribution scheme helps to achieve flexibility and
produces an approximate static load balance. However,
it totally destroys the spatial relationship between mesh
cells, making an unstructured dataset even more irregu-
lar. We would like to restore some ordering so that the
rendering step may be performed more efficiently.

The central idea ia to have all processors render
the cells in the same neighborhood at about the same
time. Ray segments generated for a particular region
will consequently arrive at their image-space destina-
tions within a relatively short window of time, allowing
them to be merged early. This early merging tends to
limit the length of the ray-segment list maintained by

Figure 4: A global spatial partitioning assigns cells to
subregions for rendering.

each processor, which benefits the rendering process in
two ways: first, a shorter list reduces the cost of insert-
ing a ray segment in its proper position within the list;
and second, the memory needed to store unmerged ray
segments is reduced.

To provide the desired ordering, data cells can be
grouped into local regions using a hierarchical spatial
data structure such as an octree [lo] or k-d tree [l].
We prefer the k-d tree since it supports adaptive par-
titioning along orthogonal coordinate planes and allows
straightforward determination of the depth ordering of
the resulting regions. Figure 4 shows rendering of a
region within such a partitioning, where the different
colored cells are stored and scan converted by different
processors.

The tree should be constructed cooperatively so that
the resulting spatial partitioning is exactly the same on
every processor. After the data cells are initially dis-
tributed, all processors participate in a synchronized
parallel partitioning process. The algorithm works as
follows:

0 Each processor examines its local collection of cells
and establishes a cutting position such that the
two resulting sub-regions contain about the same
number of cells. The direction of the cut is the
same on each processor and alternates at each
level of the partitioning.

0 The proposed local cutting positions are commu-
nicated to a designated host node which averages
them together to obtain a global cutting position.
This information is then broadcast to each pro-
cessor, along with the host’s choice of the next
subregion to be partitioned. A cell which inter-
sects the cut boundary is assigned to the region
containing its centroid.

98

image
plane

a ray segment

apixel I

Figure 5: Cell projection rendering.

The procedure repeats until the desired number
of regions have been generated.

At the end of the partitioning process, each processor
has an identical list of regions, with each region repre-
senting approximately the same rendering load as the
corresponding region on every other processor. If all
processors render their local regions in the same order,
loose synchronization will be achieved due to the simi-
lar workloads, allowing early ray-merging to take place
within the local neighborhoods. The k-d tree also al-
lows for fast searching of cells within a spatial region
specified by a zoom-in view. Note that our current im-
plementation does not guarantee a well-balanced tree,
but the extra searching overhead is insignificant com-
pared to the time required for the rendering calcula-
tions. We also observe that the spatial regions can also
serve as workload units should we ever need to perform
dynamic load balancing.

5 Rendering

Direct volume rendering algorithms can be classified
into either ray-casting [6, 11, 12, 201 or projection meth-
ods [15, 171. Projection methods may be further cat-
egorized as cell-projected [22], slice-projected [24], or
vertex-projected [14]. We have chosen a cell-projection
method similar to [15] because it offers more flexibility
in data distribution and is more accurate.

During rendering, processors follow the same path
through the spatial partitioning tree, processing all of
the cells at each leaf node of the tree. Each cell is scan-
converted independently, and the resulting ray segments
are routed to the processor which owns the correspond-
ing image scanline. As adjacent ray segments are re-
ceived, they are merged using the standard Porter-Duff
over operator. Figure 5 illustrates the process.

Since the ray segments which contribute to a given
pixel arrive in unpredictable order, each ray segment

must contain not only a sample value and pixel coordi-
nates, but also starting and ending depth values which
are used for sorting and merging within the pixel’s ray
segment list. For the types of applications currently en-
visioned, we expect from lo6 to 10’ ray segments to be
generated for each image; at 16 bytes per segment, ag-
gregate communication requirements are on the order
of lo7 to lo9 bytes per frame. Clearly, efficient manage-
ment of the communication is essential to the viability
of our approach. The next section presents our solution
to this problem.

6 Task Management with
Asynchronous Communication

Good scalability and parallel efficiency can only be
achieved if the parallelization penalty and communica-
tion cost are kept low. As described above, our design
reduces computational overheads due to parallelization
by eliminating the need it0 pre-sort the cells and by low-
ering the post-sorting cost and memory consumption.

