
A Parallel Pipelined Renderer for Time-Varying Volume Data

Tzi-cker Chiuehl* Kwan-liu Ma2

'Computer Science Department
State University of New York at Stony Brook

Stony Brook, NY 11794-4400
chiueh@cs.sunysb.edu

'Institute for Computer Applications in Science and Engineering
NASA Langley Research Center

Hampton, VA 23681-0001
kma@icase.edu

Abstract
This paper presents a strategy for efficiently render-
ing time-varying volume data on a distributed-memory
parallel computer. Visualizing time-varying volume
data take both large storage space and long computa-
t ion time. Instead of employing all processors to ren-
der one volume at a time, a pipelined rendering ap-
proach partitions processors into groups so that multi-
ple volumes can be rendered concurrently. The overall
rendering time is greatly minimized because rendering
is overlapped with 1/0 required to load the volume data
sets. Moreover, parallelization overhead may be re-
duced as a result of partitioning the processors. We
modify an existing parallel volume renderer to exploit
various levels of rendering parallelism and to study
how the partitioning of processors may lead to opti-
mal rendering performance. We find that two factors
affecting the overall ezecution time are resource uti-
lization efficiency and pipeline startup latency. The
optimal partitioning configuration is the one that bal-
ances these two factors. Tests on Intel Paragon com-
puters show that in general optimal partitionings do
exist for a given rendering task and result in 40-50%
saving in overall rendering time.

1 Introduction
Time-varying volumetric data sets (TVVD), which
may be obtained from numerical simulations or re-
mote sensing instruments, provide scientists insights
into the detailed dynamics of the phenomenon under
study. When appropriately rendered, they form an
animation sequence that can illustrates how the un-
derlying structures evolve over time. For visualizing
~~

'This research was supported by the National Aeronautics
and Space Administration under NASA contract NAS1-19480
while the author was in residence at the Institute for Computer
Applications in Science and Engineering, NASA Langley Re-
search Center.

large data sets, parallel processing is often adopted to
speed up the expensive volumetric rendering process.
Although the subject of rendering a single volumetric
data set using a parallel computer has been studied ex-
tensively by numerous researchers [14, 13, 11, 19, 71,
parallel animation of TVVD, in contrast, received rel-
atively little attention.

Compared to parallel volume rendering of a single
data set, rendering TVVD in parallel poses a different
set of design tradeoffs. First, because TVVD typi-
cally consists of a sequence of data volumes, the 1/0
overhead to bring the data into the parallel machines,
accounts for a significant portion of the end-to-end re-
sponse time, and can no longer be ignored as is usually
done by many researchers in parallel volume render-
ing. The key technique to address this 1/0 problem
is to hide the 1/0 overhead by overlapping computa-
tion with I/O. Secondly, since a TVVD rendering job
is actually comprised of multiple rendering tasks, it is
important to make efficient utilization of the compu-
tation resources so that the overall rendering time is
minimized. In particular, one should remember that
parallelization almost always incurs certain overhead
such as data distribution, result collection, or synchro-
nization. Therefore it is critical to balance between
the parallelism and overhead of individual rendering
tasks, with the goal of optimizing the overall perfor-
mance of the entire TVVD rendering job. Thirdly,
whereas in single-data-set rendering, the response time
is the single most important criterion, in TVVD ren-
dering there are multiple criteria that are potentially
of interest to the users. One possibility is the start-up
latency, the time until which the first image appears.
Another candidate is the overall execution time, the
time until which the last image appears. Depending
on the requirements of the end users, different design
tradeoffs are to be made to optimize different perfor-
mance criteria.

We argue that parallel volume animation requires
re-thinking of the types of parallelism one should ex-

1087-4089/97 $10.00 0 1997 IEEE
9

mailto:chiueh@cs.sunysb.edu
mailto:kma@icase.edu

ploit to achieve the optimal performance. In particu-
lar, I/O overlap and resource utilization efficiency play
a crucial role in the parallelization strategy. We start
with a generic parallel volume rendering program [ll],
modify it to experiment with different approaches to
support parallel volume animation for time-varying
data sets, and analyze the performance tradeoff among
various partitioning strategies. Although the results
and analysis are based on implementations on Intel
Paragon, we believe that the conclusions should re-
main valid for other parallel distributed memory ar-
chitectures.

