
The easy access to low-cost, high-
performance, network-aware computers

has impacted the way scientists conduct their research.
While productivity has improved, scientists are bur-
dened by the increasing size of the data they generate.
Visualization is an effective and economical means to
explore the data and the insights obtained through sci-
entific study. However, due to the size of the generat-
ed data, the scientists, their data, and the visualization
software are often located on different machines at geo-

graphically distributed locations.
Grid-based computing solves

some of these problems by facilitat-
ing access to these different
resources. But management in a
grid-based environment isn’t cen-
tralized. To use grid resources effec-
tively, researchers need a central
access point to manage the
resources, provide a visual means to
explore the data, and record these
explorations for further investiga-
tion and dissemination. This article
describes such a system that’s being
developed jointly by the University
of California, Davis, and the
Lawrence Berkeley National Labo-
ratory (LBNL).

The centralized system acts as a portal into grid-
enabled visualization systems. Scientists using the por-
tal can focus on the important task of extracting insights
from their data through visualization instead of having
to worry about process management. Because scientists
at LBNL and their collaborators require access to the
portal from around the world, the portal’s interface is
entirely Web-based. Authenticated users only need a
standards-compliant Web browser to explore their data
from anywhere in the world.

The portal provides a Web-based interface not just for
exploring but also for encapsulating visualization data.
Encapsulating the process lets users reproduce the visu-
alization results for validation or extend those results

by continuing data exploration. In this article, we dis-
cuss the integration of our grid-enabled visualization
server, the visualization Web application that performs
the visualization session management, and the Web-
based interface.

Grid-based portals
A portal is a single point of presence (typically host-

ed on the Web) that provides centralized access to
widely distributed collections of information or ser-
vices. The portal organizes this information to hide its
complexity and location from the user. Portal technol-
ogy also provides location-independent access to state
information. When you log in to the URL of the por-
tal’s interface, you can access the same view of your
personalized environment and data. Yahoo and Hot-
mail are typical consumer-oriented examples of this
kind of capability. Grid portals extend the portal par-
adigm to organize and manage widely distributed com-
puting resources, software components, and services
that support collaboration among the people that form
a virtual organization.

Many virtual collaboration and distributed application
developers have turned to grid portals as the primary way
to hide the complexity of distributed applications under
a single interface. (See the sidebar “Related Web- and
Grid-Based Visualization Work” for information about
related research.) Consequently, several portal develop-
ment toolkits have emerged, including the San Diego
Supercomputing Center (SDSC) GridPort (http://
gridport.npaci.edu/), the Grid Portal Development Kit
(http://www.itg.lbl.gov/grid/projects/GPDK/), and
GridSphere (http://www.ascportal.org/).1

Portal interfaces need not be Web-based, but Web por-
tals have been widely adopted by the grid community,
in part because of the ability to leverage the wide vari-
ety of robust development tools, components, and plat-
forms that have already been developed for e-commerce
servers. Also, given the ubiquitous availability of the Web
and the comparatively uniform cross-platform pro-
gramming model it offers for the client interface, the
Web makes an attractive platform for a widely deployed

Graphics Applications for Grid Computing

Our Web-based portal lets

users explore, encapsulate,

and disseminate visualization

results over the grid. This

portal integrates an interface

client, a visualization Web

application, and a centralized

application server.

T.J. Jankun-Kelly, Oliver Kreylos, Kwan-Liu Ma,
Bernd Hamann, and Kenneth I. Joy
University of California, Davis

John Shalf and E. Wes Bethel
Lawrence Berkeley National Laboratory

Deploying Web-
Based Visual
Exploration Tools
on the Grid

40 March/April 2003 Published by the IEEE Computer Society 0272-1716/03/$17.00 © 2003 IEEE

client interface to grid services. Furthermore, the Web
requires essentially no custom software installation for
the scientists who use the service.

We regard the spreadsheet approach as an excellent

match for the Web’s interaction modality. Spreadsheets
can capitalize on the HTML table display paradigm as
well as the use of hyperlinks to drill down into informa-
tion content. We can easily integrate such an interface

IEEE Computer Graphics and Applications 41

Research on controlling visualizations using the
grid typically falls into two areas: Web-based
visualization systems and distributed visualization
in grid-like environments. Although there has been
limited interaction between these fields, most
previous research has focused on only one or the
other. Ang and colleagues1 described one of the
first Web-based visualization systems. Ang’s system
displays visualization results within a Web page
using an embedded application (an applet). The
results are controlled using a launched application
on the client side. This launched application
communicates with the visualization server to
request rendering. The visualization server then
communicates with the applet to display the result.

Wood and colleagues2 generalized Ang’s
approach into four different compositions of Web-
based visualization. In the first scenario, the system
sends only images to the client with no user
interaction with the visualization. The second
scenario lets a user manipulate the result, but a user
can’t change the visualization parameters. The next
scenario supports full control of the visualization,
including the type of visualization performed, but
requires significant resources on the client side. The
last scenario, and the one implemented by both
Wood and Ang, supports Web-based interaction for
controlling the parameters and the visualization
type performed without requiring a significant
client installation. The majority of subsequent Web-
based visualizations follow this last approach, using
an applet to allow interaction with the visualization.
Our Web interface combines aspects of the first and
last approach.

