
NASA/CR- 1998-208468

ICASE Report No. 98-35

A Graph Based Interface for Representing Volume
Visualization Results

James M. Patten

University of Virginia, Charlottesville, Virginia

Kwan-Liu Ma

ICASE, Hampton, Virginia

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

Prepared for Langley Research Center under
Contracts NAS 1-19480 and NAS 1-97046

August 1998

Available from the following:

NASA Center for AeroSpace Information (CASI)

7121 Standard Drive

Hanover, MD 21076-1320

(301) 621-0390

National Technical Information Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161-2171

(703) 487-4650

A GRAPH BASED INTERFACE FOR REPRESENTING

VOLUME VISUALIZATION RESULTS

JAMES M. PATTEN 1 AND KWAN-LIU MA 2

Abstract. This paper discusses a graph based user interface for representing the results of the volume

visualization process. As images arc rendcrcd, they are connected to other images in a graph based on

their rendering parameters. The user can take advantage of the information in this graph to understand

how certain rendering parameter changes affect a datasct, making the visualization process more efficient.

Because the graph contains more information than is contained in an unstructured history of images, the

image graph is also helpful for collaborative visualization and animation.

Key words, user interface, volume rendering, scientific visualization, graph drawing, knowledge repre-

sentation.

Subject classification. Computer Science

1. Introduction. Direct volume rendering has received considerable attention because it is effective

for visualizing features in the data that are either very fine or difficult to define analytically. Several volume

rendering algorithms have been introduced including the ray casting [7], projection [3], splatting [15] and

shear warp [6] methods. Various optimization and acceleration techniques for volume rendering have also

been developed including encoding object space coherence [8], encoding image space coherence [17], hardware

assisted [13, 2] and parallel [10, 5] methods. To take advantage of these improvements in visualization

algorithms, we need an effective user interface for volume visualization. Because volume data exploration

often involves a trial and error process of parameter specification, an important part of a user interface is

a structured representation of the rendering results. We have implemented an image graph which provides

such a representation. This paper gives a summary of the volume visualization process and discusses the

fundamental problem of parameter specification. The paper focuses on our graph approach to this parameter

specification problem as it applies to volume rendering, and explains the benefits of our approach for data

exploration, collaborative visualization, and animation.

1.1. Background. W'c have implemented a visualization system for volumetric data called DiVision. It

serves as a tcstbed for our visualization research in the areas of user interfaces and collaborative visualization.

This system allows visualization across the Internet. Several other systems have addressed the problem

of remote visualization. The VizWiz system [12] performs some types of visualization over the Internet,

including isosurface rendering and cutting planes, but the system does not support direct volume rendering.

The PermWeb system [16] uses a client server approach to volume rendering, but this system does not

address the specification of rendering parameters such as color and opacity transfer functions.

DiVision consists of an applet written in the Java language which runs in any web browser which

supports Java 1.1, a render "server" process which manages communication with active web clients, and a

1Department of Computer Science, University of Virginia, Charlottesville, VA 22906, jmp7d@virginia.edu.

2Institute for Computer Applications in Science and Engineering, Mail Stop 403, NASA Langley Research Center, Hampton,

VA 23681-2199, kma@icasc.edu.

This research was supported by the National Aeronautics and Space Administration under NASA Contract Nos. NAS1-19480

and NAS1-97046 while the authors were in residence at the Institute for Computer Applications in Science and Engineering

(ICASE), NASA Langley Research Center, Hampton, VA 23681-2199.

volume rendering process, currently implemented using either ef two renderers, one based on the ray-casting

algorithm and another based on the shear warp algorithm.

2. The Volume Rendering Process. In a typical volume rendering application, the user specifies

some rendering parameters, renders an image, and repeats the process with different parameters based on

the results. In our system, the user can select a view and dcfir:e color and opacity transfer functions before

rendering an image of a dataset. A view is described by a zoom parameter and a rotation parameter. These

parameters are described briefly here.