2 Related Work
Ideally, visualizing time-varying volume data should
be done while data are being generated, so that users
receive immediate visual feedback on the subject un-
der study and the visualization results are stored
rather than the raw data which are much larger. VI-
SUAL3 [5] and SCIRun [15] are among the many soft-
ware systems that can support runtime tracking of
three-dimensional numerical simulations. These sys-
tems may be operated in a distributed computing en-
vironment. Rowlan [16] and Ma [9] also demonstrate
such tracking capability using direct volume rendering
on a massively parallel computer. However, runtime
tracking is not always possible and desirable for cer-
tain applications. For example, one may want to ex-
plore the data set from different perspectives; or, the
amount of computation power required for real-time
rendering or a special visualization technique may be
not readily available. As a result, postprocessing of
pre-calculated data is still being widely used by many
scientific researchers.

Several techniques have been developed for visu-
alizing time-varying data as a postprocess. Lane [E]
develops a particle tracer for three-dimensional time-
dependent flow data. Max and Becker [12] apply tex-
tures for visualizing both steady and unsteady flow
field. Silver and Wang [20] presents a volume based
feature tracking algorithm to help visualize and ana-
lyze large time-varying data sets.

What more related to our work is the ray-cast ren-
dering strategy introduced by Shen and Johnson [18]
which they call differential volume rendering. By ex-
ploiting the data coherency between consecutive time
steps, they are able to reduce not only the rendering
time but also the storage space by 90% for their two
test data sets. Differential volume rendering is poten-
tially parallelizable and a caching technique [lo] may
be integrated into the renderer to avoid recalculations
for visualizing irregular data. Goel and Mukherjee [4]
also develop an approach similar to Shen and John-
son's and achieve comparable saving.

On the other hand, following the success of MPI,
MPI-IO represents another collective effort to propose
a standard makes developing a truly portable paral-
lel program possible. The current status of this effort
can be found in [l]. Even with the presence of parallel

10

I/O, we cannot guarantee that 1/0 time becomes less
dominant, especially when processor technology is ad-
vancing in a faster pace than 1/0 technology. In fact,
the strategy we develop in this research can be used
in conjunction with parallel 1/0 to achieve maximum
performance.

There has also been previous research discussing
the 1 / 0 characteristics of visualization applications
on parallel parallel computers [17]. However, most
of these projects are related to generic parallel 1/0
issues. Chiueh [3] presented a memory access algo-
rithm that allows conflict-free access to an interleaved
memory system that stores volumetric data sets. The
same algorithm is directly applicable in the context
of parallel disk arrays. The work described here, in
contrast, focuses mostly on resource utilization and
parallelism to optimize the overall process of visualiz-
ing time-varying volume data on parallel distributed-
memory architectures. We also want to to investigate
the feasibility of building a volumetric data manage-
ment system [6,2] that is easier to use on the one hand,
and is capable of efficiently interfacing with parallel
rendering engines on the other.

3 Parallelizat ion Approaches
The basic structure of a generic parallel volume ren-
dering program [ll] forms a three-step pipeline: 30
data distribution, in which the volumetric data set is
decomposed into subvolumes and distributed to the
processor nodes, subvolume rendering, in which each
processor node renders the assigned subvolume into a
2D subimage, and image compositing, in which the set
of 2D subimages from the previous step are compos-
ited according to the view angle to arrive at the final
2D projected image. When the degree of parallelism
is small to modest, i.e., under 16 nodes, the major
portion of the computational overhead is attributed
to subvolume rendering. However, when the degree of
parallelism is high or when the data set itself is large
(say 10243), 30 data distribution becomes a significant
performance factor.

Given a generic parallel volume renderer and a P-
processor machine, there are three possible approaches
to turn it into a parallel volume animator for TVVD
sets. The first approach simply runs the parallel vol-
ume renderer on the sequence of data sets one after
another. At any point in time, the entire P-processor
machine is dedicated to rendering a particular vol-
ume '. Therefore, only the parallelism associated with
rendering a single data volume, i.e., intra-volume par-
allelism, has been exploited. The second approach
takes the exact opposite approach by rendering P
data volumes simultaneously, each on one processor.
This approach thus only exploits inter-volume paral-
lelism. As the optimal systems performance can only
be achieved by carefully balancing two performance
factors: resource utilization efficiency and the paral-
lelism exploitation overhead, both intra-volume and

'Here we assume the pipeline effect is ignored.

