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Abstract 
This paper presents a strategy for efficiently render- 
ing time-varying volume data on  a distributed-memory 
parallel computer. Visualizing time-varying volume 
data take both large storage space and long computa- 
t ion time. Instead of employing all processors to ren- 
der one volume at a time, a pipelined rendering ap- 
proach partitions processors into groups so that multi- 
ple volumes can be rendered concurrently. The overall 
rendering time is greatly minimized because rendering 
is overlapped with 1/0 required to load the volume data 
sets. Moreover, parallelization overhead may be re- 
duced as a result of partitioning the processors. We 
modify an existing parallel volume renderer to exploit 
various levels of rendering parallelism and to study 
how the partitioning of processors may lead to opti- 
mal rendering performance. We find that two factors 
affecting the overall ezecution time are resource uti- 
lization efficiency and pipeline startup latency. The 
optimal partitioning configuration is the one that bal- 
ances these two factors. Tests on Intel Paragon com- 
puters show that in general optimal partitionings do 
exist for a given rendering task and result in 40-50% 
saving in overall rendering time. 

1 Introduction 
Time-varying volumetric data sets (TVVD), which 
may be obtained from numerical simulations or re- 
mote sensing instruments, provide scientists insights 
into the detailed dynamics of the phenomenon under 
study. When appropriately rendered, they form an 
animation sequence that can illustrates how the un- 
derlying structures evolve over time. For visualizing 
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large data sets, parallel processing is often adopted to 
speed up the expensive volumetric rendering process. 
Although the subject of rendering a single volumetric 
data set using a parallel computer has been studied ex- 
tensively by numerous researchers [14, 13, 11, 19, 71, 
parallel animation of TVVD, in contrast, received rel- 
atively little attention. 

Compared to parallel volume rendering of a single 
data set, rendering TVVD in parallel poses a different 
set of design tradeoffs. First, because TVVD typi- 
cally consists of a sequence of data volumes, the 1/0 
overhead to bring the data into the parallel machines, 
accounts for a significant portion of the end-to-end re- 
sponse time, and can no longer be ignored as is usually 
done by many researchers in parallel volume render- 
ing. The key technique to address this 1/0 problem 
is to hide the 1/0 overhead by overlapping computa- 
tion with I/O. Secondly, since a TVVD rendering job 
is actually comprised of multiple rendering tasks, it is 
important to make efficient utilization of the compu- 
tation resources so that the overall rendering time is 
minimized. In particular, one should remember that 
parallelization almost always incurs certain overhead 
such as data distribution, result collection, or synchro- 
nization. Therefore it is critical to balance between 
the parallelism and overhead of individual rendering 
tasks, with the goal of optimizing the overall perfor- 
mance of the entire TVVD rendering job. Thirdly, 
whereas in single-data-set rendering, the response time 
is the single most important criterion, in TVVD ren- 
dering there are multiple criteria that are potentially 
of interest to the users. One possibility is the start-up 
latency, the time until which the first image appears. 
Another candidate is the overall execution time, the 
time until which the last image appears. Depending 
on the requirements of the end users, different design 
tradeoffs are to be made to optimize different perfor- 
mance criteria. 

We argue that parallel volume animation requires 
re-thinking of the types of parallelism one should ex- 
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ploit to achieve the optimal performance. In particu- 
lar, I/O overlap and resource utilization efficiency play 
a crucial role in the parallelization strategy. We start 
with a generic parallel volume rendering program [ll], 
modify it to experiment with different approaches to 
support parallel volume animation for time-varying 
data sets, and analyze the performance tradeoff among 
various partitioning strategies. Although the results 
and analysis are based on implementations on Intel 
Paragon, we believe that the conclusions should re- 
main valid for other parallel distributed memory ar- 
chitectures. 