Color Map - In volume visualization, the color transfer function specifies a mapping from values in

thc volumetric dataset to color values used when rendering an image of the dataset. Manipulating the color

transfer function changes the color of spccific rangcs of values in thc dataset. This manipulation is useful

for making certain features of the dataset more prominent or less prominent during the process of data

exploration. However, aesthetic considerations may also play a role in colormap selection.

Opacity Map - The opacity transfer function is used by the renderer to determine the opacity (i.e. the

importance) of a certain voxel of the dataset according to the values of the data adjacent to or inside of that

voxcl. Thus the opacity function maps values in tile dataset to values between 0 (completely transparent,

i.e. not important) and 1 (completely opaque, i.e. very important).

Zoom - The problem of specifying a zoom parameter is not unique to volume visualization. An interface

may allow the user to specify a certain magnification factor, or a region of interest. This region of interest

may be specified in the 2D coordinates of the rendered image or in the 3D coordinates of the dataset to be

rendered.

Rotation - The issue of specifying 3D rotation is import:rot in a variety of problem domains as well.

Clearly, an interface must allow manipulation of the dataset's 1otation to give the user a variety of perspec-

tives on the data.

There are other parameters which can be included in our system such as filtering functions, sampling

frequencies, interpolation functions, and lighting. This paper, however, only addresses transfer functions and

view parameters, which are sufficient to illustrate and justify the graph-based approach we have proposed.

3. The Parameter Specification Problem. A variet3 of volume visualization systems have been

developed which include the ability to graphically specify rendering parameters. While we need to develop

a good interface for rendering parameter specification, the selection of the parameters is only part of the

problem. The remainder of the problem is that even if the user ::an easily specify a given parameter, the user

may not understand exactly how that parameter will affect th_ _ resulting image. If the user can specify the

rendering parameters he or she wants in an intuitive manner, this does not guarantee good images. Because

a user may not be able to predict the rendered image output, wlume visualization is an inherently iterative

process. One system [4] uses stochastic search techniques in c _nccrt with user defined fitness functions to

help the user pick good transfer functions. However, under most current systems this iteration is a process

of trial and error. The user simply tries combinations of rendering parameters, and stops if he finds a

combination which produces a useful image. This rendering pJocess can be time consuming, depending on

the algorithm and hardware being used.

The Design Galleries system [11] treats volume rendering a; the process of exploring a multidimensional

space. The dimensions of the space are the rendering paramete: s. The image the user is looking for exists in

this space, but the user does not know the appropriate combination of rendering parameters to produce that

image. In a preprocessing phase, the system renders images based on parameters in different regions of the

search space. When the preprocessing is complete, the user can view a 3D representation of the design space

!iiiiii!iiiiiiiiiii!i!iiii!iiii!iii!iiii

FIc,1.A sequence of images produced from a Computational Fluid Dynamics (CFD) dataset.
order of creation from the top left to the bottom right.

The images are listed in

and can look for the desircd image among the group of rendered images. This is an interesting approach

because it recognizes that volume rendering should be treated as a process of searching a design space rather

than a process of trial and error.

Our approach avoids preprocessing in favor of adding newly rendered images to an image graph. The

graph keeps track of the relationships between images to make the search of the design space more efficient

and effective. This efficiency is important regardless of the speed of the volume rendering process. If

rendering is a time consuming process, it is clear that we should reduce the number of times it needs to

be done to arrive at a given result. But even if rendering happens very quickly, the user's search for the

appropriate rendering parameters will still take time.

Independent of the issue of rendering time, a method to represent the data exploration process is useful

because it aids in the process of reviewing and recording the interesting structures found in the dataset. A

graph which shows the relationships between the images of a dataset provides the user with more information

than just a final image or group of images of the dataset. While current systems do not provide a structured

representation of the rendering results, some systems have explored structured visual representations of the

image production process. The SI system [9] extends the spreadsheet paradigm by incorporating images,

data and widgets into spreadsheets. This extension allows the user to manipulate data according to formulae

in the same way that numbers are manipulated in a traditional spreadsheet. The Khoros system provides

a visual programming environment called Cantata [18] which allows the user to construct directed graphs

which represent the flow of data through the system. It is important to stress that our approach to volume

visualization differs from standard flowchart based data analysis in that most flow chart systems use a graph

to control the analysis of data, while our system uses a graph to help the user understand the results of the

process.