Time c
U 0

Rendering

Display

Figure 1: The utilization of the system components
under the Intra-Volume approach. The numbers de-
note the data volume number.

Figure 2: The utilization of the system components
under the Inter-Volume approach when t o T (l) >
Pxt; , (l) . The number in each box denotes the data
volume number. The number of processors, P , is as-
sumed to be 4.

inter-volume parallelism should be exploited. The
third approach thus takes the hybrid approach, in
which P processor nodes are partitioned into L groups
(1 < L < P) , each of which renders one data vol-
ume at a time. We will show later on that the third
approach indeed performs the best among the three.
However, the optimal choice of L depends on the type
and scale of parallel machines as well the size of data
sets. Detailed characterizations of the optimal parti-
tioning strategy are described in Section 5.

4 Performance Analysis

4.1 Metrics
Parallel volume animation of TVVD sets involves ren-
dering multiple data volumes in a single task. There

are three potential performance metrics: start-up la-
tency, the time until which the rendered image of
the first volume appears; overall execution time, the
time until which the rendered image of the last vol-
ume appears; and inter-frame delay, the average time
between the appearance of consecutive rendered im-
ages. In conventional volume rendering applications,
since there is only one data set involved, start-up la-
tency and overall execution time are the same, and
inter-frame delay is irrelevant. However, when vol-
ume animation is used interactively, start-up latency
and inter-frame delay play an crucial role in deter-
mining the effectiveness of the system. When volume
animation is run in the batch mode, then overall ex-
ecution time should be the major concern. Note that
different design tradeoffs have to be made for different
performance criterion. For example, if start-up latency
is the criterion of choice, then the first approach dis-
cussed in Section 3 probably should be the design of
choice. In the rest of the paper, we will use the overall
execution time as the main criterion and only mention
the other two whenever appropriate.

4.2 Performance Models
Before we present the experiment results, it’s useful
to construct a performance model for each of the ap-
proaches described above so that one can have a basic
understanding of the experimental results. For the
rest of the discussion in this paper, without limiting
the applicability of our research results, we assume a
completely serial 1/0 system to focus on other issues.

Assume that there are N data volumes in the
TVVD set, there are P processors in the system, and
without loss of generality N = k * P . Let tm(p)
denote the total rendering time for a single data vol-
ume using p processors, including file access and data
distribution, rendering, compositing, and image deliv-
ery, tj,(p) the time to distribute a data set from the
disk to the p processors in the beginning of rendering
a data volume, and T (L) the overall execution time
for rendering N data volumes when P processors are
decomposed into L groups, each of which consists of E
processors. Note that we assume a completely serial
1 / 0 system in this study.

For the intra-volume approach, the overall execu-
tion time is

T(l) = N X t o r (P) (1)
Because P processors are collectively used to render

one data volume at a time, the rendering task for the
j-th volume won’t start until that for the (j - 1)-th
volume ends. The timing diagram for this approach
is shown in Figure 1. For the inter-volume approach,
the overall execution time is

T (P) = kxmaz{tor(l), Pxti,(l)} +
min{tor(1) - tio(l), (P - l)xtio(l)} (2)

Because each data volume is rendered only by a single
processor, there are at most P concurrent rendering
tasks on the system. If P * t;,(l) > tm(l) , then
the system is IO-bound. That is, the rendering task
for the (P + j)- th volume cannot start immediately

11

after the j-th volume is done. The second term in
Equation 2) accounts for the fact that the completion

(N - P + 1)-th volume either by (P - 1) * t io(l)
when to, (1) < P * ti,(l), or by tW(1) - t;,(1) when
t o T (l) > P * tio(l). The timing diagram for the
inter-volume approach assuming to, (1) > P x ti,(1)
is shown in Figure 2. For the hybrid approach, assume
that P processors are divided into L groups, each of
which now contains Pg = processors, then the
overall execution time is

time for t 6 e N-th volume is later than that for the

T (L) = Pgxkxmaz{ tor(Pg) , Lxt io(Pg)} +
maz{tor(Pg) - t i o (P g) j (L - l) x k o (J ' g) } (3)

As can be seen, the performance formula for the inter-
vo lume approach is essentially an instance of that of
the hybrid approach when L = P. Note that whether
the rendering task is IO-bound or CPU-bound de-
pends on the size of the data set as well as the number
of processors in the system.

