
A Treemap Based Method for Rapid Layout of Large Graphs
Chris Muelder∗ Kwan-Liu Ma†

University of California, Davis

ABSTRACT

Abstract graphs or networks are a commonly recurring data type in
many fields. In order to visualize such graphs effectively, the graph
must be laid out on the screen coherently. Many algorithms exist
to do this, but many of these algorithms tend to be very slow when
the input graph is large. This paper presents a new approach to
the large graph layout problem, which quickly generates an effec-
tive layout. This new method proceeds by generating a clustering
hierarchy for the graph, applying a treemap to this hierarchy, and
finally placing the graph vertices in their associated regions in the
treemap. It is ideal for interactive systems where operations such
as semantic zooming are to be performed, since most of the work is
done in the initial hierarchy calculation, and it takes very little work
to recalculate the layout. This method is also valuable in that the
resulting layout can be used as the input to an iterative algorithm
(e.g., a force directed method), which greatly reduces the number
of iterations required to converge to a near optimal layout.

Index Terms: I.3.6 [Computing Methodologies]: Computer
Graphics—Methodologies and Techniques;

1 INTRODUCTION

Applications in many fields employ graph visualization to present
data to the user. For example, document visualizations [18] can rep-
resent documents and their citation network with a graph. Similarly,
social network visualizations [14] can represent people as nodes in
a graph. These visualizations are frequently used to show inherent
patterns in the data. In order to emphasize these patterns, many al-
gorithms have been developed that determine how best to place the
nodes on the screen. While there are special cases such as trees or
directed graphs for which shortcuts can often be used or directional
constraints taken into consideration, probably the most commonly
used graph layout algorithms are force-directed layouts [21, 11, 17].
These layouts are versatile because they can be applied to any gen-
eral graph, they can take edge weights into consideration, and they
tend to make very aesthetically pleasing layouts. They are good at
showing patterns such as clusters since strongly connected vertices
in the graph get pulled together by the layout algorithm. Although
rapid force-directed layouts have been recently improved[13], they
are still generally computationally intensive and do not scale well as
the size of the graph increases. Also, force-directed layouts have a
problem with local minima in the energy function where the graph
can get stuck in a non-optimal layout. As a result, it is not un-
common for the layout algorithm to take many extra iterations to
separate clusters from each other, or for a node in a cluster to be
separated from the rest of its cluster and have its edges stretching
across another cluster of nodes. There are also algebraic layout al-
gorithms that quickly generate a layout by directly working with the
matrix of edges between nodes [13]. However, these approaches of-
ten have the problem of mapping many nodes to the same locations,
so that parts of the graph are obscured.

∗muelder@cs.ucdavis.edu
†ma@cs.ucdavis.edu

The treemap based layout algorithm presented here avoids these
common drawbacks of force-directed approaches while attaining
the speed of algebraic approaches. Since this layout uses opera-
tions that are relatively easy to calculate, it is not as computation-
ally expensive as force-directed layouts. Because of this property,
and because the treemap layout does not take multiple iterations,
it provides results more quickly than force-directed approaches. It
also avoids the problem of nodes being separated from their clus-
ters since the treemap forces clusters into separate regions of the
screen. Since the treemap based layout is good at avoiding some
of the difficulties inherent to force-directed layouts, it also works
well as a preprocessing step to a force-directed layout calculation.
That is, the output of the treemap based layout algorithm is a good
initial set of positions on which to run a force-directed algorithm.
The force-directed layout will then not have to separate clusters that
are mixed together, since the treemap layout has done this already.
In fact, in experimental tests, using such a layout as a preprocess-
ing step provides an improvement of an order of magnitude over
randomized initial positions. Thus, the algorithms can complement
each other such that the end result is achieved much faster when
they are combined.

2 RELATED WORK

This work draws upon several existing techniques in both the fields
of graph visualization and treemap visualization. Many graph lay-
out algorithms have been developed, and there are several varia-
tions of and extensions to treemaps. The concept of using the two
together has also been previously introduced.