W. Lefer3 and C. Bajaj and S. Cutchin4

implemented a Web-based interface to distributed
or grid-based visualization systems. Lefer’s
visualization system dynamically and transparently
shares the processing load on a local area network.
Another interesting property of Lefer’s approach is
that interaction with the visualization system
happens entirely through HTML-based forms. We
use an all-HTML approach as well, but augment it
with JavaScript. This approach eliminates the need
for HTML forms by letting the JavaScript events
invoke actions on the visualization server. Bajaj’s
work also coordinates the users, distributed
resources, and the use of those resources. Our Web
interface doesn’t manage the grid resources; the
visualization portal as a whole handles this task.

Researchers have also investigated visualization
using grid resources that don’t involve Web-based
interfaces. GridMapper5 addresses the problem of
determining the performance of grid

computations by collating and visualizing
distributed information. This information is
dynamically gathered from the sites performing
the computation on the grid. TeraVision6 lets users
seamlessly present and interact with graphics, such
as visualizations over the AccessGrid. Finally,
Cactus7 is a grid-based, computational astrophysics
framework that incorporates various visualization
methods: a Web-based slice viewer of the
simulation volumes created at each node, a remote
isosurfacer (with the isosurface calculated locally at
each compute source and rendered elsewhere),
and Visapult, an image-based volume renderer.

Each of these approaches (except the Web
interface for Cactus) requires a thick-client
installation to perform the visualization. In other
words, for remote users, their platform and system
capabilities must be determined before the
appropriate grid visualization client can be
installed and launched. Our approach eliminates
the need for a thick client by requiring only a
standard Web browser.

References
1. C.S. Ang, D.C. Martin, and M.D. Doyle, “Integrated

Control of Distributed Volume Visualization Through
the World Wide Web,” Proc. IEEE Conf. Visualization
1994, IEEE CS Press, Oct. 1994, pp 13-20.

2. J. Wood, K. Brodlie, and H. Wright, “Visualization over
the World Wide Web and Its Application to Environ-
mental Data,” Proc. IEEE Conf. Visualization 1996, IEEE
CS Press, 1996, pp. 81-86.

3. W. Lefer, “A Distributed Architecture for a Web-Based
Visualization Service,” Proc. Ninth Eurographics Work-
shop on Visualization in Scientific Computing, Springer-
Verlag, 1998.

4. C. Bajaj and S. Cutchin, “Web-Based Collaborative
Visualization of Distributed and Parallel Simulation,”
Proc. 1999 IEEE Parallel Visualization and Graphics Sym-
posium, IEEE CS Press, 1999, pp. 47-54.

5. W. Allcock et al., “GridMapper: A Tool for Visualizing
the Behavior of Large-Scale Distributed Systems,” Proc.
High Performance Distributed Computing. IEEE CS Press,
2002, pp. 179-87.

6. J. Leigh et al., “TeraVision: A Platform and Software-Inde-
pendent Solution for Real-Time Display Distribution in
Advanced Collaborative Environments,” Proc. Access
Grid Retreat; http://www-fp.mcs.anl.gov/fl/accessgrid/
agretreat2002/Proc./leightera.pdf.

7. G. Allen et al., “Solving Einstein’s Equations on Super-
computers,” Computer, vol. 32, no. 12, Dec. 1999, pp.
52-58.

Related Web- and Grid-Based Visualization Work

with other ongoing portal development efforts through-
out the grid community.

Web-based visualization
The system we’re developing for Web-based visual

data exploration over the grid consists of three major
components:

� a Web-based user interface to grid-enabled visual-
ization services,

� a visualization Web application that tracks the explo-
ration of visualization results, and

� the portal application server that manages and coor-
dinates the authentication for and use of grid
resources.

The application server (the VisPortal) uses established
grid technologies to handle user and resource man-
agement. Once the system authenticates the user, the
Web application initializes a new visualization explo-
ration session.

The Web application (also called a servlet) is a program
on the Web server that communicates with the client via
HTTP. The servlet maintains the visualization session
state. After the application initializes the visualization
session, the Web-based visualization interface loads in
the client’s Web browser. As the visualization session pro-

gresses, the Web application stores the visualization
results and the relationships between those results. Final-
ly, when the user finishes visualizing the data, the appli-
cation closes the session. The user can then initialize
another session or reexamine previous explorations.

Sheet-like interface
Our Web interface (the WebSheet) implements an

entirely Web-based version of the visualization explo-
ration sheet-like interface discussed elsewhere.2 The
original spreadsheet-like interface (the VisSheet) was
designed to assist visualization exploration by provid-
ing context for where users are, where they have been,
and where they might go. The VisSheet handles these
tasks by providing a movable, scalable window into the
visualization parameter space. The application displays
only two visualization parameters at a time: one along
the rows and another along the columns. For the nondis-
played parameters, the application maintains a set of
default values that can be updated at runtime. The appli-
cation renders parameter values as glyphs. Cells repre-
senting a combination of the row, column, and default
parameter values display the visualization results. By
changing the default values for nondisplayed parame-
ters, users can move the window in the visualization
space. Thus, the data exploration process becomes the
process of manipulating the spreadsheet window
through visualization space.

Our sheet-like Web interface shares many character-
istics with the VisSheet. The interface refines the initial
VisSheet design to let a user easily modify default and
displayed parameters through the default parameter bar
and drop-down row and column parameter lists (Figure
1). The default bar assists in identifying parameter val-
ues and their corresponding results. The parameters are
always the parameters belonging to a cell’s row and col-
umn, combined with the default values for the other
parameters in the default bar.