5 Test Results
5.1 Experiment Setup
An existing parallel volume rendering software [ll] is
modified in such a way that it can exploit different
levels of intra-volume and inter-volume parallelism by
varying the configuration parameter L, the number
of processors dedicated to a single volume given that
the total number of processors is fixed. Our tests are
run on the 72-node Intel Paragon computer operated
at the NASA Langley Research Center as well as the
512-node Intel Paragon computer at the California In-
stitute of Technology. The data set is obtained from
a time-dependent turbulent simulation and its size is
128x 128x 128.

The general structure of the program is shown in
Figure 3. Given P processor nodes, there are L virtual
rendering nodes, each of which consists of $ physical
processor nodes. In addition, there is a host node per-
forms disk 1/0 access and volumetric data distribu-
tion. The same host node also collects the 2D subim-
ages from each node to form the resultant image and
sends it to the end user over the network. Because
multiple data volumes are being rendered simultane-
ously, appropriate flow control is needed to maintain
appropriate synchronization between the host node
and the virtual render nodes. These are indicated in
Figure 3 as gray lines going in both direction. Without
proper synchronization, subimages from different ren-
dering runs may become intermixed. For the rest of
the discussion, the term "number of processors'' refers
to the numberof physical processor nodes involved in

..................................
' virtual

rendering ,i

8 1 0

- data path sychronization

Figure 3: Software architecture of the implemented
parallel volume animator. P computation processors
are partitioned into L virtual rendering nodes, each of
which is responsible for rendering a single data volume
loaded from disk through a host node.

Overall Time (1 d seconds)
7.5
7.0

6.5

6.0

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1 .o

0.5

0.0

8 16 32 64 1 2 4
numer of partitions

~.

rendering only, i.e., excluding the 1 /0 and display
nodes. Also, the number of data volumes rendered
in each run is made equal to the number of

Figure 4: The overall execution time versus the num-
ber ofpartitions for three different processor sizes.

processors. We make this assumption to ensire" that
the pipeline start-up overhead will be appropriately
accounted for in the performance evaluation.

12

5.2 Results and Analvsis (seconds)
II

The measured overall execution time correlates quite
well with the prediction from the model. Presumably
this is because the performance model in Section 4
is stated in terms of delays associated with high-level
primitives. Our conjecture that the optimal perfor-
mance can only be achieved by effectively exploiting
both intra-volume and inter-volume parallelism is con-
firmed by Figure 4, which illustrates the relationship
between the overall execution time and the number of
processor partitions (L) , and is on a log2 scale along
the X axis. With 16 processors, the optimal number
of partitions for rendering 16 data volumes is 2 or 4;
with 32 processors, the optimal number for rendering
32 volumes becomes 4 or 8; with 64 processors, the
optimal number is 8. We want to re-emphasize the
overall execution time shown consists of three phases:
data distribution,which includes both disk 1/0 and
data distribution; rendering, which includes rendering
and compositing; and image display, which includes
collecting subimages and transferring the final image
over the network.

Intuitively, when L = 1, each data volume is ren-
dered one after another, without any overlap between
different phases from consecutive runs. As a result, the
utilization of various system components, as shown in
Figure 1, is inherently suboptimal. For exampl-, the
utilization of the rendering nodes is