2.1 Existing Graph Layout Techniques
Sometimes a graph has an intuitive layout where the vertices con-
tain positional information that can be used, such as geographical
locations. However, most graphs do not have such information,
thereby requiring that the positions of vertices be derived. For spe-
cial cases, such as trees or directional graphs, algorithms are used
that exploit certain properties of the graphs. But for general graphs,
more flexible algorithms must be used. The two major classes of
algorithms used to layout general graphs are as follows:

• Force-Directed Layouts position graphs using a physical
model. They usually work by iteratively refining the posi-
tions of vertices in order to incrementally reduce an energy
function. This energy function varies between algorithms,
but generally has the property that it is a function of the
distances between nodes and the weights of the edges be-
tween them. That is, if the edge between two vertices is
strong then the two vertices will be strongly pulled together,
and if the edge is weak or nonexistent, then the vertices will
be repelled. Fruchtermen-Reingold [11], LinLog [21], and
Kamada-Kawai[17] are common examples of algorithms that
fall into this category. There are several variations of these
algorithms that reduce the amount of computation heuristi-
cally by limiting the number of calculations per iteration [6]
and several of those surveyed by Hachul and Jünger [13].
While these variations are faster, the heuristics can lead to
suboptimal layouts or require exorbitant amounts of memory.
Other variants accelerate the process through parallel hard-
ware, such as the recent GPU based layout [10].

Figure 1: A graph laid out using our treemap based approach. This graph portrays the links between websites that came from a search on the
word “California” [7]. Nodes are clustered into a hierarchy, and laid out by applying a treemap to this hierarchy. Levels of the hierarchy below a
threshold are clustered together into larger nodes. It can very easily be seen that there are three primary groups of websites that link to each
other, and a plethora of others that are not as tightly linked.

• Algebraic Layouts There are also several layout algorithms
that are based on linear algebra. These algorithms work by
directly manipulating the adjacency matrix with linear alge-
bra techniques in order to produce an effective layout. While
not very intuitive, these algorithms can quickly produce lay-
outs that are similar to the force-directed layouts. However,
these algorithms can fail to produce a good layout in some
cases. For instance, in some examples in the survey paper by
Hachul and Jünger [13], the algebraic layouts place multiple
nodes at the same coordinates, which obscures the structure
of the graph. Two such algorithms are described in their sur-
vey paper [13]: The Algebraic Multigrid Method ACE and
High-Dimensional Embedding.

2.2 Clustering

Frequently, graph data is clustered in order to create an overview
or allow interactions such as semantic zooming. In order to use a
treemap for layout, the graph must be clustered with a hierarchical
method, such as agglomerative or divisive clustering [16]. In ag-
glomerative clustering, each node starts as a separate cluster. The
clusters are then progressively merged together until there is only
one cluster. One example of such an algorithm is single linkage,
where clusters are sequentially merged according to the strongest
remaining edge. In divisive clustering, such as spectral clustering,
there is initially one cluster consisting of the entire graph. Then the
cluster is recursively split into smaller clusters until it is either no
longer beneficial or no longer possible to split it further.

2.3 Treemaps

Originally proposed by Ben Shneiderman [24], treemaps have be-
come a common method for representing hierarchical data. Many
variations and extensions have since been explored, such as the
Squarified algorithm [4], which alters how the screen is divided,
and the Voronoi treemap algorithm [3], which removes the rectan-
gular limitation that treemaps usually have. The majority of these
works use a treemap to directly show a hierarchy rather than using
that representation of the hierarchy to accomplish something else.

2.4 Combining Treemaps and Graphs
In several works, treemaps and graphs have been used together. In
the work of Zhao et al. [28], both graph diagrams and treemaps are
used interchangeably to represent parts of a tree more efficiently.
A node-link diagram is overlaid on a treemap in order to represent
the same tree in the paper by Nguyen et al. [20]. However, these
only work with trees, and not general graphs. In the work of Abello
et al. [2], a treemap is used to interact with the clustering hierar-
chy of a graph. But this treemap is only used to control the level
semantic zooming of the graph, and not the layout. Finally, the
work of Fekete et al. [9] divides a graph into a spanning tree and
a set of edges, then uses a treemap to represent the tree part of the
graph and displays the remainder as nodes and links overlaid on the
treemap. This is useful when the graph has an inherent or intuitive
tree decomposition, such as web sites, but most general graphs do
not have such a nice decomposition. The work presented here is
substantially different from these. We use a treemap to layout a
general graph, and address several of the accompanying issues.