4. The Image Graph. Instead of using a history list of rendered images as shown in Figure 1, we add

each newly rendered image to a graph which represents the relationships of all the images which the user has

rendered so far as shown in Figure 2. We represent the images as a graph to aid in the process of finding a

satisfactory image within the design space. The process of adjusting rendering parameters while rendering

images of a datasct is a search process. The target of the search is an image which tells the user something

interesting about the dataset, and with our current system the search space itself is the four dimensional

space in which each image is represented by a color map, an opacity map, a zoom, and a rotation. The

goal of the image graph is to make searching for a desirable image more effective by showing how changes

in parameters are affecting thc output for a given datasct.

4.1. How the Graph Works. Since each newly rendered image is associated with a 4-tuple of ren-

dering parameters, a notion of equality is defined for each of the four rendering parameters. Two nodes on

FIG. 2. A graph representation of the same images produced _rom the CFD dataset. The graph makes it clear that the user

was experimenting with a variety oI color maps. After the user had created a Jew maps, he produced images by changing the

rotation of the node with the greenish color mapping. Note that these no,des are close to each other in the graph even though

they were not created in sequence.

FIC. 3. Edge representations]or dij_erent ' endering parameters.

a graph are considered to be equal if all of their rendering parameters are equal. Two nodes are considered

to be similar if all but one of their rendering parameters are eq_lal. After each image is rendered, it is added

to the graph and attached to similar nodes. The similar node,, are connected with an edge that represents

how they arc related. Because similar images can differ in one of four aspects, there are four types of edges

that can exist between nodes as shown in Figure 3. An edge rc presents the change in rendering parameters

between the two nodes it connects. When a new node is addec to the graph, at most one new edge of each

type is drawn to prevent the graph from becoming cluttered.

If a user changes the values of two or more rendering parameters and then renders a new image_ a node

will be added to the graph which is not similar to any existiag node. In the rare case that a new node

FIG. 4. A small graph of some images o/ a foot data. The image in the top left corner is the initial image. The dataset

is rotated to produce the second image. The third image is produced by zooming in on the second one. The final image comes

from a change in both the color and opacity maps. The system displays this change by estimating the visual effects of both

the color and opacity map changes, and rendering separate thumbnails of each. The red mark in the corner of these images

indicates that they are thumbnails. The user can click on a thumbnail to render a.full size image with the rendering parameters

of that graph node. Note that the intermediate images are rendered at low resolution to minimize rendering time.

has less than two rendering parameters in common with a preexisting node, the node is added to the graph

without creating any new edges. However, if there is a node in the graph which has exactly two rendering

parameters in common with an existing node, the system joins these nodes by creating two nodes which

are similar to each of the nodes to be joined. For example, if a user renders one image, and then changes

the color and opacity transfer functions, then renders a new image, the system would add two intermediate

nodes to the graph. As shown in Figure 4, one of these nodes would have the color mapping of the first

user node on the graph and the opacity mapping of the second node on the graph. The other of these two

intermediate nodes would have the opacity mapping of the first node and the color mapping of the second.

These two automatically added nodes establish the relationship between the two previously rendered images.

To display these intermediate nodes on the graph, the system generates a thumbnail image for each of these

nodes. These images are generated using the ray-tracer algorithm which performs well for very small images.

Note that while we could connect nodes with only one parameter in common using a number of inter-

mediate nodes, wc do not connect them for two reasons. First, a relationship between two nodes which

have only one parameter in common is tenuous compared to the relationships which are emphasized by the

graph. Second, by not populating the graph with the intermediatc nodes needed for these connections, we

keep graph clutter to a minimum.

