
Visual Analysis of Inter-Process Communication for Large-Scale

Parallel Computing

Chris Muelder, Francois Gygi, and Kwan-Liu Ma, Senior Member, IEEE

Fig. 1. A scalable MPI visualization. Rather than plotting MPI calls per process, this view plots the duration of the call on the y-axis
with a log scale versus time on the x-axis. Patterns such as simultaneous start/end times, clusters and trends of similar calls, and
particularly long communications can be seen. The data was collected from running matrix operations from the ScaLAPACK library
on 256 nodes of NERSC’s Franklin supercomputer.

Abstract— In serial computation, program profiling is often helpful for optimization of key sections of code. When moving to parallel
computation, not only does the code execution need to be considered but also communication between the different processes
which can induce delays that are detrimental to performance. As the number of processes increases, so does the impact of the
communication delays on performance. For large-scale parallel applications, it is critical to understand how the communication
impacts performance in order to make the code more efficient. There are several tools available for visualizing program execution
and communications on parallel systems. These tools generally provide either views which statistically summarize the entire program
execution or process-centric views. However, process-centric visualizations do not scale well as the number of processes gets very
large. In particular, the most common representation of parallel processes is a Gantt chart with a row for each process. As the number
of processes increases, these charts can become difficult to work with and can even exceed screen resolution. We propose a new
visualization approach that affords more scalability and then demonstrate it on systems running with up to 16,384 processes.

Index Terms— Information Visualization, MPI Profiling, Scalability.

1 INTRODUCTION

Many phenomena are difficult or simply impossible to fully study ex-
perimentally due to a lack of reliable methods for measuring or con-

• Chris Muelder, Francois Gygi, and Kwan-Liu Ma are with University of

California, Davis.

• E-mails: muelder@cs.ucdavis.edu,fgygi@ucdavis.edu, and

ma@cs.ucdavis.edu

Manuscript received 31 March 2009; accepted 27 July 2009; posted online

11 October 2009; mailed on 5 October 2009.

For information on obtaining reprints of this article, please send

email to: tvcg@computer.org .

troling the experiment. For example, very large-scale phenomena such
as supernovae cannot be tested experimentally, and very small-scale
phenomena such as interaction of particles at the quantum level cannot
be precisely measured. In order to study such phenomena, scientists
often use numerical simulations. These simulations can supplement
existing partial results or lead to new insights which can guide scien-
tists to specific experiments which would confirm the results. How-
ever, to obtain useful results, these simulations usually involve large
and complicated calculations, which cannot be processed in a reason-
able time on a serial computer. Therefore, a parallel supercomputer
must be harnessed for such large-scale high-resolution modeling. For
decades, significant investments have been made to advance areas of
scientific research by creating larger and more powerful parallel su-



percomputers. In recent years, large-scale systems have gone from
tera-scale to peta-scale, and are continuing to exa-scale systems, en-
abling scientists to study complex problems which were previously
intractable.

Many such systems are being operated by both U.S. Department
of Energy (DOE) and National Science Foundation (NSF). DOE’s
”Scientific Discovery through Advanced Computing” (SciDAC) is
researching ways to optimize and utilize large-scale systems, and
maintains and funds several of them at different DOE sites, such
as the Oak Ridge National Laboratory, Sandia National Laborato-
ries, Lawrence Berkley Laboratory, and Lawrence Livermore National
Laboratory [21]. NSF sponsors several systems of its own though
its PetaApps [18] program, including those at University of Texas,
Austin [26] and University of Illinois at Urbana-Champaign [16].
These systems involve many thousands of processors networked to-
gether to allow for large-scale computational simulations.