3 A NEW LAYOUT METHOD

This paper presents a novel method of laying out a graph by gen-
erating a clustering hierarchy, applying a treemap to the clustering
hierarchy in order to allocate regions of the screen that are associ-
ated with individual vertices in the graph, and finally placing each
node inside its region of the screen. An example of a graph laid out
this way is presented in Figure 1. This particular graph is a non-
weighted graph of links between search results for the word “Cali-
fornia” (also in Figures 6, 8, and 9, |V| = 6107, |E| = 15160, [7]).
The other graphs used in this paper are: a graph of network scans,
which is a complete graph with edge weights between 0 and 1, but
for clarity, edges with weights less than a certain threshold are not
shown (Figures 3 and 4, |V| = 878, |E| = 385003, [19]), a small
artificial graph of a grid topology (Figure 5, |V| = 16, |E| = 24),
a large graph of streets in the San Francisco Bay Area (Figure 7,
|V | = 321,270, |E| = 800,172, [8]). and an artificial randomly
generated complete graph consisting of seven strongly connected
clusters with weak inter-cluster edges (Figure 10, |V| = 1024,
|E|= 523776). The overall process is shown in Figure 2.

(a) Hierarchically clus-
ter the nodes.

(b) Apply a treemap to
the clustering hierarchy.

(c) Place the nodes in
their treemap regions.

Figure 2: The overall method. Divide screenspace into regions by
applying a treemap to a hierarchical clustering of a graph, then place
each node in its associated region.

3.1 Hierarchical Clustering

As shown in Figure 2(a), the first step is to hierarchically cluster the
nodes. There are many hierarchical clustering algorithms. Some
work well with weighted graphs, while others work well with un-
weighted graphs. For this paper, single linkage [16] was selected to
work with weighted graphs because it is simple and quickly calcu-
lated. For unweighted graphs, Clauset, Newman, and Moore’s “Fast
Modularity” community structure inference algorithm [5] was cho-
sen, since it is very fast, generates a binary hierarchy, and is good at
clustering small world networks. While a treemap based layout can
use any hierarchical clustering, the ones used here make a binary
tree, which keeps the treemap process simple.

3.2 Treemap Generation

Treemaps work by assigning each node in the hierarchy a region of
space, then subdividing this space among that node’s children. So,
initially, the root node of the hierarchy is assigned the entire screen
space, and then it is split up according to its children. Then each of
the children’s areas are split up according to their children, and so
on down the hierarchy. One advantage to this representation is that
it is space filling so that no screen space is wasted. Applying this
concept to the hierarchal clustering of a graph generates a treemap
such as the one in Figure 2(b). In this image, each region of space
corresponds to a node in the graph, and regions corresponding to
nodes that are tightly clustered together end up near each other.
While many advanced treemap algorithms exist, such as Squarified
treemaps [4], due to the choice of a binary clustering algorithm for
this paper, we are constrained to a slice and dice approach.

3.3 Adding the Graph

Once a treemap has been created, the graph can be laid out by plac-
ing each vertex in its associated region of the screen. The simplest
way to do this is to simply place the node in the center of its re-
gion, as is shown in Figure 2(c). Since the treemap represents the
clustering hierarchy, each vertex in the graph will be assigned a re-
gion in space that is near to regions of space corresponding to other
vertices in its cluster. This results in a layout that satisfies several
of the properties that are desirable in a graph layout. Namely, the
nodes are placed such that strongly weighted edges are kept rela-
tively short compared to weakly weighted ones, connected nodes
are generally placed closer than disconnected ones, and important
features such as clusters and outliers are readily discernible. Also,
this has an added advantage over most other layouts in that it effi-
ciently fills the whole screen, so that more nodes can be displayed
simultaneously without obstructing each other. Figure 3 shows the
result of applying this approach directly to a real graph.

Figure 3: A graph laid out with our technique. The dataset shown is
a graph of similarity between network scans [19].

4 EVALUATION AND ENHANCEMENTS

The approach presented in this paper has several advantages when
compared to existing algorithms, but it also has some limitations.
It performs very well in terms of speed, and it does not take mul-
tiple iterations the way force-directed layout algorithms do. Fur-
thermore, the space filling property of the treemaps means that the
graph takes up more of the screen space than many other layouts,
such as force-directed ones, allowing more space to be used to show
detail inside clusters. But, the treemap layout is dependent on the
hierarchy, so the choice of clustering algorithm can have a large
effect on the results, and an unbalanced hierarchy can lead to poor
results. Also, the use of treemaps directly introduces some common
treemap-related issues. But these issues can often be alleviated by
making simple changes to the algorithm.