trendering

tdatadiatribntion + tzendering t tdiaplay

On the other hand, when L = P , it takes at least P
runs for the entire pipeline to operate in full swing,
as shown in Figure 2, where P is assumed to be 4.
Unfortunately, since we assume there are a total of P
data volumes in the sequence, the pipeline never has
a chance to achieve its optimal throughput. Conse-
quently, the overall execution time is the worst among
all possible configurations for a fixed number of pro-
cessors. It should be noted, however, that when the
number of data volumes in the time-varying data set
is much larger than the number of physical processors
so that the start-up overhead can be effectively amor-
tized, the inter-volume approach should achieve the
best overall execution time because it incurs the least
parallelism overhead. Our test results in fact show
such trend in both 16- and 64-processor cases. In prac-
tice, this assumption is not necessarily always true,
Especially, when the data set size exceeds the node
memory, the inter-volume approach is simply not fea-
sible. The optimal partitioning presumably minimizes
the start-up overhead while maximizing the utilization
efficiency of the rendering nodes.

As we mentioned earlier, there are multiple perfor-
mance criteria for parallel volume animation of TVVD
sets. Figure 5 shows the behavior of the three criteria
described earlier versus the degree of partitioning, and
the tradeoff among them. The number of processors in
this case is fixed a t 32. The start-up latency is mono-
tonically increasing with the number of partitions be-
cause the number of processors dedicated to a single

500

300

200

150

100

70

50

30

20

15

10

7

5
1 2 4 8 16 32

numer of partitions

Figure 5: The overall execution time, start-up latency,
and average inter-frame delay versus the number of
partitions, when P=32

data volume is decreasing. The average inter-frame
delay is computed by subtracting the start-up latency
from the overall execution time and dividing the re-
sult by the number of data volumes rendered. Because
of the dominance of the overall execution time, the
inter-frame delay exhibits a somewhat similar curve
as that associated with overall execution time. The
computed inter-frame delay is almost identical to the
average of the inter-frame delays from actual measure-
ments. Note that the computed average inter-frame
delay doesn’t necessarily correspond to the apparent
inter-frame delay that users experienced. In general,
the rendered frames come in a burst, stop for a while,
and repeat again. The fact that there is a stop period
is symptomatic of an imbalance between the data dis-
tribution and rendering phases. It is interesting to ob-
serve that the smoothest rendering, i.e., the one with
the shortest stop period between bursts, indeed occurs
under the configuration that has the smallest overall
execution time, because it is the most balanced among
system components. For P = 32, Loptimat = 4 or 8.

Table 1 displays a more detailed look of the ren-
dering cost, in which we show the time to generate a
single frame by using up to 32 processors. The initial-
ization time is mostly for computing the voxel gradi-
ent values for lighting calculations. This initialization
must be done for each volume. Both initialization and
the ray-cast resampling time increase dramatically as
fewer processors are used to render a volume. The
compositing time includes both calculation and com-
munication time also decreases when more processors
are used except for the one-processor case in which no
compositing calculation is needed after the resampling
process. The total rendering time illustrates that the

13

I tasks I 32 nodes I 16 nodes I 8 nodes I 4 nodes I 2 nodes I 1 node 1
I initialize renderer I 0.269 I 0.654 I 1.593 I 3.36 I 7.02 I 12.96 I

ray-cast resample 2.8 5.5 9.5 19 37 64

total time 4.137 7.584 13.413 26.107 49.98 76.96
. composite partial images 1.068 1.43 2.32 3.747 5.96 0.00

Table 1: A breakdown of the rendering time for generating a single frame when using u p to 32 processors.

increasing parallelization penalty we get when using
more processors in a partition. Hence, with the same
number of processors, rendering multiple volumes con-
currently reduces the aggregated parallelization over-
head and gives us better overall throughput.

Note that the C++ implementation of the renderer
preclude us from using the native compiler which re-
sults in at least 30% performance degradation. While
our renderer may be optimized to obtain better ren-
dering rates, the use of a highly optimized renderer in
our study would show more significantly the relative
performance degradation due to 1/0 delay.