In order to fully utilize such large parallel systems, the algorithms
and calculations within the simulation must be carefully parallelized.
Most implementations of parallel scientific computing use a message
passing paradigm, such as that used by the standard Message Pass-
ing Interface (MPI). While some tasks can be embarrassingly parallel,
many of the operations necessary for these complex simulations are
not trivial to parallelize. For instance, many of the matrix algorithms
in First Principle Molecular Dynamics (FPMD) simulations take O(n3)
operations to work with O(n2) data [13]. The result of this is that the
more parallel this kind of algorithm is made, the more sparsely data is
divided among the processors and hence the more communication is
necessary between processes to exchange data. As the number of pro-
cessors increase, it becomes more effective for optimization to analyze
and reduce the communication than to use metrics such as numbers of
operations.

One common way to analyze the communications of such programs
is through visualization. Several libraries and tools have been devel-
oped to capture MPI events and visualize the captured communica-
tion patterns. These tools, while effective at analyzing small systems,
often do not scale well to large, massively parallel systems. For in-
stance, one common visualization in most existing tools is a Gantt
chart, which lines up the processes vertically and plots the MPI events
versus time on the horizontal axis. This technique runs into problems
once the number of processes exceeds the number of pixels available
on the display. We propose an alternate visual analysis strategy for
understanding MPI communications at extreme scales.

Once large-scale computation involves tens-of-thousands to mil-
lions of processes, it becomes less useful to consider every process
individually; it makes more sense to consider groups of processes or
groups of MPI calls before drilling down to individual processes or
MPI events. At the highest level, we consider the system as a whole
and see how the overall communications are impacting performance
over time. Next, we consider the communications at the level of
groups of processes by plotting related communications together re-
gardless of the participating processes. This way, MPI calls can be rep-
resented at an abstract level regardless of the number of processes. Fi-
nally, individual calls and processes can be singled out from this view.
We present a scalable approach to MPI visualization that does this by
using a timeline overview in combination with focused views which
are abstracted from individual processes. The focused view achieves
this by directly mapping the MPI events in a temporal space regardless
of process rank and using modulated opacity to show process density,
as shown in Figure 1. We also show that with our visualization strat-
egy it becomes possible to understand communication behaviors at a
large scale and identify room for performance optimization.

1.1 Related work

Software visualization is a fairly broad field. Many visualizations fo-
cus on managing software development and repositories [24]. Star-
Gate [17] is a tool that visualizes both the evolution of the software
repository and the communication patterns of the developers involved.
Other visualizations focus on visualizing the code itself and aid in the
analysis of code dependencies in larger projects. Some use visual-

ization to analyze and reverse engineer compiled binary code [25].
Using visualization to optimize performance has been approached in
several ways by existing work. For example, TraceVis [19] visualizes
the execution times of individual CPU instructions, and Bootchart [1]
visualizes the performance of programs involved in the boot process
of an operating system. Both of these examples use variants of Gantt
charts to present the information. However, these tools focus on serial
programming, where parallel issues such as communication delays do
not come up.

The problem of characterizing communication has been studied by
many researchers. Network monitoring tools such as EtherApe [4]
and EZEL [28] show communication patterns well, but they focus
on pure network activity and do not incorporate properties particular
to distributed communication. The communications between parallel
processes and data storage servers has also been researched through
analysis of access patterns [20, 31, 32]. Visualization of communica-
tion between software modules such as client-server relationships have
also been analyzed through the use of graph based visualizations [33].
These visual approaches are effective at analyzing network traffic, but
by focusing singly on network information, the impact on computation
efficiency in a massively parallel computation environment would be
difficult to deduce