4.1 Collinear Vertices
Due to regularity of treemaps, this approach tends to place many
identical regions in a row. When this happens, all the nodes for
those regions end up being collinear if they are all placed in the
middle of their regions (shown in Figure 4(a)). The problem with
this is that edges between such nodes will not only cross but com-
pletely overlap so that they become indistinguishable from each
other. There are a couple of solutions to this problem. One solution
is to curve the edges with splines so that they do not overlap, as in
Figure 4(b). In the case of a directed graph, this splining is also nice
to do in order to simultaneously show direction in the graph, as in
the work of Fekete et al. [9]. Or an edge bundling kind of splin-
ing could be effective, as described by Holten [1]. Another solution
is to simply randomize the placement of nodes in their regions, as
is shown in Figure 4(c). While this sacrifices some deterministic
properties of the layout, the probability of any three vertices being
collinear is small enough to effectively solve this problem.

4.2 Narrow Regions
A common issue with treemaps is that regions can end up being
very narrow. When this happens in the treemap graph layout, sev-
eral nodes in the graph end up in a line so close together that they
frequently overlap. In particular, this usually occurs with nodes
that are outliers; many outliers get placed closer to each other than
tightly clustered nodes do. There are several possible solutions to
this issue. Just as in the collinear vertices issue, randomizing the
placement of the nodes will alleviate this problem, as can be seen

(a) The simple treemap algorithm used causes
many vertices to be collinear, and some regions
to be very thin.

(b) Curving the edges with splines prevents ones
that go between collinear points from overlap-
ping.

(c) Randomizing the placement of vertices
within their regions makes them be non-collinear
and spreads them out over narrow regions.

Figure 4: Enhancements to the approach. Difficulties due to the use of treemaps (a), and two techniques to alleviate problems due to collinear
vertices: splining (b) and randomization (c). Randomization also helps with narrow regions of the treemap.

(a) Naive splitting (b) Directed splitting

Figure 5: Improved treemap splitting. Edges can sometimes stretch
across clusters. By taking these edges into account during the
treemap subdivision process, quality can be improved at the cost of
complexity.

in Figure 4(c). Since the narrow regions are longer in one direction,
the nodes on average get spread out more over the longer direction,
and so are unlikely to overlap. Another solution to the narrow re-
gion problem can be found by adjusting the clustering algorithm.
Since the treemap is a direct result of the hierarchy generated by
the clustering algorithm, if the clustering algorithm makes a tree
that is somewhat balanced, the treemap will also be somewhat bal-
anced and the narrow regions problem should be alleviated. Finally,
as this is a common treemap problem, it might also be correctable
through the use of a more complicated treemap algorithm. For ex-
ample, the Squarified algorithm was designed to solve this exact is-
sue. However, using a Squarified treemap necessitates a non-binary
hierarchy, and would add computation overhead.

4.3 Directed Region Splitting
When an edge goes between two nodes that are in different clus-
ters, it is possible for these nodes to be placed within their clusters
such that they are far apart. The problem with this is that the edge
between these two nodes now stretches completely across one or
both of the involved clusters or even over the entire graph. This
is the case in Figure 5(a). When possible, it would be better if
these nodes could be placed within their clusters such that they end
up near each other, so the cross cluster edge is not crossing over as
many of the other edges in the clusters. This can be done by arrang-
ing the children during the splitting process according to an energy

function of the edges into and out of the child regions. The result of
applying this is shown in Figure 5(b) Unlike the energy function in
most force-directed algorithms, this energy function does not need
to calculate distances between every node for repulsion forces; it
only needs to calculate attractive forces of edges. Also, when us-
ing a binary hierarchy, there are only two ways to split each region,
so the energy calculation only needs to consider which of these is
lower energy. Thus, even though this substantially increases the
computational cost, since it has to consider each edge, it is still a
large improvement over force-directed layouts.

4.4 Cluster Seperation
Randomizing the placing of the nodes in their regions has the ef-
fect of making the nodes have an overall uniform distribution over
the entire screen. While this is efficient in terms of screen space,
it is not always the most aesthetic view. Clusters abut each other,
with no white space separating them. This problem can be trivially
solved by nesting the treemap regions. In order to have greater sep-
aration between clusters than within clusters, the nesting is done
proportionately to the size of the region. Also, since the clustering
hierarchy can be quite deep, this nesting is only applied to the first
n levels of the treemap, where n is user defined. Since the layout
process is fast, the user can easily alter the nesting parameters inter-
actively till an aesthetic view is found. Figure 6 shows the results
of applying this to the graph of search results for “California” [7].