This process of automatically generating graph nodes with thumbnail images of intermediate steps in

the rendering process is especially useful when a series of changes in rendering parameters results in an

image which is not what the user expected. In this case, the user can look at the intermediate images and

determine which of the changes in rendering parameters is responsible for the undesirable aspects of the

resulting image. Figure 5 shows an example.

A user can view a full size representation of any image by clicking on the image's icon in the graph.

FIc. 5. Here the cause of an unwanted rendering result is found usin 9 the intermediate nodes in the graph. The problem

with the lower ri9ht image is the opacity mapping. The intermediate im(tge with the same opacity mapping also conveys no

useful information. However, the intermediate image with a different coh,rmap than the top image still shows the feet.

Nodes which do not have a corresponding full size image are marked with a red triangle in the top left

corner. The user can render full size versions of these thumbnail images by clicking on them. These full

size images are not rendered automatically because the intermediate nodes are mainly intended to show the

relationships between two other nodes. In the case that the user can not get the information needed out of

the thumbnail image, he can explicitly request that the full size image be rendered. Avoiding the production

of full size images of intermediate nodes saves time, preserving the interactivity of the user's session.

Another feature the graph provides is the ability to combine the attributes of two existing nodes to

produce a new node. During the process of searching for the rendering parameters which will produce a

useful image, a user may find several images which have some qualities of the desired image, but arc not

perfect. In this case, the user can drag one node on top of anon;her node on the graph to produce an image

which shares the rendering parameters of the two parent nodes. Figure 6 presents an example. A dialog box

as shown in Figure 7 lets the user specify which rendering pal ameters of each parent image which will be

used for the child image. The new image is then rendered and _tdded to the graph, showing the relationship

between the rendering parameters of the child and its parents.

4.2. Why Use the Graph Approach?. The use of a gra)h to represent the exploration of the dataset

provides several improvements over a simple listing approach. By a "simple listing approach," we mean a

strategy where each image that is rendered is stored in a list in chronological order, and images can be

reviewed by selecting them from this list.

4.2.1. Search pattern. Considering that the user's tas]_: is essentially a search for desirable images

within a space defined by the rendering parameters, we need _n interface which effectively represents the

2

FIG. 6. A portion of a graph representing the exploration of the foot dataset. The user combines the color and opacity

maps of Node I in the top right corner with the zoom and rotation of Node 2 in the bottom left corner to produce Node 3 the

image in the bottom right corner.

FIG. 7.

i ii! iiiiiiii!iiiiiiiiiiiiiiii!iiiiiiiiii!i ii!!ii!:iiiiiiiiiii!! s

The interface used to combine the rendering parameters of existing graph nodes to create new nodes,

user's search pattern. The graph representation is good at this because the topology of the graph is dependent

on the type of modifications the user makes to the rendering parameters. For example, if after rendering

an image using the initial default parameters, the user wants to fine tune the rotation of the dataset to

best display a certain small structure in the data, the user might render a series of images with differing

rotations to search for the best rotation. This process would be represented on the graph by a group of

images surrounding the initial image, with each of the surrounding images connected to the original image

with a curved line, used to represent a change in rotation. Once the user had found the correct rotation, he

might continue his exploration by experimenting with different color and opacity values. Whatever images

he rendered after finding the correct rotation would bc attached to the image with the desired rotation.

The graph would allow the user to quickly locate images of interest by looking at the relationship between

images. A serial list of images does not provide this sort of information as shown in Figure 1. A better

representation using the graph-based approach has been shown in Figure 2.

The graph allows the user to easily switch back and forth between different points in the image search

space. A user could explore different rotations to make a structure visible as described above, and later try

using different opacity mappings to make the same structure visible independent of rotation. The user could

FIG.8. The change in rendering parameters is not always apparent #tom the images $hemselves. The three nodes in this

graph vary only in their opacity maps, yet the images differ greatly in color. The change in opacity maps exposes di_erent

portions of the data, each of which are mapped to a di_erent set of colors.

switch back and forth between these approaches, and the graph would keep the nodes relating to the two

approaches separate from each other.