2 Related Work 
Ideally, visualizing time-varying volume data should 
be done while data are being generated, so that users 
receive immediate visual feedback on the subject un- 
der study and the visualization results are stored 
rather than the raw data which are much larger. VI- 
SUAL3 [5] and SCIRun [15] are among the many soft- 
ware systems that can support runtime tracking of 
three-dimensional numerical simulations. These sys- 
tems may be operated in a distributed computing en- 
vironment. Rowlan [16] and Ma [9] also demonstrate 
such tracking capability using direct volume rendering 
on a massively parallel computer. However, runtime 
tracking is not always possible and desirable for cer- 
tain applications. For example, one may want to ex- 
plore the data set from different perspectives; or, the 
amount of computation power required for real-time 
rendering or a special visualization technique may be 
not readily available. As a result, postprocessing of 
pre-calculated data is still being widely used by many 
scientific researchers. 

Several techniques have been developed for visu- 
alizing time-varying data as a postprocess. Lane [E] 
develops a particle tracer for three-dimensional time- 
dependent flow data. Max and Becker [12] apply tex- 
tures for visualizing both steady and unsteady flow 
field. Silver and Wang [20] presents a volume based 
feature tracking algorithm to help visualize and ana- 
lyze large time-varying data sets. 

What more related to our work is the ray-cast ren- 
dering strategy introduced by Shen and Johnson [18] 
which they call differential volume rendering. By ex- 
ploiting the data coherency between consecutive time 
steps, they are able to reduce not only the rendering 
time but also the storage space by 90% for their two 
test data sets. Differential volume rendering is poten- 
tially parallelizable and a caching technique [lo] may 
be integrated into the renderer to  avoid recalculations 
for visualizing irregular data. Goel and Mukherjee [4] 
also develop an approach similar to Shen and John- 
son's and achieve comparable saving. 

On the other hand, following the success of MPI, 
MPI-IO represents another collective effort to propose 
a standard makes developing a truly portable paral- 
lel program possible. The current status of this effort 
can be found in [l]. Even with the presence of parallel 
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I/O, we cannot guarantee that 1/0 time becomes less 
dominant, especially when processor technology is ad- 
vancing in a faster pace than 1/0 technology. In fact, 
the strategy we develop in this research can be used 
in conjunction with parallel 1/0 to achieve maximum 
performance. 

There has also been previous research discussing 
the 1 / 0  characteristics of visualization applications 
on parallel parallel computers [17]. However, most 
of these projects are related to generic parallel 1/0 
issues. Chiueh [3] presented a memory access algo- 
rithm that allows conflict-free access to  an interleaved 
memory system that stores volumetric data sets. The 
same algorithm is directly applicable in the context 
of parallel disk arrays. The work described here, in 
contrast, focuses mostly on resource utilization and 
parallelism to optimize the overall process of visualiz- 
ing time-varying volume data on parallel distributed- 
memory architectures. We also want to  to  investigate 
the feasibility of building a volumetric data manage- 
ment system [6,2] that is easier to use on the one hand, 
and is capable of efficiently interfacing with parallel 
rendering engines on the other. 

3 Parallelizat ion Approaches 
The basic structure of a generic parallel volume ren- 
dering program [ll] forms a three-step pipeline: 30 
data distribution, in which the volumetric data set is 
decomposed into subvolumes and distributed to  the 
processor nodes, subvolume rendering, in which each 
processor node renders the assigned subvolume into a 
2D subimage, and image compositing, in which the set 
of 2D subimages from the previous step are compos- 
ited according to the view angle to arrive at the final 
2D projected image. When the degree of parallelism 
is small to modest, i.e., under 16 nodes, the major 
portion of the computational overhead is attributed 
to subvolume rendering. However, when the degree of 
parallelism is high or when the data set itself is large 
(say 10243), 30 data distribution becomes a significant 
performance factor. 

Given a generic parallel volume renderer and a P- 
processor machine, there are three possible approaches 
to turn it into a parallel volume animator for TVVD 
sets. The first approach simply runs the parallel vol- 
ume renderer on the sequence of data sets one after 
another. At any point in time, the entire P-processor 
machine is dedicated to rendering a particular vol- 
ume '. Therefore, only the parallelism associated with 
rendering a single data volume, i.e., intra-volume par- 
allelism, has been exploited. The second approach 
takes the exact opposite approach by rendering P 
data volumes simultaneously, each on one processor. 
This approach thus only exploits inter-volume paral- 
lelism. As the optimal systems performance can only 
be achieved by carefully balancing two performance 
factors: resource utilization efficiency and the paral- 
lelism exploitation overhead, both intra-volume and 

'Here we assume the pipeline effect is ignored. 
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Figure 1: The utilization of the system components 
under the Intra-Volume approach. The numbers de- 
note the data volume number. 