To manage communication costs, we adopt an asyn-
chronous communication strategy which was originally
developed for a parallel polygon renderer [5] and later
improved for use in the PGL rendering system [3,4]. In
the current context, the key features of this approach
include:

asynchronous operation, which allows processors
to proceed independently of each other during the
rendering computations;

multiplexing of the object-space cell computations
with the image-space ray merging computations;

overlapped computation and communication,
which hides data transfer overheads and spreads
the communication load over time; and

buffering of intermediate results to amortize com-
munication overheads.

During the course of rendering, there are two main tasks
to be performed: scan conversion and image composit-
ing. High efficiency is attained if we can keep all pro-
cessors busy doing either of these two tasks. Logically,
the scan conversion and merging operations represent
separate threads of contiro1, operating in different com-
putational spaces and using different data structures.
For the sake of efficiency and portability, however, we
have chosen to interleave these two operations using a
polling strategy. Figure 6 illustrates at a high level the
management of the two tasks and the accompanying
communication. Each processor starts by scan convert-
ing one or more data cells. Periodically the processor
checks to see if incoming ray segments are available; if

99

Figure 6: Task management with asynchronous com-
munication.

so, it switches to the merging task, sorting and merging
incoming rays until no more input is pending.

Due to the large number of ray segments generated,
the overhead for communicating each of them individu-
ally would be prohibitive in most architectures. Instead,
it is better to buffer them up l’ocally and send many ray
segments together in one operation. To supplement this,
we employ asynchronous send and receive operations,
which allow us to overlap communication and computa-
tion, reduce data copying overheads in message-passing
systems, and decouple the sending and receiving tasks.
We have found that this strategy is most effective when
two or more ray segment buffers are provided for each
destination. While a send operation is pending for a
full buffer, the scan conversion process can be placing
additional ray segments in its companion buffer. In the
event that both buffers for a particular destination fill
up before the first send completes, we can switch to the
ray merging task and process incoming segments while
we wait for the outbound congestion to clear (in fact,
this is essential to prevent deadlock).

There are two parameters that the user may specify
to control the frequency of task switching and commu-
nication. The first parameter is the polling interval,
i.e., the number of cells to be processed before checking
for incoming ray segments. If polling is too frequent,
excessive overheads will be introduced; if it isn’t often
enough, the asynchronous communication scheme will
perform poorly as outbound buffers clog up due to pend-
ing send operations. The second parameter is the buffer
depth, which indicates how many ray segments should
be accumulated before an asynchronous send is posted.
If the buffer size is too small, the overheads for initiating
send and receive operations will be excessive, resulting
in lowered efficiency. On the other hand, buffers that are
too large can introduce delays for processors which have

finished their scan conversion work and are waiting for
ray segments to merge. Large buffers are also less effec-
tive at spreading the communication load across time,
resulting in contention delays in bandwidth-limited sys-
tems.

The most effective choice of buffer size depends on the
number of processors in use, the number of ray segments
to be communicated, and the characteristics of the tar-
get architecture. As one may suspect, the polling fre-
quency should be selected in accordance with the buffer
size. As a general rule, polling should be performed
more frequently with smaller buffer sizes or larger num-
bers of processors. We present empirical results illus-
trating this relationship in the next section.

The asynchronous nature of the communication algo-
rithm makes it impossible for a processor to determine
by itself whether rendering is complete. Care must be
taken to avoid deadlock or loss of ray segments. We sug-
gest a procedure similar to that described in [5] , in which
a designated node coordinates the termination process
by collecting local termination messages and broadcast-
ing a global termination signal. A final global synchro-
nization operation ends the overall rendering process.

7 Test Results

For convenience, we have used a small unstructured
grid dataset containing about 0.5 million tetrahedral
cells for our initial experiments. The dataset represents
flow over an aircraft wing with an attached missile. All
test results are based on the average time of rendering
this dataset into a 400x400 pixel image for six differ-
ent viewing directions. The surface mesh of the wing
dataset is displayed in Figure 7, illustrating the large
variations in cell size and density which often arise in
unstructured grids. Plate 1 shows a volume-rendered
view of the overall data domain, in which the area of
the wing is relatively small. Plate 2 shows a zoomed-in
view of the flow surrounding the wing. Feature lines [13]
have been added to assist in relating the shocks to the
structure of the wing. We plan to conduct further tests
using a larger dataset with several million cells.