6 Conclusions
Rendering time-varying volumetric data sets poses a
different problem than rendering single-volume data
set. We start with a naive approach by repeating
the execution of a generic parallel volume renderer on
the time-varying sequence of 3D data sets, and find
that during the beginning and the end of the render-
ing process for a single data set, the nodes are mostly
idle, thus wasting resources unnecessarily. To address
this problem, we try to pipeline the rendering tasks
for consecutive data sets in the sequence, essentially
exploiting inter-volume as well as intra-volume paral-
lelism. Given a fixed number of processor nodes and
1 / 0 bandwidth, the research question is what the opti-
mal balance is between inter-volume and intra-volume
parallelism exploitation. We have implemented a pro-
totype volume renderer that embodies the idea of
pipelined rendering for time-varying data sets. We
are able to attain the most effective system utiliza-
tion bounded only by the data distribution overhead.
We also identify three possible performance criteria
for evaluating TVVD data sets, and show that differ-
ent partitioning strategies are needed to optimize for
different criteria.

Our results show that there indeed exists an op-
timal partitioning for a given data set and a par-
allel computer configuration. But the optimum de-
pends on such factors as the machine size, the length
of TVVD sequence, and the ratio between computa-
tion and communication/IO overheads, which in turn
is affected by the hardware characteristics and the
coherence property of the data set itself. Thus, if
these hardware system specific parameters are avail-
able, an optimal partitioning may be determined au-
tomatically.

This study also helps us identify the design issues
to construct a volumetric data management system
that can interface with parallel rendering engines effi-
ciently. In this work, we find that a dedicated 1/0
manager plays an important role in improving the
overall performance of TVVD rendering. It seems thus
logical to include such an 1/0 manager in the envi-
sioned volumetric data management system. However,
there remains the work of developing a sufficiently flex-
ible interface for the 1/0 manager that can smoothly
intergrate with a wide variety of parallel renderers. As
part of the volumetric database project, currently we
are also working on volumetric data compression al-
gorithms that are shown to be ”friendly” to volume
renderers, i.e., algorithms that can effectively exploit
the coherency properties of volume rendering compu-
tation.

As we mentioned, this approach can be used in con-
junction with parallel 1/0 facilities to achieve even
better rendering rates. Furthermore, with a good par-
allel 1/0 system, the renderer can also read ahead by
keeping multiple buffers at each rendering node: one
for the current frame being rendered and one for the
next frame being read ahead. The read aheads would
then have to use asynchronous read request which re-
turn after the read is queued but before it completes.

The current implementation of the renderer may be
optimized in two ways. First, it takes a slice-by-slice
broadcasting approach to distribute the volume data
set to the processor nodes, which then pick up the
assigned portions of the slices. A more efficient ap-
proach is to store 3D subvolumes on the disk, and dis-
tribute 3D subvolumes to appropriate nodes directly.
One advantage of this approach is the reduction of in-
termediate packing/unpacking overhead. Ultimately
a database system specifically designed for efficient
access to volumetric data will be the most desirable
solution.

Second, currently all processors involved in a ren-
dering run have to be either implicitly or explicitly
synchronized. As a result, additional synchronization
overhead is inevitable. An alternative approach is
to take a dataflow, functionally-specialized model in
which each processor node receives data packets, per-
forms a fixed function, and sends them to the next
processor node in the logical pipeline. Each piece of
data travels across the system with a tag to identify
the associated volume. With this architecture, there
is no need to synchronize the processors in a lock-step
fashion, thus reducing the synchronization delay. It’s

14

up to the final pipeline stage to pull the subimages to-
gether and form the final image. All other nodes are
in an autonomous loop and operate completely inde-
pendently of one another. Because throughput is more
important than latency for parallel volume animation,
this model seems to be a better fit than the current
implementation.

Acknowledgement
We want to thank the Center for Advanced Comput-
ing Research at the California Institute of Technology
for the computer time on their Intel Paragon comput-
ers. Thanks also go to Jamie Painter for many useful
suggestions. This first author is also supported by
an NSF Career Award MIP-9502067 and a contract
95F138600000 from Community Management Staff's
Massive Digital Data System Program.

References
A Parallel File 1/0 Interface for MPI.
http://lovelace.nasa.nasa.gov/MPI-IO.

J. Boyle, S.G. Eick, M. Hemmje, D.A. Keim, J.P.
Lee, and E. Sumner. Database Issues for Data
Visualization: Interaction, User Interfaces, and
Presentation. In Proceedings of the IEEE 1993
Database Issues for Data Visualization Work-
shop, pages 25-34. Springer-Verlag, 1994.