Figure 2: The utilization of the system components 
under the Inter-Volume approach when t o T ( l )  > 
Pxt; , ( l ) .  The number in each box denotes the data 
volume number. The number of processors, P ,  is as- 
sumed to be 4. 

inter-volume parallelism should be exploited. The 
third approach thus takes the hybrid approach, in 
which P processor nodes are partitioned into L groups 
(1 < L < P ) ,  each of which renders one data vol- 
ume at  a time. We will show later on that the third 
approach indeed performs the best among the three. 
However, the optimal choice of L depends on the type 
and scale of parallel machines as well the size of data 
sets. Detailed characterizations of the optimal parti- 
tioning strategy are described in Section 5. 

4 Performance Analysis 

4.1 Metrics 
Parallel volume animation of TVVD sets involves ren- 
dering multiple data volumes in a single task. There 

are three potential performance metrics: start-up la- 
tency, the time until which the rendered image of 
the first volume appears; overall execution time, the 
time until which the rendered image of the last vol- 
ume appears; and inter-frame delay, the average time 
between the appearance of consecutive rendered im- 
ages. In conventional volume rendering applications, 
since there is only one data set involved, start-up la- 
tency and overall execution time are the same, and 
inter-frame delay is irrelevant. However, when vol- 
ume animation is used interactively, start-up latency 
and inter-frame delay play an crucial role in deter- 
mining the effectiveness of the system. When volume 
animation is run in the batch mode, then overall ex- 
ecution time should be the major concern. Note that 
different design tradeoffs have to be made for different 
performance criterion. For example, if start-up latency 
is the criterion of choice, then the first approach dis- 
cussed in Section 3 probably should be the design of 
choice. In the rest of the paper, we will use the overall 
execution time as the main criterion and only mention 
the other two whenever appropriate. 

4.2 Performance Models 
Before we present the experiment results, it’s useful 
to construct a performance model for each of the ap- 
proaches described above so that one can have a basic 
understanding of the experimental results. For the 
rest of the discussion in this paper, without limiting 
the applicability of our research results, we assume a 
completely serial 1/0 system to focus on other issues. 

Assume that there are N data volumes in the 
TVVD set, there are P processors in the system, and 
without loss of generality N = k * P .  Let tm(p) 
denote the total rendering time for a single data vol- 
ume using p processors, including file access and data 
distribution, rendering, compositing, and image deliv- 
ery, tj,(p) the time to distribute a data set from the 
disk to the p processors in the beginning of rendering 
a data volume, and T ( L )  the overall execution time 
for rendering N data volumes when P processors are 
decomposed into L groups, each of which consists of E 
processors. Note that we assume a completely serial 
1 / 0  system in this study. 

For the intra-volume approach, the overall execu- 
tion time is 

T(l) = N X t o r ( P )  (1) 
Because P processors are collectively used to  render 

one data volume at  a time, the rendering task for the 
j-th volume won’t start until that for the ( j  - 1)-th 
volume ends. The timing diagram for this approach 
is shown in Figure 1. For the inter-volume approach, 
the overall execution time is 

T ( P )  = kxmaz{tor(l), Pxti,(l)} + 
min{tor(1) - tio(l), (P - l)xtio(l)} (2) 

Because each data volume is rendered only by a single 
processor, there are at most P concurrent rendering 
tasks on the system. If P * t;,(l) > tm(l) ,  then 
the system is IO-bound. That is, the rendering task 
for the ( P  + j)- th volume cannot start immediately 

11 



after the j-th volume is done. The second term in 
Equation 2) accounts for the fact that the completion 