Interaction with the tabular display remains essential-
ly unchanged. Users can add, edit, or remove parameter
values; render or view a cell’s image; and apply parame-
ter and value operators to generate new rows, columns,
or cells. The implementations of VisSheet and WebSheet,
however, differ significantly. Design considerations for
our Web interface required several modifications to the
original VisSheet. Due to the wide range of platforms sci-
entists can use to access the Web interface, we wanted to
create a platform-independent solution. However, the
software environment of each user is unlikely to be the
same, and the difficulty in remotely installing or the
unavailability of plug-ins for certain environments meant
that we couldn’t use Macromedia’s Flash or Sun’s Java.

For example, the incompatibilities of Java on differ-
ent platforms or between different versions make it dif-
ficult to use in a robust client setting. The only
assumption we made was that a user possesses a
standards-compliant Web browser with ECMAScript/
JavaScript and cookie support. We designed the system
so that no permanent state would be stored on the client
machine. By keeping the state in a centralized, Web-
accessible location, users can reexamine visualization
sessions from different locations without losing any

Graphics Applications for Grid Computing

42 March/April 2003

1 The AMRWebSheet interface, an example of our Web
interface to grid-based visualizations. The interface
consists of three major areas: the default parameter bar
that displays and allows the modification of the default
parameter values; the displayed row and column para-
meter drop-down lists; and the tabular result display.
The first two components can change the location of
the tabular window in visualization parameter space,
while the last component can request new results.

information. Because of these constraints, our interface
is Web-based and not a single-user, network-unaware
Java application like the VisSheet.

Several consequences, however, result from our Web
interface design. Interactivity partially suffers in com-
parison to the VisSheet. The VisSheet uses the Java
Foundation Classes (JFC) for its user interface. JFC sup-
ports a rich set of user-interface elements and cus-
tomizability. In contrast, the interface elements offered
by HTML are limited. HTML supports only checkboxes,
radio buttons, push buttons, lists, menus, and text fields.
JavaScript can help overcome many of these limitations
by letting different portions of the HTML page react to
mouse events. Even so, HTML can’t render glyph icons,
for example, that represent the parameter values in a
drop-down list for the default parameter bar.

Furthermore, JFC provides more functionality than

raw JavaScript. Our Web interface can’t query any sig-
nificant information about a client’s machine. Methods
exist to extract the client’s browser information or to
download a single file from the client machine, but such
transfers aren’t optimized for the large data sizes com-
mon in visualization applications.

Web-based encapsulation
The Web-based visualization interface structures the

visualization-exploration process, which the application
server captures. By capturing the process, we can ensure
that the visualization results generated, and the rela-
tionships between those results, aren’t lost when the visu-
alization session ends. To record the visualization
process, we use a formal model of the visualization
exploration process (see the “Visualization Exploration
Model” sidebar). As the application renders each

IEEE Computer Graphics and Applications 43

Visualization Exploration Process Model
The visualization process for information and scientific

visualization is an iterative sequence of user-applied
transformations from data to view.1-3 The fundamental
operation that occurs during the visualization process is the
formation of parameter value sets to derive visualization
results. These parameter value sets (p-sets) possess a
parameter value for each parameter in a visualization
transform—the function that performs the mapping of data
to visual primitives. When applied to a visualization
transform, a p-set corresponds to a rendered result. Other
research describes a model of the visualization process
based on a parameter derivation calculus.4 The calculus
defines how p-sets and the results rendered from them are
derived from previous p-sets.

User interaction with the visualization system creates new
p-sets in one of three ways:

� Parameter application. Parameter values from a p-set are
applied by the user to another p-set to generate a new p-
set. For example, a new color map replaces an old color
map in a previously generated p-set to render a new result
from the new p-set.

� Parameter range sweep. Users can interactively manipulate
a single parameter value over a range between an initial
and final p-set. For example, users can generate a range of
view positions by dragging a mouse pointer in the render
window.

� Function parameter generation. A function/operator gener-
ates a set of parameter values to be used in a p-set. For
example, applying a set union operator to two previously
used opacity maps creates a new opacity map.

In the AMRWebSheet, we use only two types of
parameter derivations: parameter application and function
parameter generation. When the system renders a cell, it
collects the parameters for that cell in a p-set; this process
corresponds to a parameter application of the new
parameter values to the p-set from the last generated result.
Function parameter generation occurs when a user applies
an operator in the AMRWebSheet to generate new
parameter values.

The parameter derivation calculus is the basis for
recording a visualization exploration session. Formally, a
visualization session consists of a set of visualization session
results. A visualization session result contains a p-set, the
visualization result derived from the p-set, a time stamp to
place the result in temporal context, and a parameter
derivation calculus instance detailing how the result was
derived. Each session result represents the generation of a
single visualization result.

However, as more than one result can be generated in a
single user action, such as when applying a parameter
operator, multiple session results can share the same time
stamp. For each visualization result (an image), the
AMRWebSheet stores its corresponding visualization session
result (information about that image). This approach differs
from previous Web-based collaborative visualization work5

where only parameters for particular visualizations and their
position in a tree of parameter snapshots are stored for
future collaboration. In our system, the application stores
the complete exploration and derivation information
(encapsulated in session results) as an XML document on
the portal for later access and reexploration.

References
1. S.K. Card, J. D. Mackinlay, and B. Shneiderman, Readings in Infor-

mation Visualization: Using Vision to Think, Morgan Kaufmann Pub-
lishers, 1999.

2. C. Upson et al., “The Application Visualization System: A Com-
putational Environment for Scientific Visualization,” IEEE Com-
puter Graphics and Applications, vol. 9, no. 4, July 1989, pp. 30-42.