One common set of visualization tools for MPI data is Jumpshot
[2, 30] and its predecessors (Nupshot [10] and Upshot [7]). These
tools use the MPI Parallel Environment (MPE) library to intercept the
MPI calls in a parallel program. Then they visualize the collected trace
with a Gantt chart by plotting process rank versus time using color
to represent the MPI calls. ParaGraph [6] is another, older program
that visualizes MPI traces collected with the MPICL library which
also uses Gantt charts, among other metrics such as overall summaries
and communication graphs. Vampir [15] is another visual tool which
combines Gantt charts and summary views. The Tuning and Analysis
Utilities (TAU) [23] suite of tools is one of the more comprehensive
tools. The logging facilities included with it allow for conversion to
many of the formats used by other existing tools, such as Jumpshot
or Vampir. Its own visualizations include Gantt charts, a communica-
tion matrix view, and a call graph, among others. Virtue [22] is the
most unique of the related works listed here in that it is a real-time
visualization. This allows the user to monitor the performance of an
application while it is running and potentially tune it or interact with
it. It also incorporates VR techniques such as a CAVE (Cave Auto-
matic Virtual Environment) to provide a more immersive visualization
than most other tools. For other parallel environments, GVUs PVaniM
tool [27] and ATEMPT [11, 12] present some detailed views of com-
munication events in a PVM (Parallel Virtual Machine) system.

Some software visualizations address the scalability issues of plots
such as Gantt charts. The works of Jerding et al. [8], Moreta and Telea
[14], and Cornelissen et al. [3] use plots similar to Gantt charts to
profile program execution traces. However, these works maintain the
strict ordering of the charts, and use sub-pixel techniques to handle
the scalability and allow for visibility of both large trends and outliers.
In contrast, our approach sacrifices the ordering to spatially separate
large trends from individual outliers.

Our approach draws upon several existing visualization techniques.
The timeline view consists of a stacked graph representation, and the
detailed view is based on techniques such as scatterplots and arc di-
agrams [29]. In order to plot a large number of calls simultaneously,
we also incorporate existing techniques such as high precision alpha
blending and opacity scaling similar to the work by Johansson et al.
[9].

2 A SCALABLE APPROACH

As the number of processes increases, the usefulness of keeping track
of individual processes lessens, and it becomes more helpful and more
useful to consider the system as a whole or in part before looking
at individual processes. However, it is still useful to be able to drill
down into the details of the data, so we implemented an interactive
focus+context visualization which presents a high level abstraction, a
focused view, and details on demand. The high level view consists of



Fig. 2. Section of a timeline of MPI calls. The timeline provides an
overview of the activity of the entire system on the y-axis versus time on
the x-axis. Each layer corresponds to an MPI function, and the height
is the fraction of processes calling that function. Distinct homogenous
sections of the timeline correspond to the various matrix operations per-
formed in the program. From the timeline, ranges of data can be se-
lected to view in more detail.

.

Fig. 3. Color Legend. The colors used in all figures. For clarity, the most
prominent functions have been colored while the less commonly visible
functions have been grayed out.

a timeline view which shows the status of the entire system over the
entire run by depicting what fraction of the system is performing what
MPI calls over time. From the timeline, a range of time can be selected
to focus on. The MPI call view plots MPI calls within this range di-
rectly with respect to time, using opacity to handle overplotting issues
due to the scale of the data. From the MPI call view, the individual
processes can be highlighted to provide specific details to the user.

2.1 Timeline View

The timeline view depicts a stacked graph of the overall process ac-
tivity over time. Each stacked area of the graph is associated with
an MPI function, and its height represents the fraction of the processes
that were calling that function at that time. One result of this is that the
height of the remaining space which is empty corresponds to the effi-
ciency of the system as a whole, as that is the fraction of processes not
involved in communication at that time. Figure 2 shows a small por-
tion of the timeline view blown up for clarity, with the MPI functions
colored according to the legend in Figure 3. The more common func-
tions are colored in unique colors while the less common functions are
all grey. The timeline view is also used as an interface to select smaller
time ranges to view in more detail, and the selected range is indicated
by the semi-transparent box shown in Figure 2.