We implemented our volume renderer in the C lan-
guage using the MPI message passing interface [19] for
interprocessor communication. All tests were run on
IBM SP2 systems located at NASA’s Ames and Langley
Research Centers. The SP2 [9] is a distributed-memory
architecture which employs a switch-based processor in-
terconnect. The NASA SP2s are populated with “wide”
nodes based on a 66.7 MHz POWER2 chip set and in-
corporate a second-generation switch with a peak node-
to-node bandwidth of about 34 MB/s.

Figure 8 plots rendering time in seconds vs. the num-
ber of processors. With 128 nodes we can render our

100

Figure 7: Surface mesh structure of the aircraft wing
dataset.

test dataset at two frames per second (excluding dis-
play time). The annotations to the right of the data
points indicate the buffer depth (in number of ray seg-
ments) and polling frequency (high, medium, or low).
Our experiments indicate that with large numbers of
processors (32 and above), two different strategies for
setting the buffer depth and polling frequency provide
equivalent performance. The reasons for this are not
completely clear; however our previous experience with
parallel polygon renderers indicates that the polling fre-
quency is not a critical parameter. Furthermore, the
communication algorithm has a built-in feedback mech-
anism: if sending becomes blocked due to full buffers,
the processor switches to the ray merging task and be-
gins receiving, regardless of the value of the polling in-
terval.

A better picture of the parallel performance is ob-
tained from Figure 9, which shows the speedups and
parallel efficiencies obtained as the number of processors
varies from 1 to 128. With 128 processors, we achieve a
speedup of 90, for a parallel efficiency of 70%. Some of
this degradation is due to load imbalance, as shown in
Figure 10. However, the static load balancing scheme
employed here compares favorably with our earlier algo-
rithm [12] for the Intel Paragon, particularly for smaller
numbers of processors. To obtain a better understand-
ing of the remaining load imbalance and other parallel
overheads, we need to examine the performance charac-

Figure 8: Rendering time.

teristics of the renderer in more detail.
Plates 3 and 4 show the per-processor contribu-

tions of various execution time components. These are
measured by inserting calls to a high-resolution, low-
overhead assembly language event timer at strategic lo-

Figure 9: Speedup and parallel efficiency.

101

2.7%

15%

5%
%

Figure 10: Time delay due to imbalanced load.

cations in the code. The overhead for the timer calls
is deducted to yield accurate estimates of the actual
runtime due to each component. Each of the eleven
components is described in Table 1.

As the graphs show, the object-space computations
(viewing transformations and scan conversion) are well-
balanced, with only minor variations in execution time.
However the image-space operations (ray merging) show
a distinct pattern, with the higher- and lower-numbered
processors having somewhat more work to do. We be-
lieve that this is caused by “hot spots” in the volume
data, i.e., small regions with high cell densities that map
to only a few scanlines in the final image. If we translate
the viewpoint up or down slightly, the peaks and val-
leys of the t-merge component shift cyclically, confirm-
ing our hypothesis. This suggests that a finer-grained
image distribution (e.g., pixel interleaving) could p r e
vide better static load balancing with large numbers of
processors.

The graphs also show the effect of the polling fie-
quency and buffer size parameters. Plate 3 shows exe-
cution times with a buffer depth of 25 and polling after
each cell is scan converted; the conditions for Plate 4
are identical except that the buffers can accommodate
eight times as many segments and polling is performed
after every four cells. We see that larger buffers and
longer polling intervals significantly reduce the send-
ing, receiving, and polling components. However, larger
buffers also lead to increases in idle time (send-wait,
recv-wait and sync-wait), presumably because idle pro-
cessors have to wait longer for new work to arrive. The
net result is that larger buffers and longer polling in-
tervals provide only slight improvements in the total

t-init Time to perform viewing transfor-

t-scvt
t-merge

t-mise

t-copy

t-poll

t-send
t-recv

send-wait

recv-wait

sync-wait

mations on the cell data, and other
beginning-of-frame initializations.
Time to scan convert local cells.
Time to sort and merge ray segments.
Other computation: tree traversal,
control flow, etc.
Overhead for placing ray segments in
output buffers.
Time required to check for incoming
messages.
Time for sending ray buffers.
Time for receiving ray buffers.
Idle time when outgoing send buffers
are blocked and no incoming ray seg-
ments are available for merging.
Idle time waiting for ray segments to
arrive after all local cells have been
processed.
Time for termination detection and
end-of-frame synchronization.