3. R.B. Haber and D.A. McNabb, “Visualization Idioms: A Concep-
tual Model for Scientific Visualization Systems,” Visualization in
Scientific Computing, G. Nielson and B. Shriver, eds., IEEE CS Press,
1990, pp. 74-93.

4. T.J. Jankun-Kelly, K.-L. Ma, and M. Gertz, “A Model for the Visu-
alization Exploration Process,” Proc. IEEE Conf. Visualization 2002,
IEEE CS Press, 2002, pp. 323-330.

5. K. Brodlie, S. Lovegrove, and J. Wood, “Harnessing the Web for
Scientific Visualization,” Computer Graphics, vol. 34, no. 1, Feb.
2000, pp. 10-12.

requested image, the server stores the corresponding
visualization session result. Thus, at the end of a session,
all the rendered images—including the parameter value
sets (p-sets) used for creating those images—the time
the image was generated, and that image’s relation to
previous images, are available for later use.

The visualization Web application is the entry point to
our Web interface. When loaded from the portal, the
servlet provides a user with two options: starting a new
visualization session or viewing previous sessions. When
the user chooses to start a new session, another servlet,
the user-interface servlet, handles interactions with the
visualization interface. As the user requests images or
adds, edits, or removes parameter values, the underly-
ing JavaScript sends HTTP requests to this servlet. The
servlet then processes the requests, contacting the ren-
dering server if needed, and updates the visualization
session and the client. The interface servlet represents
the interface’s state. If a user chooses to examine previ-
ous sessions, the application loads the session servlet.

Initially, the application presents a list of all the pre-
vious explorations, sorted by date, to the user. A user
can reload a previous session in the Web interface by
clicking on its corresponding link. Users can add new
results to this session. When the session terminates, the
application will store these results along with the old
session information. This capability is crucial to the Vis-
Portal because scientists must be able to distribute their
work over time as well as over space.

The session servlet also supports the ability to view
previous sessions. By selecting the “view as HTML”
option, the user initiates the generation of an HTML
page that summarizes the corresponding visualization
session. Each result, the parameters corresponding to
that result, and the parent and child results are all part
of the HTML page. The HTML page serves as an
overview of a previous visualization session and as doc-
umentation of that session. First, the Web page fully doc-
uments the visualization process as it completely
describes the information captured by the visualization
process model. Second, users can add or edit annota-
tions of results. The application stores these annotations
on the server for others to access. Scientists can use
these annotations to flag certain results as interesting.

The session servlet also lets users view an overview
graph. While the HTML session document describes the
visualization in detail, it’s difficult to obtain a sense of
the visualization at a glance. By selecting the “view
overview graph” option from the session list, the servlet
generates a graph depicting the results and various rela-
tionships between the results. The user chooses a “visu-
alization metric” that determines how the application
displays the graph.

All the graphs use a new radial focus-context visual-
ization technique, in which the radial distance from the
center node to another node represents the distance of
that node’s p-set from the center result’s p-set accord-
ing to the chosen metric. As the distance increases, the
size of the node and its radial separation decreases to
let the system display all results simultaneously. Exam-
ple metrics include those that measure how a result was
derived from another result (a directed edge only exists
if the first result derives the second) and those that mea-
sure the temporal distance of the result (a directed edge
only exists if the first result was rendered immediately
before the second result). Different metrics and the
HTML session view provide the means to understand
what occurred during a visualization session.

Application domain
The Web interface and visualization Web application

can help with several kinds of scientific visualization
problems. Scientists at LBNL are particularly interested
in visualizing Adaptive Mesh Refinement (AMR) data.
Many of the most challenging problems in numerical
modeling involve meshes with huge ratios of scale. For
example, when modeling the fuel-injection system of
an automobile, you must model the fluid dynamics of
the injector’s orifice as well as the dynamics of fuel–air
mixing in a cylinder chamber. A typical finite-difference
or finite-element simulation covers the entire domain
with a uniform mesh of cells, the smallest of which must
be less than half the size of the smallest structure being
modeled.1 Given the huge ratio of scale in these struc-
tures, it would be impossible to span this range of spa-
tial scales without using impractically large meshes.

AMR techniques for finite-difference codes use refine-
ment criteria that create higher-resolution meshes only
in areas in which they’re needed. For example, large-
scale structures of superclusters in cosmology are rela-
tively compact; it would be a waste to model
uninteresting events in the voids using the same mesh
resolution as that used for the events that occur in the
dense regions. With current methods, the refined mesh-
es must be an even multiple of the size of the parent
meshes on which they’re placed. Furthermore, regions
can be refined in a recursive process that can descend
through many levels of resolution.1

For second- or higher-order methods, the cell size
must be even smaller. The cosmology simulations done
by Norman, Bryan, and Abel3 that modeled the forma-
tion of the first stars in the universe require 27 levels of
refinement, covering an eight-billion-to-one ratio of
scale using a fraction of the memory required for a uni-
form mesh. Starting with a 1283 base mesh for the AMR
simulation, an equivalent simulation on a uniform mesh
would require at least a 1036 element uniform mesh.
AMR makes these extreme problems tractable for
today’s supercomputers. These problems also pose sig-
nificant challenges for visualization researchers.

AMR data structures don’t fit into any of the tradi-
tional data structures used in modern visualization tech-
niques and systems.4 Sampling AMR data onto uniform
meshes results in the same data-handling problems that
motivated the development of AMR in the first place.

Graphics Applications for Grid Computing

44 March/April 2003

The Web interface and visualization Web

application can help with several kinds of

scientific visualization problems.