( N  - P + 1)-th volume either by ( P  - 1) * t io(l)  
when to, (1) < P * ti,( l), or by tW(  1) - t;,( 1) when 
t o T ( l )  > P * tio(l). The timing diagram for the 
inter-volume approach assuming to, (1) > P x ti,( 1) 
is shown in Figure 2. For the hybrid approach, assume 
that P processors are divided into L groups, each of 
which now contains Pg = processors, then the 
overall execution time is 

time for t 6 e N-th volume is later than that for the 

T ( L )  = Pgxkxmaz{ tor(Pg) ,  Lxt io(Pg)}  + 
maz{tor(Pg) - t i o ( P g ) j  ( L  - l ) x k o ( J ' g ) } ( 3 )  

As can be seen, the performance formula for the inter-  
vo lume  approach is essentially an instance of that of 
the hybrid approach when L = P.  Note that whether 
the rendering task is IO-bound or CPU-bound de- 
pends on the size of the data set as well as the number 
of processors in the system. 

5 Test Results 
5.1 Experiment Setup 
An existing parallel volume rendering software [ll] is 
modified in such a way that it can exploit different 
levels of intra-volume and inter-volume parallelism by 
varying the configuration parameter L,  the number 
of processors dedicated to a single volume given that 
the total number of processors is fixed. Our tests are 
run on the 72-node Intel Paragon computer operated 
at  the NASA Langley Research Center as well as the 
512-node Intel Paragon computer at  the California In- 
stitute of Technology. The data set is obtained from 
a time-dependent turbulent simulation and its size is 
128x 128x 128. 

The general structure of the program is shown in 
Figure 3. Given P processor nodes, there are L virtual 
rendering nodes, each of which consists of $ physical 
processor nodes. In addition, there is a host node per- 
forms disk 1/0 access and volumetric data distribu- 
tion. The same host node also collects the 2D subim- 
ages from each node to form the resultant image and 
sends it to the end user over the network. Because 
multiple data volumes are being rendered simultane- 
ously, appropriate flow control is needed to maintain 
appropriate synchronization between the host node 
and the virtual render nodes. These are indicated in 
Figure 3 as gray lines going in both direction. Without 
proper synchronization, subimages from different ren- 
dering runs may become intermixed. For the rest of 
the discussion, the term "number of processors'' refers 
to  the numberof physical processor nodes involved in 

.................................. 
' virtual 

rendering ,i 

8 1  0 

- data path sychronization 

Figure 3: Software architecture of the implemented 
parallel volume animator. P computation processors 
are partitioned into L virtual rendering nodes, each of 
which is responsible for rendering a single data volume 
loaded from disk through a host node. 

Overall Time (1 d seconds) 
7.5 
7.0 

6.5 

6.0 

5.5 

5.0 

4.5 

4.0 

3.5 

3.0 

2.5 

2.0 

1.5 

1 .o 

0.5 

0.0 

8 16 32 64 1 2 4 
numer of partitions 

~. 

rendering only, i.e., excluding the 1 /0  and display 
nodes. Also, the number of data volumes rendered 
in each run is made equal to the number of 

Figure 4: The overall execution time versus the num- 
ber ofpartitions for three different processor sizes. 

processors. We make this assumption to ensire" that 
the pipeline start-up overhead will be appropriately 
accounted for in the performance evaluation. 
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5.2 Results and Analvsis (seconds) 
II 

The measured overall execution time correlates quite 
well with the prediction from the model. Presumably 
this is because the performance model in Section 4 
is stated in terms of delays associated with high-level 
primitives. Our conjecture that the optimal perfor- 
mance can only be achieved by effectively exploiting 
both intra-volume and inter-volume parallelism is con- 
firmed by Figure 4, which illustrates the relationship 
between the overall execution time and the number of 
processor partitions ( L ) ,  and is on a log2 scale along 
the X axis. With 16 processors, the optimal number 
of partitions for rendering 16 data volumes is 2 or 4; 
with 32 processors, the optimal number for rendering 
32 volumes becomes 4 or 8; with 64 processors, the 
optimal number is 8. We want to re-emphasize the 
overall execution time shown consists of three phases: 
data distribution,which includes both disk 1/0 and 
data distribution; rendering, which includes rendering 
and compositing; and image display, which includes 
collecting subimages and transferring the final image 
over the network. 