4.2.2. Image relationships. Edges on the graph vary in appearance according to the type of relation-

ship they represent. The reason for this distinction is to depict 1 he changes made during the data exploration

to get from one image on the graph to another. It is especially mportant to know the relationships between

the images that have been rendered in case the types of the changes arc not readily apparent from the

images. This can happen when a color or opacity mapping is not effective for a given dataset. For example,

if a lot of contrasting colors are assigned to a range of data values which are also assigned low opacity values,

a change in the color map will not necessarily affect a change i a the colors of the resultant image. Figure 8

shows an example.

4.2.3. Ordering information. To convey the order in w rich the images on the graph were generated,

each image on the graph has a mark in the corner which repre:.ents its relative age. The color of the marks

range from black (oldest) to white (newest). Ideally we would use a graph layout algorithm which tried to

apply the constraint that newer nodes on the graph were towa:ds the right, while older nodes were located

towards the left. We provide "forward" and "back" buttons to s_ lect nodes in the graph relative to the current

nodc according to thc order of creation. Drawing ordered grap m has been investigated elsewhere [14, 1].

Figure 9 displays a more complete data exploration process using the graph-based approach. The initial

image is in the top left corner of the figure. The images gro_ newer towards the right side of the graph.

The node displaying a mix of blue and red vortices shows the dataset with extreme values emphasized. Low

 i i! i i!ii!iiii iiiii i iii ili! iiiii ! i i !!iiiiiiii ili!i!iiii

iii iiiiii !iiill! i!i!i

\

FIG. 9. The graph constructed during the exploration of the CFD dataset.

values have a blue-green color, and high values are orange-red. Wc make two opacity map changes to this

image to produce an image of the high values and an image of the low values. Next we zoom in on both

of these images. Thc graph shows that the two zoomed images differ only in terms of their opacity map.

Figure 10 displays a desirable visualization result for the CFD datasct. Both negative and positive vortices

are captured in a single visualization.

4.2.4. Support for animation and collaboration. In addition, DiVision provides the ability to

produce animations from images of the dataset. The user selects the series of images to use for the production

of the animation, and the system performs interpolation between them to produce an animation. This

interpolation is done in the space of rotation, color, opacity and zoom. Animation works well with the image

graph because the user can understand the interpolation process better with the aid of the graph.

The system also provides features for collaborative visualization which allow users to share, understand,

and build upon each others' results by sharing annotated graphs. Using DiVision, the user can annotate

images, both by drawing on the actual images and by writing comments about the images. These comments

are stored in the visualization graph along with the images to which they correspond. As well, these graphs

can be saved to the local file systcm, if the web browser gives the applct access to it. The annotated graphs

can then be exchanged among users of the system.

The exchangc of image graphs among users is more useful than the exchange of just image data. If a

group of images is used, the user has no clcar idea of the relationship between them. If users want to work

together to explore a datasct, it is important to minimize the amount of a user's work which is lost when

that work is communicated to another user. By expressing the data exploration process in terms of a graph

as opposed to a list of images, the system can communicate more information to other users.

FEG. 10. The graph-based approach helps derive the desirable visualization which captures both the negative (blue) and

positive (red) vortices.

4.3. Graph Scalability. Currently, the graph occupies a fixed amount of screen real estate. As the

number of nodes in the graph increases, the graph may become cluttered. To handle this, we allow the uscr

to collapse nodes on the graph. The user can specify a group of nodes to collapse, and a node to represent

these nodes on the graph. The user can expand the representative node later if he wishes to explore the

collapsed nodes. With this approach, nodes on the graph whic[have proven to be less useful can be hidden.