Naive conversion of AMR data to finite-element data
structures composed of hexahedral cells requires us to
use memory-inefficient data structures with compara-
tively inefficient visualization algorithms. Furthermore,
dangling nodes at the coarse–fine mesh boundaries can
cause cracks. Direct application of finite-difference tech-
niques to an AMR hierarchy leads to visual artifacts at
the coarse-fine boundaries as well as to significant data-
management issues. A typical desktop system can’t
process these deep hierarchies interactively. Conse-
quently, few visualization algorithms can be directly
applied to hierarchical meshes, and essentially no off-
the-shelf commercial software is available for visualiz-
ing AMR data. It’s important to develop the tools and
techniques necessary to navigate data sets with huge
ratios of scale in a simple and widely accessible manner.

Given the growing interest in AMR simulation and
the need for scalable systems supporting remote data
visualization, we developed a parallel multiprocessor
volume renderer for AMR data. (For more information
about this, see the “AMR Volume Rendering” sidebar on
the next page.) Because the majority of LBNL visualiza-
tion users are off-site and have comparatively smaller
resources at their disposal, we created a client–server
architecture so the entire system can be accessible over
the grid using a traditional client interface. The AMR-
WebSheet project—an implementation of the Web-
Sheet—aims to extend access to this parallel-rendering
back end using an entirely Web-based interface suitable
for emerging Web-based collaborations.

Architecture
Figure 2 summarizes the VisPortal/AMRWebSheet

architecture. We implemented the AMRWebSheet inter-
face and Web application in a flexible visualization
exploration and encapsulation framework. The frame-
work, implemented in Python, consists of a series of
objects that manage visualization sessions and the inter-
face’s interactions with the sessions. Visualization ses-
sion, transform, parameter, result, and derivation

objects exist within the framework to capture the infor-
mation described in the visualization exploration
process model.

A view object represents the interactions between
visualization interfaces and the visualization sessions
in a platform-independent manner. Other interface
objects representing general visualization exploration
spreadsheet views and state also exist within the frame-
work. The system uses these classes as the basis for dif-
ferent implementations of the VisSheet. One
implementation recreates the original VisSheet as a Java
application using Jython (the Java version of Python)
to communicate between the framework and the Java
classes. The servlet uses the framework to implement
the AMRWebSheet.

We implemented the Web application servlets that
manage visualization sessions in Python using the Web-
ware application environment (http://webware.
sourceforge.net/). We use Apache running under Linux
to serve Web pages. A group of servlets creates, process-
es, and stores sessions. When a client connects, the
application creates a new session identified by a tem-
porary cookie in addition to servlet-persistent objects.
Whenever a user interacts with the generated HTML
interface, the application communicates the AMRWeb-
Sheet HTTP requests to the interface servlet. This
request in turn modifies the visualization session state.
When the client needs to update, the server performs a
refresh to display the new information. When a session
terminates or expires due to inactivity, the application
encodes the session results as an XML document on the
application server for later retrieval.

The application server handles all communication
between the AMR volume renderer and the AMRWeb-
Sheet. When the AMRWebSheet requests a result, a visu-
alization transformation class instance on the Web
application requests the corresponding result from the
volume-rendering server. When the volume renderer
returns the corresponding result, the Web application
stores a copy with the visualization session results. The

IEEE Computer Graphics and Applications 45

The grid

Authenticate,
transfer data

Logon, transfer data,
start visualization

Request result Request result

Return result

Transfer
data

Launch
visualization
session

Launch, update

Web browser

VisPortal

Visualization
Web applicationAMRWebSheet AMR renderer

Portal
application server

2 The VisPortal/AMRWebSheet architecture. Elements within the blue box represent Web pages with which the
user interacts; green boxes represent Web servers; and the other nodes represent grid-accessible resources.
Dashed lines represent HTTP/HTTPS connections for HTML and images (for the client) and connection requests
(for the server), while solid lines represent TCP connections. A line’s label indicates the action performed over that
link. For bidirectional connections, the top label corresponds to actions initiated from the left entity, while the
bottom label corresponds to actions initiated from the right entity. The AMR renderer can reside anywhere on the
grid. The VisPortal initializes the connection between the renderer and the visualization Web application when a
user first requests a visualization.

Graphics Applications for Grid Computing

46 March/April 2003

AMR Volume Rendering
The current rendering back end for AMR data is

a hardware-assisted 3D texture-based parallel
volume renderer.1 AMR hierarchies are typically
highly irregular and can’t be rendered directly

using graphics hardware’s texture-mapping
capabilities (Figure A). Instead, a given AMR
hierarchy must be homogenized, which means
that it has to be transformed into a set of
nonoverlapping rectangular grids with acyclic
visibility order for any viewing direction. This
process generally involves removing parts of
lower-resolution grids overlayed by higher-
resolution grids, and then splitting the resulting
nonconvex grid regions into rectangular grid
patches.

Our method uses a tree-based approach, in a k-
d tree covering the entire domain of an AMR data
set. AMR grids are inserted one at a time, starting
with lowest-resolution grids. Figure B shows a 2D
AMR hierarchy and its homogenizing k-d tree.
Once an AMR hierarchy is homogenized, it can be
rendered from arbitrary viewpoints by sorting all
grid patches on-the-fly in back-to-front visibility
order. All grid patches are rendered independently
into the same color buffer using alpha blending,
performing implicit compositing of partial-
rendering results.