Intuitively, when L = 1, each data volume is ren- 
dered one after another, without any overlap between 
different phases from consecutive runs. As a result, the 
utilization of various system components, as shown in 
Figure 1, is inherently suboptimal. For exampl-, the 
utilization of the rendering nodes is 

trendering 

tdatadiatribntion + tzendering t tdiaplay 

On the other hand, when L = P ,  it takes at  least P 
runs for the entire pipeline to operate in full swing, 
as shown in Figure 2, where P is assumed to be 4. 
Unfortunately, since we assume there are a total of P 
data volumes in the sequence, the pipeline never has 
a chance to achieve its optimal throughput. Conse- 
quently, the overall execution time is the worst among 
all possible configurations for a fixed number of pro- 
cessors. It should be noted, however, that when the 
number of data volumes in the time-varying data set 
is much larger than the number of physical processors 
so that the start-up overhead can be effectively amor- 
tized, the inter-volume approach should achieve the 
best overall execution time because it incurs the least 
parallelism overhead. Our test results in fact show 
such trend in both 16- and 64-processor cases. In prac- 
tice, this assumption is not necessarily always true, 
Especially, when the data set size exceeds the node 
memory, the inter-volume approach is simply not fea- 
sible. The optimal partitioning presumably minimizes 
the start-up overhead while maximizing the utilization 
efficiency of the rendering nodes. 

As we mentioned earlier, there are multiple perfor- 
mance criteria for parallel volume animation of TVVD 
sets. Figure 5 shows the behavior of the three criteria 
described earlier versus the degree of partitioning, and 
the tradeoff among them. The number of processors in 
this case is fixed a t  32. The start-up latency is mono- 
tonically increasing with the number of partitions be- 
cause the number of processors dedicated to a single 
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Figure 5:  The overall execution time, start-up latency, 
and average inter-frame delay versus the number of 
partitions, when P=32 

data volume is decreasing. The average inter-frame 
delay is computed by subtracting the start-up latency 
from the overall execution time and dividing the re- 
sult by the number of data volumes rendered. Because 
of the dominance of the overall execution time, the 
inter-frame delay exhibits a somewhat similar curve 
as that associated with overall execution time. The 
computed inter-frame delay is almost identical to the 
average of the inter-frame delays from actual measure- 
ments. Note that the computed average inter-frame 
delay doesn’t necessarily correspond to the apparent 
inter-frame delay that users experienced. In general, 
the rendered frames come in a burst, stop for a while, 
and repeat again. The fact that there is a stop period 
is symptomatic of an imbalance between the data dis- 
tribution and rendering phases. It is interesting to ob- 
serve that the smoothest rendering, i.e., the one with 
the shortest stop period between bursts, indeed occurs 
under the configuration that has the smallest overall 
execution time, because it is the most balanced among 
system components. For P = 32,  Loptimat = 4 or 8. 

Table 1 displays a more detailed look of the ren- 
dering cost, in which we show the time to generate a 
single frame by using up to 32 processors. The initial- 
ization time is mostly for computing the voxel gradi- 
ent values for lighting calculations. This initialization 
must be done for each volume. Both initialization and 
the ray-cast resampling time increase dramatically as 
fewer processors are used to render a volume. The 
compositing time includes both calculation and com- 
munication time also decreases when more processors 
are used except for the one-processor case in which no 
compositing calculation is needed after the resampling 
process. The total rendering time illustrates that the 
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I tasks I 32 nodes I 16 nodes I 8 nodes I 4 nodes I 2 nodes I 1 node 1 
I initialize renderer I 0.269 I 0.654 I 1.593 I 3.36 I 7.02 I 12.96 I 

ray-cast resample 2.8 5.5 9.5 19 37 64 

total time 4.137 7.584 13.413 26.107 49.98 76.96 
. composite partial images 1.068 1.43 2.32 3.747 5.96 0.00 

Table 1: A breakdown of the rendering time for generating a single frame when using u p  to 32 processors. 

increasing parallelization penalty we get when using 
more processors in a partition. Hence, with the same 
number of processors, rendering multiple volumes con- 
currently reduces the aggregated parallelization over- 
head and gives us better overall throughput. 

Note that the C++ implementation of the renderer 
preclude us from using the native compiler which re- 
sults in at  least 30% performance degradation. While 
our renderer may be optimized to obtain better ren- 
dering rates, the use of a highly optimized renderer in 
our study would show more significantly the relative 
performance degradation due to 1/0 delay. 