2.2 MPI Call View

The most direct representation of the MPI calls is to render each call
from each process with respect to time. Gantt charts do this, but they
restrict the y-axis to represent the MPI calls’ originating processes.
While we retain the use of the x-axis as time, we chose to use the y-
axis to represent other properties of the MPI calls. In particular, we
found it effective to use the y-axis to represent duration of the MPI
calls, particularly on a log scale as the durations vary over several
orders of magnitude. The advantage to using duration on the y-axis
is that large delays due to communication will be prominently seen

at the top of the plot. Since this and other y-axis mappings allow
the MPI calls to overlap, we modulate the opacity of the calls, which
makes the overall intensity of the visualization represent the density of
the MPI calls. The color is mapped to the MPI function being called
as in the timeline. For the representation of the calls themselves, we
explored several options, including arches, lines, and individual points,
examples of which are shown in Figure 4.

Of the representations we use, the arch representation, shown in
Figure 4(a), is the least scalable, but is probably also the most intuitive.
The beginning point of each arch corresponds to the start time of the
MPI call, and the end point of the arch corresponds to the end time.
The y-position of the apex is proportional to the duration of the call
on some scale. Figure 4(a) is on a linear scale, and depicts patterns
that show dependency relationships such as when many processes are
dependent on a previous synchronized MPI call or when one global
communication is blocking. These are indicated by sets of MPI calls
that either start or end nearly simultaneously.

The line representation, shown in Figure 4(b), is the most similar
to traditional Gantt charts. Each line goes from the start of the MPI
call to the end of the MPI call. As in the other representations, the y-
position is proportional to the duration and, in this example, is on a log
scale. This representation is more scalable than the arc representation
as it produces less clutter on the screen. This comes at the cost of
being able to readily see dependencies, as dependent MPI calls no
longer touch. However, patterns of simultaneous starting and stopping
of MPI calls are readily visible as vertically linear and logarithmic
trends. Also, clear groupings of MPI calls can be seen, corresponding
to the originating MPI functions in the code.

As the duration of the MPI calls are already being encoded in the
height, it is redundant to show duration on the x-axis as well. So the
final and most scalable representation of MPI calls we implemented
uses simple points to plot the duration of the MPI calls versus either
the start or end times of the MPI calls, as shown in Figure 4(c). Similar
to the line representation, dependency information is not easily visible.
However, vertical and logarithmic trends clearly delimit simultaneous
function calls and returns. When plotting start times versus duration,
the vertical trends show simultaneous start times and the log curves
to the left show simultaneous end times, and when plotting end time
versus duration it is the other way around, with the log curves going
to the right.

From any of these representations, details of any MPI call can be
determined by selecting it with the mouse, at which point all the calls
from the selected call’s process are highlighted, and details about the
selected MPI call are presented to the user textually, as is demonstrated
in all three examples in Figure 4. MPI functions can also be high-
lighted by selecting them from the color legend, at which point all
calls to that function get highlighted in the call view.

2.3 Opacity Scaling

When plotting the MPI calls with our approach, many of them overlap,
particularly when they start or end simultaneously. A simple way to
resolve this overlap is to make the calls semitransparent and use alpha
blending to combine them. However, this very quickly runs into limi-
tations as the number of calls increases, as shown in Figure5(a). First,
the standard 8-bit alpha buffer only allows for a maximum overplot-
ting of 256. And second, in order to show overlap of large numbers
of MPI calls, the opacity has to be set so low that outliers are nearly
invisible. In order to keep both the opacity of outliers high and the
combined opacity of dense overlap from overflowing the alpha buffer,
we utilize the opacity scaling techniques of [9]. In our implementation
of this technique, we first render to a high precision density buffer D
which keeps track of the total amount of overplot and then to a high
precision color buffer C which blends the input color information with
opacity inversely proportional to the density information to result in
an average color that is fully opaque. We then combine these buffers
with a transfer function to render the final pixels P to the screen. We
implemented two such functions: a linear map, and a logarithmic map.



(a) Arches

(b) Lines

(c) Points (start points pictured)

Fig. 4. MPI Call Plots. Different representations of MPI calls for direct
visualization. Arches (a) are easier to visually follow, while lines (b) and
start/end points (c) are more scalable with respect to screen space. In
each case, one call is selected, with details presented in text form, and
with all calls from the same process highlighted.