For parallel rendering on n nodes, the sorted list
of grid patches is chopped into n sequences of
approximately equal rendering cost. We estimate
rendering cost during k-d tree traversal. The
sequences are then assigned to rendering nodes.
This step is performed on all nodes in parallel and
doesn’t require communication between nodes.
Each node renders its sequence of patches into its
own color buffer. When rendering is done, nodes
exchange color buffers to composite a complete
rendering. Because the rendering bottleneck is grid-
patch rendering, and compositing is performed in
hardware, a simple binary tree compositing
strategy suffices. It could be replaced with a binary-
swap compositing strategy should the need arise,
but the rendering algorithm is independent from
the choice of compositing strategy.

The portal version of the parallel renderer
currently runs on an SGI Onyx3400 with two IR4
graphics pipes. A software parallel renderer can
also be used on cluster or distributed-memory
architectures. At the University of California, Davis,
the renderer runs on two Linux clusters (with 4
and 16 nodes, respectively) using NVidia GeForce3
graphics cards for rendering and 100 BaseT
Ethernet for internode communication. You can
read more information about this setup
elsewhere.1

Reference
1. O. Kreylos et al., Remote Interactive Direct Volume Ren-

dering of AMR Data, tech. report LBNL49954, Lawrence
Berkeley National Laboratory, 2002.

A Volume rendering of the argon bubble with superimposed AMR grid
hierarchy.

B Homogenizing a 2D AMR hierarchy. The hierarchy has a
uniform refinement ratio of two. Bold lines denote grid bound-
aries. All hierarchy levels consist of two grids. Finer grids can
cross boundaries between coarser grids. (1) Original AMR
hierarchy with overlapping grids. (2) Homogenized hierarchy
with nonoverlapping rectangular grid patches.

(1)

(2)

application then displays the result by forcing a refresh
on the client’s Web browser.

The VisPortal handles access to the visualization inter-
face. It provides a single point of access to launch and con-
trol all the components of this distributed tool. We based
the VisPortal’s architecture on the Grid Portal Develop-
ment Kit that uses the Globus Project’s Java Commodity
Grid (CoG) toolkit (http://www.globus.org/cog/java/)
in conjunction with Tomcat, an Open Source Java Serv-
er Pages application server (http://jakarta.apache.org/
tomcat/). Users authenticate to the portal using the
MyProxyServer (http://www.ncsa.uiuc.edu/Divisions/
ACES/MyProxy/) to supply their X.509-delegated cre-
dentials. The Grid Security Infrastructure (GSI) X.509
credentials make it possible for the portal application
server to transfer files, launch jobs, and otherwise access
any Globus grid services on remote hosts using only a sin-
gle login.

From the user’s standpoint, the portal hides a complex
application-launching mechanism for a multicomponent
distributed application. For a thick-client application,
the portal launches a parallel-computing component and
brokers a direct socket connection between this com-
puting component and a high-performance back-end
data source. It then launches the thick client through the
Web browser using appropriate multipurpose Internet
mail extensions-type definitions. The thick client in turn
connects back to the remotely located parallel-
visualization component, thereby completing the dis-
tributed visualization application. The system hides this
entire elaborate launching procedure from the user. The
user simply selects remotely located data and presses a
button to start the visualization application.

The AMRWebSheet supports an even simpler launch-
ing mechanism where the back end connects directly to
the Python visualization Web application. The server
makes requests of the back end and then formats the
output images appropriately for the HTML interface. If
the back end is located on a Silicon Graphics machine,
it can employ hardware-assisted off-screen rendering
using Infinite Reality Engine pipes. If the back-end host
is a cluster or distributed-memory computing architec-
ture, it can employ the parallel software rendering back
end. Again, the portal client interface hides the com-
plexity from the user.

The AMRWebSheet’s performance depends on the
performance of the

� AMR volume renderer,
� visualization application server, and
� user’s Web browser.

Variations in network traffic
between the renderer, application
server, and client can also affect per-
formance. Table 1 provides perfor-
mance measures for the elements
under our control: the volume ren-
derer and the application server. For
this test, we used an AMR data set
consisting of 501 time steps and 640
x 256 x 256 cells at the finest level.

We measured performance in seconds for three differ-
ent hierarchy levels (0 being the coarsest and 2 being
the finest) using an 800 x 600 pixel image as our out-
put. We collected two sets of performance data: one for
the initial loading of the data set (which requires the
hardware textures on the SGI Onyx3400 renderer to be
initialized) and one for preloaded data (and pregener-
ated textures).

As the table shows, the rendering time depends on
the maximum level rendered, while the application
server processing time is nearly constant. We expected
this result because the application server only process-
es completed images, which don’t depend significantly
on the rendered hierarchy level. Processing on the appli-
cation server only occurs once when a result is initially
rendered. Subsequent requests for the same image (such
as when the HTML page is refreshed to add new images)
are either cached by the Web browser (which doesn’t
require retransmission) or cached by the application
server (which requires retransmission over the network,
but no further rendering).

Usage scenario
To demonstrate the VisPortal/AMRWebSheet con-

cepts, we’ll describe a typical scenario. In this scenario, a
scientist at LBNL named Alice decides to visualize results
from a shock-refraction and mixing computational fluid
dynamics (CFD) simulation. The data set shows the time
evolution of an argon bubble after being disturbed by a
shock wave. The bubble moves steadily from one side of
the volume used for the simulation to the other, while
deforming. The user is interested in a particular time step
in the later stages of the simulation. The data set is locat-
ed on the LBNL intranet and is accessible over the grid.