4.5 Complexity and Scalability
One of the biggest advantages of a treemap layout technique is that
it is very fast. In fact, the most time consuming step is not even
laying out the nodes, it is generating the hierarchy. A single link-
age clustering hierarchy is essentially equivalent to a spanning tree,
and can be generated in as little as O(|E|+ |V|log|V|) time. The
community clustering hierarchy [5] takes O(|E| ∗ d ∗ log|V|) time,
where d is the depth of the hierarchy. These hierarchy costs dom-
inate the initial layout cost, but they only get calculated once, and
thus can actually be done as a preprocess step. The actual node lay-
out only takes Θ(|V|) time to do simply, since the hierarchy tree is
at least |V| and at most 2∗ |V| nodes large. Also, at each recursion,
the amount of computation is very small since it only has to divide a
region in two. Accounting for edges during the splitting process in-
creases the complexity to O(|E|+ |V|) since the edges must be con-
sidered, but as with the clustering, this can be done once and then
reused. When compared to the O(|V|2) somewhat computationally
intensive calculations that a traditional force-directed layout takes
per iteration, the treemap algorithm is much faster. In fact, when

Figure 6: Cluster seperation. Nesting the first n levels of the treemap
separates clusters, which better shows inter-cluster relationships.

|E| ≥ |V|log|V|, the total worst case complexity is comparable to
that of the algebraic layout algorithms. But even when this is not
the case, the higher initial complexity can be marginalized by the
lower cost of laying out nodes when the nodes need to be laid out
repeatedly, as in an interactive system.

Due to the rapid speed of our approach, one of the biggest ad-
vantages to our approach is scalability. It can easily scale up to hun-
dreds of thousands of nodes, as is demonstrated in Figure 7. This
graph of city streets in the San Francisco Bay Area is quite large
(|V | = 321,270, |E| = 800,172). Generating the hierarchy with
the fast community clustering algorithm takes about 80.65 seconds.
However, generating the actual layout only takes 1.34 seconds with
directed region splitting, and only .125 seconds with naive splitting.
Thus, the layout can be generated at interactive speeds.

4.6 Effectiveness
It does not matter how fast a graph laid out if the resulting layout is
not useful. For instance, a randomized layout can be generated very
fast, but the resulting layout will rarely be useful. Force-directed
layouts such as LinLog generally produce quite good results, but
take a long time to do so. The treemap based layout presented here
though is both fast and effective. The clustering basis makes it so
nodes are near nodes they are tightly clustered to. The directed
splitting gives the layout several of the properties that make force-
directed layouts good - namely shorter edges and fewer edge cross-
ings. And finally, the screen constraints induced by the treemaps
guarantee that the nodes are spread out, so that patterns in the edges
can be seen. In order to demonstrate the quality of a treemap based
layout, a comparison between it and some other layouts is given in
Figure 6, where they are applied to the “California” graph. Timing
results were generated by running the programs on one core of a
2.66GHz Intel Xeon Mac Pro with 8Gb of RAM.

The treemap based layout (Figure 8(a)) was made using the “Fast
Modularity” algorithm [5], directed splitting, and randomized node
placement within their regions. The whole layout took only one
second to compute. As can easily be seen, the most costly oper-
ation was the clustering, which took over 90% of the time. Since
this is only done once on load, the actual layout can be run at about
13 frames per second, which is easily fast enough for an interac-

Figure 7: Scalability. Our approach can scale to very large networks
while still maintaining interactivity. |V |= 321,270, |E|= 800,172

tive system. This could be made even faster by only applying the
directed splitting once and recalling the ordering in subsequent lay-
outs. The resulting layout very clearly shows three large clusters
of nodes, with many internal nodes, and a large number of other
nodes distributed around the screen. Within these clusters, interest-
ing features such as nodes of high degree are easily visible. Sim-
ilar features are also visible in the rest of the graph. The LinLog
based layout, shown in Figure 8(b), was easily the slowest, tak-
ing over 10,000 seconds to compute 200 iterations. In this layout,
it is clear that there is a very tightly connected group of nodes, and
many weakly connected or disconnected subgraphs. While it can be
seen that there are actually three clusters in the center of the graph,
the internals of these clusters can not be seen, since the nodes are
so close together. The Grid-Variant Algorithm (GVA) [13], shown
in Figure 8(c), is a heuristically accelerated layout based on the
Fruchterman-Reingold layout algorithm [11]. As can clearly be
seen, this algorithm is much faster than LinLog, taking only 45 sec-
onds to do 400 iterations. However, the results are not as good as
LinLog, since the three clusters in the middle are not distinguish-
able from each other. It also induces a grid-like arrangement of
many of the nodes due to the heuristic which is not related to the
graph. While the force-directed graph layouts may be more intu-
itive and perhaps more aesthetically pleasing, neither of them show
the internal structures of the clusters that are easily visible in the
treemap based layout.