6 Conclusions 
Rendering time-varying volumetric data sets poses a 
different problem than rendering single-volume data 
set. We start with a naive approach by repeating 
the execution of a generic parallel volume renderer on 
the time-varying sequence of 3D data sets, and find 
that during the beginning and the end of the render- 
ing process for a single data set, the nodes are mostly 
idle, thus wasting resources unnecessarily. To address 
this problem, we try to pipeline the rendering tasks 
for consecutive data sets in the sequence, essentially 
exploiting inter-volume as well as intra-volume paral- 
lelism. Given a fixed number of processor nodes and 
1 / 0  bandwidth, the research question is what the opti- 
mal balance is between inter-volume and intra-volume 
parallelism exploitation. We have implemented a pro- 
totype volume renderer that embodies the idea of 
pipelined rendering for time-varying data sets. We 
are able to attain the most effective system utiliza- 
tion bounded only by the data distribution overhead. 
We also identify three possible performance criteria 
for evaluating TVVD data sets, and show that differ- 
ent partitioning strategies are needed to optimize for 
different criteria. 

Our results show that there indeed exists an op- 
timal partitioning for a given data set and a par- 
allel computer configuration. But the optimum de- 
pends on such factors as the machine size, the length 
of TVVD sequence, and the ratio between computa- 
tion and communication/IO overheads, which in turn 
is affected by the hardware characteristics and the 
coherence property of the data set itself. Thus, if 
these hardware system specific parameters are avail- 
able, an optimal partitioning may be determined au- 
tomatically. 

This study also helps us identify the design issues 
to construct a volumetric data management system 
that can interface with parallel rendering engines effi- 
ciently. In this work, we find that a dedicated 1/0 
manager plays an important role in improving the 
overall performance of TVVD rendering. It seems thus 
logical to include such an 1/0 manager in the envi- 
sioned volumetric data management system. However, 
there remains the work of developing a sufficiently flex- 
ible interface for the 1/0 manager that can smoothly 
intergrate with a wide variety of parallel renderers. As 
part of the volumetric database project, currently we 
are also working on volumetric data compression al- 
gorithms that are shown to be ”friendly” to volume 
renderers, i.e., algorithms that can effectively exploit 
the coherency properties of volume rendering compu- 
tation. 

As we mentioned, this approach can be used in con- 
junction with parallel 1/0 facilities to achieve even 
better rendering rates. Furthermore, with a good par- 
allel 1/0 system, the renderer can also read ahead by 
keeping multiple buffers at  each rendering node: one 
for the current frame being rendered and one for the 
next frame being read ahead. The read aheads would 
then have to use asynchronous read request which re- 
turn after the read is queued but before it completes. 

The current implementation of the renderer may be 
optimized in two ways. First, it takes a slice-by-slice 
broadcasting approach to distribute the volume data 
set to the processor nodes, which then pick up the 
assigned portions of the slices. A more efficient ap- 
proach is to store 3D subvolumes on the disk, and dis- 
tribute 3D subvolumes to appropriate nodes directly. 
One advantage of this approach is the reduction of in- 
termediate packing/unpacking overhead. Ultimately 
a database system specifically designed for efficient 
access to volumetric data will be the most desirable 
solution. 

Second, currently all processors involved in a ren- 
dering run have to be either implicitly or explicitly 
synchronized. As a result, additional synchronization 
overhead is inevitable. An alternative approach is 
to take a dataflow, functionally-specialized model in 
which each processor node receives data packets, per- 
forms a fixed function, and sends them to the next 
processor node in the logical pipeline. Each piece of 
data travels across the system with a tag to identify 
the associated volume. With this architecture, there 
is no need to synchronize the processors in a lock-step 
fashion, thus reducing the synchronization delay. It’s 
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up to the final pipeline stage to pull the subimages to- 
gether and form the final image. All other nodes are 
in an autonomous loop and operate completely inde- 
pendently of one another. Because throughput is more 
important than latency for parallel volume animation, 
this model seems to be a better fit than the current 
implementation. 
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