Alice first enters the VisPortal URL into her Web brows-
er. After logging onto the system, she uses the portal’s
access to the grid to transfer the argon bubble data set
from its original location to the AMR volume renderer
server. Because Alice’s virtual organization lets her access
the AMR renderer via the grid, the system authenticates
the transfer. The system hides the complexities of the
transfer (such as using GridFTP) from Alice. She then
requests a new visualization session from the portal.
Again, the system verifies Alice’s credentials, this time
confirming that she can access the visualization ser-
vice—all the authentication occurs behind the scenes.

Once the verification is complete, the portal transfers
the authentication to the visualization Web application.
Upon initialization, the Web application determines
whether Alice wants to start a new visualization or view

IEEE Computer Graphics and Applications 47

Table 1. Performance measurements of the AMR volume renderer and the
AMRWebSheet application server.

 Initial Data Loaded Preloaded Data
Renderer Application Server Renderer Application Server

Levels (seconds) (seconds) (seconds) (seconds)

0 0.29 0.35 0.30 0.31
1 0.32 0.36 0.30 0.32
2 1.4 0.37 0.53 0.30

or expand an older session. In this scenario, she starts a
new visualization session. After specifying an initial data
set, the AMRWebSheet loads in Alice’s browser. She then
explores the data via the Web page interface until she is
satisfied with the results (Figure 1). At this point, Alice
terminates the visualization session and exits the por-
tal. When she exits, the system automatically records
the visualization session.

At some later date, Alice’s colleague, named Bob, wish-
es to verify the results generated during the visualization.
Bob is also part of Alice’s virtual organization. Like Alice,
Bob logs on to the VisPortal. Unlike Alice, Bob wants to
view a previous visualization session instead of a new one.
The visualization Web application presents Bob with a
list of sessions from which he can choose. Bob first choos-
es to examine an overview graph of the visualization ses-
sion (Figure 3). After familiarizing himself with the
visualization results, Bob loads the HTML session docu-
ment (Figure 4). Bob then annotates a few results of inter-
est and exits the system. As with the original session, the
visualization Web application stores Bob’s annotations
automatically when he exits. Later, Alice can reload the
session, view Bob’s comments, and perhaps add some
comments of her own. The portal lets these scientists
focus on using their data rather than managing it.

Future work
The work described here represents one aspect of the

VisPortal project. We’re actively developing three core
areas: the underlying portal application server, the visu-
al-exploration tools, and the session-management capa-
bilities. For the application server, our current work
focuses on improving its low-level implementation and
the connection between the Grid Portal Development
Kit and the various CoGs. This work includes adding
support for a Python CoG for easier integration of the
visualization exploration and encapsulation framework
with the grid. Finally, we’re also working on integrating
a database management system (DBMS) with the appli-
cation server. Once complete, authentication, session
management, and resource allocation will use the
DBMS to record portal-wide usage behavior.

The AMRWebSheet is only one of several visualiza-
tion interfaces planned for the VisPortal. Visapult, a
visualization system that uses both client and server
resources to perform interactive visualization (see the
article about Cactus and Visapult elsewhere in this
issue) has already been integrated with an earlier ver-
sion of the portal. Researchers are also investigating
alternate Web-based VisSheet implementations. For
example, a VisSheet-like interface for visualizations
using Kitware’s Visualization Toolkit would vastly
increase the potential number of visualization applica-
tions used by scientists interacting with the portal.

Additionally, we’re interested in using more grid
resources for the visualization. The interface should
allow access to visualization resources, numeric and sta-
tistical analysis codes, and other related services. The
grid would then transparently manage the resource dis-
covery, process allocation, and data transport between
these services. The interface could be adapted to sup-
port computational steering of grid-based simulations.

Graphics Applications for Grid Computing

48 March/April 2003

3 Parameter session graph for the session shown in
Figure 1. The edges indicate that only one parameter
value differs between the two resulting images. Session
graphs provide an overview of different information
about the visualization session.

4 HTML session page for the session shown in Figure 1. The page provides a
summary of the visualization session and supports the annotation of results.

You could then visualize results as they’re generated in
one Web browser window and modify simulation para-
meters in another window.

The Web application server currently encapsulates
the visualization session from the AMRWebSheet.
Although the system stores previous sessions, we could
exploit more information stored within them. For exam-
ple, when the system renders the same result in two dif-
ferent visualization sessions, the server stores this result
and its corresponding p-set multiple times. By integrat-
ing the session information management with the
planned application server DBMS, we could eliminate
this redundant storage. In addition, storing visualiza-
tion session information in a DBMS would let different
portal applications use the session. Potentially, the por-
tal designers could analyze this session information,
combined with other portal usage information stored
by the DBMS, to better understand how scientists use
the system. This understanding could then lead to future
improvements of the portal and its applications for grid-
based visual data exploration. �

Acknowledgments
This work was supported by the National Science

Foundation, the Lawrence Berkeley and Lawrence Liv-
ermore National Laboratories, and the Director, Office
of Science, of the US Department of Energy under con-
tract DEAC0376SF00098. We used the argon bubble
data set courtesy of the Center for Computational Sci-
ences and Engineering, Lawrence Berkeley National
Laboratory. We thank the members of the University of
California, Davis, Visualization and Graphics Research
Group and the Lawrence Berkeley National Laboratory
Visualization Group for their input and assistance. We
especially thank Tom Hsu and Praveenkumar Shetty for
their work on the portal, Jason Novotny for creating the
Grid Portal Development Kit and for considerable tech-
nical support, and Xia Liu for her work on the DBMS for
distributed applications.