5 APPLICATIONS

Similar to force-directed layouts, the treemap layout algorithm is
applicable to any general graph. It is only dependent on the clus-
tering algorithm chosen. However, there are some applications for
which a treemap based layout is particularly effective.

5.1 Semantic Zoom

When dealing with large graphs, often times a clustering is gener-
ated in order to produce a high level abstraction of the graph. This
abstraction can then be used as an overview to the graph, where
each node in the abstracted version represents a whole cluster in
the detailed graph. However, when granting the user access to the

(a) Treemap based layout - Took 1.00 sec.:
0.923 sec. for clustering, 0.076 sec. for treemap

(b) LinLog layout - Took 10,737 sec.:
200 iterations, 53.7 sec. per iteration

(c) GVA Layout - Took 45.5 sec.:
400 iterations, .113 sec. per iteration

Figure 8: Treemap Layout versus force-directed layouts (LinLog [21]
and the Grid-Variant Algorithm (GVA) [13] based on Fruchterman-
Reingold). The treemap based layout takes far less time to produce,
and details such as the interior of the clusters can be clearly seen.

detailed version of the graph, it is beneficial to only show detail
for a small portion of the graph rather than the whole. It is also
beneficial to maintain the context of the overview so that the user
can more easily associate the section of the overview with its de-
tail view. Thus, a “focus plus context” paradigm is often employed,
where only the small region of the overview is expanded to the de-
tail view and is shown in place with the rest overview. The treemap
layout was designed with this goal in mind, and therefore is very ef-
ficient at doing so as is demonstrated in Figure 9. Figure 9(a) shows
an overview of the “California” graph, which was generated by only
descending some user defined number of levels down the hierarchy.
Figure 9(b) shows the result of expanding one clustered node into
its detailed graph. Then Figure 9(c) shows this subgraph expanded
by distorting the treemap with a technique similar to that used by
Shi et al. [23]. This process can be done exceedingly quickly, since
almost all the layout work is already done by the hierarchical clus-
tering. The end result of this is that even very large graphs can be
rapidly explored interactively and viewed in high detail when de-
sired. There is a minor issue of instability, since the aspect ratio
of the distorted areas are different. This could be handled by forc-
ing the splitting process to use the same splits as the undistorted
treemap, but this would cause very poor aspect ratios, and so was
not done for this example. Another potential solution to this prob-
lem would be to use animation, but this is left as future work.

5.2 Preprocessing for Force-Directed Layout

Force-directed layouts have neither the problem of having nodes too
close together due to narrow regions in the treemap nor the problem
of collinear points, so they often produce results that are considered
more aesthetically pleasing. However, they are generally slow and
have difficulty in separating out clusters that are mixed together. As
was done in several other works [22, 26, 25], spatial decomposition
can be used to accelerate the force-directed layout process. That
is, if the input points have already been separated into regions of
space by cluster, then the number of iterations it takes to calculate
the force-directed layout can be greatly reduced. Since this is what
the treemap layout approach does, it makes an effective set of ini-
tial points for a force-directed layout to start from. Figure 10 shows
the results of applying the LinLog [21] force-directed algorithm to
both a randomized initial input and an initial input generated with
the treemap layout. In both cases, the force-directed layout was
terminated when the generated layouts reached a point where all
clusters were distinct and looked comparable in both layouts. The
force-directed layout would continue to slowly adjust both layouts
for many more iterations. However, these iterations would be essen-
tially the same for both inputs, and so are not pictured here; they did
not change the topology of the layout, merely the relative positions
of the clusters. As can be seen, the number of iterations required
to generate a good force-directed layout was an order of magnitude
less when the nodes were initially placed with the treemap based
layout. In this example, the treemap layout was approximately
equivalent to about 125 iterations of the force-directed layout for
this data. On the system that performed this computation, each iter-
ation took about two seconds. By applying a treemap based layout
to the graph before using the force-directed layout on it, the amount
of time to render the graph was reduced from about four and a half
minutes to about twenty seconds, which is much more reasonable
for an interactive program.