For example, if a user was looking for an opacity map which w¢_uld reveal a certain structure in the dataset,

he might produce several images with less useful opacity maps. After he was satisfied with the opacity map,

he could collapse the nodes with less useful images into the node with the good opacity map, or he could

simply delete the preliminary nodes from the graph if he was certainly not interested in looking at them

later on.

Another concern related to scalability is the number of edges present in the graph. If nodes have a lot

of connections to each other, it may be difficult to represent t],e graph clearly in a small amount of screen

space. One solution to this problem is to minimize the numbe': of edges connected to the average node on

the graph. To this end, we only draw one edge of each type for each node in the graph when that node is

created.

5. Conclusions. The graph approach to representing the 'Jolume visualization process aids the user by

providing a structured representation of the results of the proc_ ss. This representation aids in collaboration

and animation by illustrating the relationships between rcnderec images. The image graph is especially useful

for understanding how certain types of rendering parameter changes affect a given dataset, and preserving

information learned about the dataset which can not be expressed in a single image or group of images.

6. Future Work. We would like to use a graph layout algorithm which can provide a notion of the age

of graph nodes. Currently, the age of a node is represented by the color of a triangle in a corner of the node's

10

icon.Wcwouldliketo try to improveonthisapproachwith agraphlayoutalgorithmwhichestablishesa
left to rightflowof nodesin thegraph.With certaingraphtopologiesit wouldbedifficultto enforcethis
constraint,soa graphalgorithmwhichcouldconsiderthe left to right chronologicalconstraintalongwith
otherswouldbcneeded.

Anotherareafor possiblefutureworkinvolvesensuringthe scalabilityof the imagegraphto large
numbersof nodes.Whiletheability to collapseandremovenodesservesthis purpose,it requiresuser
intervention.An approachinvolvinga scrollablegraphlargerthanthedisplayareawouldbe interesting
to explore.Thesystemcouldprovidetheuserwith a full viewof thegraphandalargerviewof thearea
surroundingthecurrentnodein thegraphto providescalabilitywithoutuserintervention.Finallyweplan
to performamorecomprehensiveuserstudyto evaluatetheeffectivenessofthegraphapproach.

Acknowledgments.ThefootdatasetwasprovidedbytheVisibleHumanProjectandtheCFDdatasct
byRobertWilson.

REFERENCES

[1]G. D. BATTISTA,P. EADES,R. TAMASSIA,ANDI. TOLLIS,Annotated Bibliography on Graph Drawing

Algorithms, Computational Geometry: Theory and Applications, 4 (1994), pp. 235 282.

[2] B. CABRAL, N. CAM, AND J. FORAN, Accelerated Volume Rendering and Tomographic Reconstruction

Using Texture Mapping Hardware, in Proceedings of 1994 Symposium on Volume Visualization,

October 1994, pp. 91 98.

[3] R. A. DREBIN, L. CARPENTER, AND P. HANRAHAN, Volume Rendering, in Proceedings of SIGGRAPH

'88, August 1988, pp. 65 74.

[4] T. HE, L. HONG, A. KAUFMAN_ AND H. PFISTER, Generation of Transfer Functions with Stochastic

Search Techniques, in Proceedings of Visualization '96, October 1996, pp. 227 234.

[5] P. LACROUTE, Real-Time Volume Rendering on Shared Memory Multiprocessors Using the Shear-Warp

Factorization, in Proceedings of the 1995 Parallel Rendering Symposium, 1995, pp. 15 22.

[6] P. LACROUTE AND M. LEVOY, Fast Volume Rendering Using a Shear-Warp Factorization of the View-

ing Transformation, in Proceedings of SIGGRAPH '94, July 1994, pp. 451 458.

[7] M. LEVOY, Display Surfaces from Volume Data, IEEE Computer Graphics and Applications, 25 (1988),

pp. 29 37.

[8] --, Efficient Ray Tracing of Volume Data, ACM Transactions on Graphics, 9 (1990), pp. 245 261.