References
1. M. Russel et al., “The Astrophysics Simulation Collabora-

tory: A Science Portal Enabling Community Software
Development,” J. Cluster Computing, vol. 5, no. 3,
Jan./Mar. 2002, pp. 297-304.

2. T.J. Jankun-Kelly and K-.L. Ma, “Visualization Exploration
and Encapsulation via a Spreadsheet-like Interface,” IEEE
Tran. Visualization and Computer Graphics, vol. 7, no. 3,
July–Sept. 2001, pp. 275-287.

3. T. Abel, G.L. Bryan, and M. L. Norman, “The Formation of
the First Star in the Universe,” Science, vol. 295, no. 5552,
Jan. 2002, pp. 93-98.

4. M.L. Norman et al., “Diving Deep: Data Management and
Visualization Strategies for Adaptive Mesh Refinement
Simulations,” Computing in Science and Engineering, vol.
1, no. 4, July/Aug. 1999, pp. 22-32.

T.J. Jankun-Kelly is a PhD can-
didate in computer science at the
University of California, Davis,
where he is a member of the Visual-
ization and Computer Graphics
Research Group of the Center for
Image Processing and Integrated

Computing. His research interests include scientific and
information visualization, Web programming, and theo-
ry. He received a BS in physics and computer science from
Harvey Mudd College and an MS in computer science from
the University of California, Davis. He is a member of
ACM, ACM/Siggraph, the IEEE, and the IEEE Computer
Society.

Oliver Kreylos is a PhD candidate
in computer science at the Universi-
ty of California, Davis. His research
interests include multiresolution
methods for scientific visualization
and interaction techniques for vir-
tual-reality environments. He

received a Diploma in computer science from the Univer-
sitat Karlsruhe.

Kwan-Liu Ma is an associate pro-
fessor of computer science at the Uni-
versity of California, Davis. His
research interests include improving
the overall experience and perfor-
mance of data visualization through
more effective interactive techniques,

user interface designs, expressive rendering, and high-
performance computing. He received a PhD in computer
science from the University of Utah. He is a member of IEEE,
the IEEE Computer Society, and ACM.

Bernd Hamann is codirector of
the Center for Image Processing and
Integrated Computing and a profes-
sor of computer science at the Uni-
versity of California, Davis. He is an
adjunct professor of computer sci-
ence at Mississippi State University, a

faculty computer scientist at the Lawrence Berkeley
National Laboratory, and a participating guest researcher
at the Lawrence Livermore National Laboratory. His
research interests include visualization, geometric model-
ing and computer-aided geometric design, computer
graphics, and virtual reality. He received a PhD in com-
puter science from Arizona State University. He is a mem-
ber of ACM, IEEE, the Society for Industrial and Applied
Mathematics, and the IEEE Technical Committee on Visu-
alization and Graphics.

IEEE Computer Graphics and Applications 49

Kenneth I. Joy is a professor of
computer science at the University of
California, Davis; a faculty researcher
in the Center for Image Processing and
Integrated Computing; and a faculty
member in the Institute for Advanced
Scientific Computing Research at

Lawrence Livermore National Laboratory. His research
interests include visualization, geometric modeling, and
computer graphics. He received a PhD in computer science
from the University of Colorado, Boulder. He is a member of
ACM, the IEEE Computer Society, and the Society for Indus-
trial and Applied Mathematics.

John Shalf is a researcher in the
Visualization Group at Lawrence
Berkeley National Laboratory. His
research interests include projects that
cover visualization of AMR data, dis-
tributed-remote visualization, grid-
portal technology, high-performance

networking, and computer architecture. He is a member of
the Technical Advisory Board for the European Union Grid-

Lab project, which seeks to create application-oriented APIs
and frameworks for grid computing.

E. Wes Bethel is a staff scientist at
Lawrence Berkeley National Labora-
tory, where he is a member of the Sci-
entific Visualization group. His
research interests include computer
graphics and visualization software
architecture, remote and distributed

visualization algorithms, latency-tolerant and parallel-
graphics techniques. He received an MS in computer sci-
ence from the University of Tulsa. He is a member of ACM,
ACM/Siggraph, and the IEEE.

Readers may contact T.J. Jankun-Kelly at the Visual-
ization and Graphics Research Group, Center for Image
Processing and Integrated Computing, Dept. of Computer
Science, Univ. of California, Davis, CA 95616-8562, email
tjk@acm.org.

For further information on this or any other computing
topic, please visit our Digital Library at http://computer.
org/publications/dlib.

Graphics Applications for Grid Computing

50 March/April 2003

IEEE Pervasive Computing delivers the latest peer-reviewed
developments in pervasive, mobile, and ubiquitous computing
and acts as a catalyst for realizing the vision of pervasive (or
ubiquitous) computing, described by Mark Weiser nearly a
decade ago. In 2003, look for articles on

• Security & Privacy

• The Human Experience

• Building Systems That Deal with

Uncertainty

• Interfacing with the Physical World

SUBSCRIBE NOW!

http://computer.org/pervasive

M. Satyanarayanan
Carnegie Mellon Univ. and Intel Research Pittsburgh

Associate EICs

IEEE Pervasive Computing

Editor in Chief

Roy Want, Intel Research; Tim Kindberg, HP Labs;
Deborah Estrin, UCLA; Gregory Abowd, GeorgiaTech.;

Nigel Davies, Lancaster University and Arizona University

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