6 FUTURE WORK

While the results of this approach have proven themselves useful,
there are still several things that can be done to improve upon them.
The clustering algorithms we use tend to make unbalanced hierar-
chies, and the treemap algorithm is quite simplistic. Both of these
could be replaced with alternate algorithms to improve the results.

(a) Overview (b) Semantic zoom (c) Semantic zoom + distortion

Figure 9: A treemap based layout can be used to show focus plus context easily through means of semantic zooming and distortion. (a) shows
a high level abstraction of the “California” graph [7]. In (b) one of the clusters has been expanded with a semantic zoom, and in (c) the graph has
been distorted to show the expanded cluster in more detail.

(a) Initial random placement for LinLog layout
energy=896804.375000

(b) LinLog with random init. - 60 iterations
energy=705586.312500

(c) LinLog with random init. - 135 iterations
energy=681244.625000

(d) Initial treemap based placement
energy=888501.625000

(e) LinLog with treemap init. - 5 iterations
energy=687810.562500

(f) LinLog with treemap init. - 10 iterations
energy=682494.437500

Figure 10: A treemap based layout can also be used as a preprocessing step for a force-directed layout. After only 10 iterations of the force-
directed layout starting with the treemap layout the results are comparable to 135 iterations starting from randomized positions. The value of the
energy function being minimized by LinLog is given for each iteration.

6.1 Alternate Clustering Techniques
The current clustering algorithm we use is a binary merging cluster-
ing technique. The hierarchy that it generates has a tendency to be a
very unbalanced tree. For the weighted graphs, complete linkage or
average linkage [16] would likely be better in this respect. Ward’s
method for generating hierarchical clusters [27] is generally consid-
ered to be good at generating balanced hierarchies, and so it would
also perform very well in this situation. For non-weighted graphs,
a better algorithm would be one such as the hierarchical clustering
method employed by Koren and North [12], which would generate
a fairly balanced hierarchy since it forces the clustering to work on
only one semantic level at a time. Also, recent work has been done
to improve on the modularity clustering we use to make it more
balanced [15]. It is also quite possible that a new more specialized
clustering technique could be made with the treemap in mind so
that the generated hierarchy tree would be more balanced and thus
the areas in the treemap would be kept more regular. That is, such
an algorithm would prevent the problem of narrow regions in the
treemap, and thus probably generate a better layout overall even if
the clusters are not quite optimal mathematically.

6.2 Alternate Treemap Algorithms
Currently, the treemap layout algorithm is just using the slice and
dice treemap algorithm. Since the hierarchy is a binary hierarchy,
the options are somewhat limited. For example, the standard Squar-
ified algorithm [4] cannot be applied directly to binary hierarchies
very easily, since it works by arranging n child nodes at a time.
However, it could probably be applied if each level in the treemap
considered more than one level of the hierarchy. That is, it could
consider the next k levels of the hierarchy to lay out up to 2k nodes.
Also, if the hierarchical algorithm employed creates a non-binary
hierarchy, then the Squarified algorithm could be used.

7 CONCLUSIONS

Laying a graph out efficiently and coherently is a difficult task.
Many times, a layout algorithm that is good for one graph does not
work very well for another graph. Thus, there are almost as many
different layout algorithms as there are types of graphs to visualize.
There are some algorithms that work fairly well for most graphs,
such as force-directed layout algorithms, but these algorithms in
general take a long time to run. The concept of a treemap based lay-
out is very flexible, since there are as many variations as there are
clustering algorithms. That is, if there exists a clustering algorithm
that is particularly effective on some set of graphs, a treemap lay-
out based on this clustering algorithm should also be quite effective
for visualizing those graphs. In applications where a hierarchical
clustering is already being calculated, for multiresolution purposes
for instance, the advantage is even greater since the actual treemap
calculation takes even less time than it takes to render the graph.

8 ACKNOWLEDGMENTS

This research was supported in part by the U.S. National Sci-
ence Foundation through grants CCF-0634913, IIS-0552334, CNS-
0551727, and OCI-0325934, and the U.S. Department of Energy
through the SciDAC program with Agreement No. DE-FC02-
06ER25777.

REFERENCES

[1] Hierarchical edge bundles: Visualization of adjacency relations in hi-
erarchical data. IEEE Transactions on Visualization and Computer
Graphics, 12(5):741–748, 2006. Danny Holten.

[2] J. Abello, S. G. Kobourov, and R. Yusufov. Visualizing large graphs
with compound-fisheye views and treemaps. In Graph Drawing,
pages 431–441, 2004.