T.-C. Chiueh. A Novel Memory Access Mecha-
nism for Arbitrary-View-Projection Volume Ren-
dering. In Proceedings of Supercomputing '93
Conference, 1993.

V. Goel and A. Mukherjee. Volumetric Ray Cast-
ing of Time Varying Data Sets. In Proceedings
of the ICASE/LaRc Symposium on Visualizing
Time- Varying Data, pages 89-106, 1996. NASA
Conference Publication 3321.

Robert Haimes. Unsteady Visualization of Grand
Challenge Size CFD Problems: Traditional Post-
Processing vs. Co-Processing. In Proceedings
of the ICASE/LaRc Symposium on Visualizing
Time- Varying Data, pages 63-75, 1996. NASA
Conference Publication 3321.

P. Kochevar. Database Management for Data
Visualization. In Proceedings of the IEEE 1993
Database Issues for Data Visualization Work-
shop, pages 109-117. Springer-Verlag, 1994.

Philippe Lacroute. Real-Time Volume Render-
ing on Shared Memory Multiprocessors Using the
Shear-Warp Factorization. In Proceedings of Par-
allel Rendering Symposium, pages 15-22, 1995.

D. Lane. UFAT- A Particle Tracer for Time-
Dependent Flow Fields. In Proceedings of the Vi-
sualization '94 Conference, pages 257-264, 1994.

[9] Kwan-Liu Ma. Runtime Volume Visualization for
Parallel CFD. In Proceedings of Parallel CFD '95
Conference, 1995. California Institure of Technol-
ogy, Pasadena, CA, June 25-28.

[lo] Kwan-Liu Ma, M.F. Cohen, and J.S. Painter. Vol-
ume Seeds: A Volume Exploration Technique.
The Journal of Visualization and Computer An-
imation, 2:135-140, 1991.

[ll] Kwan-Liu Ma, Jamie S Painter, C.D. Hansen,
and M.F. Krogh. A Data Distributed Paral-
lel Algorithm for Ray-Traced Volume Rendering.
In Proceedings of Parallel Rendering Symposium,
1993. San Jose, October 25-26.

[12] N. Max and E. Becker. Flow Visualization us-
ing Moving Textures. In Proceedings of the
ICASE/LaRc Symposium an Visualizing Time-
Varying Data, pages 77-88, 1996. NASA Con-
ference Publication 3321.

[131 Ulrich Neumann. Parallel Volume-Rendering Al-
gorithm Performance on Mesh-Connected Multi-
computers. In Proceedings of Parallel Rendering
Symposium, pages 97-104, 1993. San Jose, Octo-
ber 25-26.

Volume Render-
ing on Scalable Shared-Memory MIMD Architec-
tures. In 1992 Workshop on Volume Visualiza-
tion, pages 17-24, 1992. Boston, October 19-20.

[15] S. G. Parker and C. R. Johnson. SCIRun: A
Scientific Programming Environment for Com-
putational Steering. In On-line Proceedings
of the 1995 Supercomputing Conference, 1995.
http://scxy. tc.cornell.edu/sc95/proceedings/.

[16] J.S. Rowlan, E. Lent, N. Gokhale, and S. Brad-
shaw. A Distributed, Parallel, Interactive Volume
Rendering Package. In Proceedings of the Visual-
ization '94 Conference, pages 21-30, 1994.

[17] K.E. Seamons and M. Winslett. An Efficient Ab-
stract Interface for Multidimensional Array I/O.
In Proceedings of Supercomputing '94, pages 650-
659, November 1994.

Differential
Volume Rendering: A Fast Volume Visualization
technique for Flow Animation. In Proceedings of
the Visualization '94 Conference, pages 180-187,
October 1934.

[19] C.T. Silva and A.E. Kaufman. Parallel Perfor-
mance Measures for Volume Ray Casting. In Pro-
ceedings of Visualization '94 Conference, pages

[20] D. Silver and X. Wang. Volume Tracking. In
Proceedings of the Visualization '96 Conference,
pages 157-164, 1996.

[14] Jason Nieh and Marc Levoy.

[18] Han-Wei Shen and C.R. Johnson.

196-204, 1994.

http://lovelace.nasa.nasa.gov/MPI-IO
http://scxy