Table 1: Execution time components.

rendering time. We suspect that some of this idle time
can be eliminated by tuning our current termination al-
gorit hm .

Finally, we note that the send-wait time is negligi-
ble in both cases. This is not always the case. We have
seen instances in which the spatial partitioner generates
regions which have very small projected areas in image
space. The result is that all of the message t r f i c gen-
erated for that region bombards a few nodes, creating
congestion which causes the output buffers to back up.
Since the traffic is focused in a very limited portion of
the image, most nodes have no incoming ray segments to
process, and thus fall idle. There are several strategies
which are useful in combating this problem. First, pixel
interleaving could be expected to distribute the load
across more processors, unless the regions become tiny
(a distinct possibility with highly adaptive grids). Sec-
ond, the parameters on the partitioner can be adjusted
so that regions are not allowed to fall below a certain
size. Alternatively, the partitioner could be configured
to produce regions with high aspect ratios, resulting in
larger footprints in image space.

Unfortunately, this last approach would partially de-
feat the purpose of using a partitioner in the first place,
i.e., to facilitate early ray merging. To gauge the effec-
tiveness of our partitioning strategy, we have collected
statistics on the maximum number of unmerged ray seg-

102

ments which must be stored on any processor during the
rendering process. Our experiments indicate that with
64 regions, the number of unmerged segments on any
given processor is at most 15-20% of the total number
received.

8 Conclusions

By combining a spatial partitioning scheme with tech-
niques which were originally developed for parallel poly-
gon rendering, we have produced a volume renderer for
unstructured meshes which employs inexpensive static
load balancing to achieve high performance and reason-
able efficiency with modest memory consumption. We
believe that our algorithm is currently the most effec-
tive one available for rendering complex unstructured
grids on distributed-memory message-passing architec-
tures. Detailed performance experiments with up to 128
processors lead us to believe that further improvements
are possible.

We plan to conduct additional tests with larger
datasets, different image sizes, more processors, and
other architectures. With larger datasets, the number of
ray segments generated may increase significantly, and
we need to assess the impact of this additional commu-
nication load on overall performance. We also want to
investigate the potential for finer-grained image parti-
tionings and improved termination strategies to improve
the parallel efficiency of our approach. The ultimate
goal is a fast, scalable volume renderer which can han-
dle tens of millions of grid cells using a large number of
high-performance processors.

Acknowledgements

This research was supported by the National Aero-
nautics and Space Administration under NASA con-
tract NAS1-19480 while the authors were in residence
at ICASE. All tests were performed using parallel sys-
tems provided by NASA's Computational Aerosciences
project under the auspices of the national High Perfor-
mance Computing and Communications Program.

References

J.L. Bentley. Multidimensional Binary Search
Trees Used for Associative Searching. Communica-
tions of the ACM, 18(8):509-517, September 1975.

Judy Challinger. Scalable Parallel Volume Ray-
casting for Nonrectilinear Computational Grids.
In Proceedings of Parallel Rendering Symposium,
pages 81-88, 1993. San Jose, October 25-26.

[3] T. W. Crockett. Design Considerations for Par-
allel Graphics Libraries. In Proc. Intel Super-
computer Users Group 1994 Ann. North Amer-
ica Users Conf., pages 3-14. Intel Supercomputer
Users Group, June 1994.

[4] T. W. Crockett. PGL: A Parallel Graphics
Library for Distributed Memory Applications.
Interim Report No. 29, ICASE, NASA Lang-
ley Res. Ctr., Hampton, VA, February 1997.
http://www.icase.edu/reports/interim/29/.

T. W. Crockett and T. Orloff. Parallel Poly-
gon Rendering for Message-Passing Architectures.
IEEE Parallel and Distributed Technology, 2(2):17-
28, Summer 1994.