[3] M. Balzer and O. Deussen. Voronoi treemaps. In IEEE Symposium on
Information Visualization 2005, 2005.

[4] M. Bruls, K. Huizing, and J. van Wijk. Squarified treemaps, 2000.
[5] A. Clauset, M. E. J. Newman, and C. Moore. Finding community

structure in very large networks. Physical Review E, 70:066111, 2004.
[6] J. D. Cohen. Drawing graphs to convey proximity: An incremental

arrangement method. ACM Transactions On Computer-Human Inter-
action, 4(3):197–229, 1997.

[7] Data. ‘California’ search results graph, http://www.cs.
cornell.edu/Courses/cs685/2002fa/, accessed 12/10/07.

[8] Data. Graph of San Francisco Bay Area streets from the 9th di-
macs implementation challenge, http://www.dis.uniroma1.
it/∼challenge9/download.shtml, accessed 12/10/07.

[9] J.-D. Fekete, D. Wang, N. Dang, A. Aris, and C. Plaisant. Overlay-
ing graph links on treemaps. In InfoVis03, Poster Compendium (Aug.
2003), page 8283, 2003.

[10] Y. Frishman and A. Tal. Multi-level graph layout on the gpu. IEEE
Trans. Vis. Comput. Graph., 13(6):1310–1319, 2007.

[11] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by
force-directed placement. Software - Practice and Experience,
21(11):1129–1164, 1991.

[12] E. R. Gansner. Topological fisheye views for visualizing large
graphs. IEEE Transactions on Visualization and Computer Graphics,
11(4):457–468, July 2005.

[13] S. Hachul and M. Jünger. An experimental comparison of fast algo-
rithms for drawing general large graphs. In Graph Drawing, pages
235–250, 2005.

[14] J. Heer and D. Boyd. Vizster: Visualizing online social networks. In
IEEE Symposium on Information Visualization 2005, 2005.

[15] M. L. Huang and Q. V. Nguyen. A fast algorithm for balanced graph
clustering. In IV, pages 46–52. IEEE Computer Society, 2007.

[16] S. C. Johnson. Hierarchical clustering schemes. In Psychometrika,
pages 2:241–254, 1967.

[17] T. Kamada and S. Kawai. An algorithm for drawing general undi-
rected graphs. Inf. Process. Lett., 31(1):7–15, 1989.

[18] W. Ke, K. Borner, and L. Viswanath. Major information visualization
authors, papers and topics in the acm library. In InfoVis04 Contest,
2004.

[19] C. Muelder, K.-L. Ma, and T. Bartoletti. A visualization methodology
for characterization of network scans. In ACM VizSEC 2005 Work-
shop, pages 29–38, 2005.

[20] Q. V. Nguyen and M. L. Huang. Enccon: an approach to constructing
interactive visualization of large hierarchical data. Palgrave Macmil-
lan (online), 2005.

[21] A. Noack. An energy model for visual graph clustering. Lecture Notes
in Computer Science, 2912:425–436, Mar. 2004.

[22] A. Quigley and P. Eades. Fade: Graph drawing, clustering, and vi-
sual abstraction. In GD ’00: Proceedings of the 8th International
Symposium on Graph Drawing, pages 197–210, London, UK, 2001.
Springer-Verlag.

[23] K. Shi, P. Irani, and B. Li. An evaluation of content browsing tech-
niques for hierarchical space-filling visualizations. In IEEE Sympo-
sium on Information Visualization 2005, 2005.

[24] B. Shneiderman. Tree visualization with tree-maps: 2-d space-filling
approach. ACM Trans. Graph., 11(1):92–99, 1992.

[25] C. Walshaw. A multilevel algorithm for force-directed graph drawing.
In J. Marks, editor, Proc. 8th Int. Symp. Graph Drawing, GD, volume
1984, pages 171–182. Springer-Verlag, 20–23 2000.

[26] X. Wang and I. Miyamoto. Generating customized layouts. In F. J.
Brandenburg, editor, Graph Drawing, Passau, Germany, September
20-22, 1995, pages pp. 504–515. Springer, 1996.

[27] J. H. Ward. Hierarchical grouping to optimize an objective function.
Journal of American Statistical Association, 58(301):236–244, 1963.

[28] S. Zhao, M. J. McGuffin, and M. H. Chignell. Elastic hierarchies:
Combining treemaps and node-link diagrams. In IEEE Symposium on
Information Visualization 2005, 2005.