[9] --, Spreadsheets for Images, in Proceedings of SIGGRAPH '94, July 1994, pp. 139 146.

[10] K.-L. MA, J. S. PAINTER, C. HANSEN, AND M. KROGH, Parallel Volume Rendering Using Binary-

Swap Compositing, IEEE Computer Graphics & Applications, 14 (1994), pp. 59 67.

[11] J. MARKS_ B. ANDALMAN, P. BEARDSLEY, W. FREEMAN_ S. GIBSON, J. HODINGS, T. KANG_

B. MIRTICH, H. PFISTER, W. RUML, K. RYALL, J. SEIMS, AND S. SHIEBER, Design Galleries: A

General Approach to Setting Parameters for Computer Graphics and Animation, in Proceedings of

SIGGRAPH '97, August 1997, pp. 389 400.

[12] C. K. MICHAELS AND M. J. BAILEY, A Java Applet for Interactive 3D Scientific Visualization on the

Web, in Proceedings of Visualization '97, October 1997.

[13] H. PFISTER AND A. KAUFMAN, Cube_ A Scalable Architecture for Real-Time Volume Rendering, in

Proceedings of 1996 Symposium on Volume Visualization, 1996, pp. 47 54.

[14] I. RIVAL, The Diagram, Reidel Publishing, 1985, pp. 103 133.

11

[15] L. WESTOVER, Footprint Evaluation for Volume Renderiv.g, in Proceedings of SIGGRAPH '90, August

1990, pp. 367 376.

[16J c. WITTENBRINK, K. KIM, J. STORY, AND A. PANG, PermWeb: Remote Parallel and Distributed

Volume Visualization, in Proceedings of SPIE Visua: Data Exploration and Analysis IV, SPIE's

Electronic Imaging '97, February 1997, pp. 100 110.

[17] R. YACEL AND Z. SHI_ Accelerating Volume Animation by Space-Leaping, in Proceedings of Visualiza-

tion '93, 1993, pp. 6369.

[18] M. YOUNG AND D. ARGIRO, Cantata: Visual Programming Environment for the Khoros System,

Computer Graphics, 29 (1995), pp. 22 24.

12

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reportingburdenfor this collectionof informationisestimatedto average1 hour per response,includingthe time for reviewing instructions,searchingexistingdata sources,
gathering andmaintainingthe data needed,andcompletingandreviewingthe collectionof information Sendcommentsregardingthis burdenestimateor anyother aspectof this
collectionof information,includingsuggestionsfor reducingthis burden,to Washington HeadquartersServices,Directorate for InformationOperationsand Reports, 1215Jefferson
Davis Highway.Suite1204, Arlington,VA 22202-4302. andto the Officeof Management and Budget.PaperworkReductionProject (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

August 1998 Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A graph based interface for representing volume visualization results

6. AUTHOR(S)

James M. Patten

Kwan-Liu Ma

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering

Mail Stop 403, NASA Langley Research Center

Hampton, VA 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-2199

C NAS1-19480

C NAS1-97046

WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 98-35

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR-1998-208468

ICASE Report No. 98-35

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell

Final Report

To appear in the Proceedings of Graphics Interface '98

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified Unlimited

Subject Category 60, 61

Distribution: Nonstandard

Availability: NASA-CASI (301)621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This paper discusses a graph based user interface for representing the results of the volume visualization process.

As images are rendered, they are connected to other images in a graph based on their rendering parameters. The

user can take advantage of the information in this graph to understand how certain rendering parameter changes

affect a dataset, making the visualization process more efficient. Because the graph contains more information than

is contained in an unstructured history of images, the image graph is also helpful for collaborative visualization and
animation.

14. SUBJECT TERMS

user interface; volume rendering;

representation

scientific visualization

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

15. NUMBER OF PAGES

graph drawing; knowledge 17

16. PRICE CODE

A03

19. SECURITY CLASSIFICATION 20. LIMITATION

OF ABSTRACT OF ABSTRACT

Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std Z3g-18
298-102