Michael P. Garrity. Raytracing Irregular Volume
Data. Proceedings of 1990 Workshop on Volume
Visualization (San Diego, December 10-1 1, 1990).
Special issue of Computer Graphics, ACM SIG-
GRAPH, 24(5):35-40, November 1990.

Christopher Giertsen. Volume Visualization of
Sparse Irregular Meshes. IEEE Computer Graphics
t4 Applications, 12(%):40-48, March 1992.

Christopher Giertsen and Johnny Petersen. Par-
allel Volume Rendering on a Network of Worksta-
tions. IEEE CG&A, 13(6):16-23, November 1993.

IBM RS/6000 SP System, Large Scale Servers.
http://www.rs6000.ibm. com/hardware/largescale.

C. L. Jackins and S. L. Tanimoto. Octrees and
Their Use in Representing Three-Dimensional Ob-
jects. Computer GTaphics and Image Processing,
14(3) :24%270, September 1980.

M. Levoy. Efficient Ray Tracing of Volume
Data. ACM Transactions on Graphics, 9(3):245-
261, July 1990.

Kwan-Liu Ma. Parallel Volume Ray-Casting For
Unstructured-Grid Data on Distributed-Memory
Architectures. In Proceedings of the 1995 Paral-
lel Rendering Symposium, pages 23-30. ACM SIG-
GRAPH, October 1995.

Kwan-Liu Ma and Victoria Interrante. Extracting
Feature Lines from 3D Unstructured Grids. In Pro-
ceedings of Visualization '97' Conference, October
1997 (to appear).

Xiaoyang Mao. Splatting of Non-Rectilinear Vol-
umes Through Stochastic Resampling. IEEE
Transactions on Visualization and Computer
Graphics, 2(2):156-170, June 1996.

103

http://www.icase.edu/reports/interim/29
http://www.rs6000.ibm

[15] Nelson Max, Pat Hanrahan, and Roger Crawfis.
Area and Volume Coherence for Efficient Visualiza-
tion of 3D Scalar Functions. Computer Graphics,
24(5):27-33, November 1990.

[16] M.E. Palmer and S. Taylor. Rotation Invariant
Partitioning for Concurrent Scientific Visualiza-
tion. In Proceedings of the Parallel Computational
Fluid Dynamics '94 Conference. Elsevier Science
Publishers B.V., 1994.

[17] Peter Shirley and Allan Tuchman. A Polygon Ap-
proximation to Direct Scalar Volume Rendering.
Proceedings of 1990 Workshop on volume Visulaza-
tion (San Diego, December 10-11, 1990). Computer
Graphics, 24(5):63-70, November 1990.

[18] Claudio Silva, J . Michell, and A. Kaufman. Fast
Rendering of Irregular Volume Data. In Proceed-
ings of the 1996 Volume Visualization Symposium,
pages 15-22. ACM SIGGRAPH, October 1996.

[19] M. Snir, S. W. Otto, S. Huss-Lederman, D. W.
Walker, and J . Dongarra. MPI: The Complete Ref-
erence. MIT Press, 1995.

1201 L. M. Sobierajski and A. E. Kaufman. Volume
Ray Tracing. In Proceedings of the 1994 Volume
Visualization Symposium, pages 11-18. ACM SIG-
GRAPH, October 1994.

[21] Sam Uselton. Volume Rendering on Curvilinear
Grids for CFD. AIAA Paper 94-0322, 1994. 32nd
Aerospace Sciences Meeting & Exhibit.

[22] Jane Wilhelms, Allen Van Gelder, Paul Tarantino,
and Jonathan Gibbs. Hierarchical and Paralleliz-
able Diret Volume Rendering. In Proceedings of
the Visualization '96 Conference, pages 57-64, Oc-
tober 1996.

(231 Peter L. Williams. Parallel Volume Render-
ing Finite Element Data. In Proceedings Com-
puter Graphics International '93, 1993. Lausanne,
Switzerland, June.

[24] R. Yagel, D. M. Reed, A. Law, P. Shih, andN. Sha-
reef. Hardware Assisted Volume Rendering of Un-
structured Grids by Incremental Slicing. In Pro-
ceedings of the 1996 Volume Visualization Sym-
posium, pages 55-62. ACM SIGGRAPH, October
1996.

104