The linear map (shown in Figure5(b)) is defined as:

Px,y = Cx,y ×

(

omin +(1−omin)×

(

Dx,y

)

(Dmax)

)

And the logarithmic map is defined as (shown in Figure5(c)):

Px,y = Cx,y ×

(

omin +(1−omin)×
log
(

Dx,y

)

log(Dmax)

)

Where omin is a user defined minimum opacity level and Dmax is
the maximum level of overplotting that occurred. By calculating the
final opacity in this manner, we guarantee that any outliers will have at
least opacity omin, that no overplotting exceeds the maximum opacity
and, in the case of the logarithmic map, that the system will be able to
handle many orders of magnitude of overplotting.

(a) Standard opacity accumulation

(b) Linear opacity map with minimum value

(c) Logarithmic opacity map with minimum value

Fig. 5. Opacity Scaling. Standard opacity accumulation (a) has trouble
both with too much overplotting and with outliers being too transparent.
Applying a minimum value and scaling the opacity (b) helps, and apply-
ing a logarithmic scale (c) helps even more.

3 CASE STUDIES

Many simulations are performed through the use of large linear al-
gebra calculations. One of the most common tools used to run these
calculations is the ScaLAPACK library, which utilizes MPI communi-
cations to perform distributed linear algebra calculations. The Qbox
FPMD simulation codes, for instance, utilize ScaLAPACK functions
intensively. In order to demonstrate our approach of visualizing large
parallel MPI traces, we use it to analyze matrix operations which use
the ScaLAPACK library and its underlying libraries.

We captured the MPI communication using the Multi-Processing
Environment (MPE) library. This generates a standardized log file in
either clog2 or slog2 format, which we can then visualize. The ex-
amples shown here were run on NERSC’s Franklin, which is a Cray
XT4 massively parallel processing system with 38,128 Opteron com-
pute cores and a peak performance of 356 TFlops/sec [5]. All tests
were run with one process per processor, so that no extraneous context
switching overhead would be incurred. While tracing adds overhead
for writing the log file out at the end of the program, we found that the
impact on performance of actual computation was negligible.



Common Matrix Operations Figure 6 shows the results of visualiz-
ing a series of common matrix operations. The operations chosen are
commonly used in scientific calculations. In this example, the oper-
ations were run on 256 processes. From the timeline in Figure 6(a),
the first thing that is plainly visible is that the program went through
several visually distinct stages, each of which correspond to different
matrix operations. We visualize each section in more detail, then com-
pare and contrast them.

The first operation performed was a matrix multiplication, shown in
Figure 6(b). As indicated by the colorings, the matrix multiplication’s
communication pattern mostly consists of MPI Send, MPI Recv, and
MPI Reduce, with the MPI Recv calls generally taking the longest.
The calls are staggered and generally quite short, indicating that the
algorithm is already well optimized. It ends with a single large
MPI All Reduce which resynchronizes the system.

Inversion is more complicated than multiplication, involving mul-
tiple steps. It starts with an LU decomposition (Figure 6(c)), then
uses the resulting triangular matrices to calculate the actual inverse
(Figure 6(d)). The LU decomposition consisted almost entirely of
MPI Recv calls, with the corresponding MPI Send calls barely visible.
Interestingly, there is a very cyclic pattern, alternating between short
calls and long calls. The strong synchronicity of the communications
in this section is also interesting, and it could indicate potential for
optimization either through redistribution of the data or changing the
communication methods to be more asynchronous. Figure 6(d) shows
the completion of the matrix inversion and contains two sub-sections.
These sections each start with large calls to MPI Reduce, and there
are many shorter calls to MPI Bcast in the first half and MPI Recv in
the second half. While the calls to MPI Bcast and MPI Recv are quite
numerous, they are generally short and staggered. The real expense
here are the MPI Reduce calls, which keeps many processes idle for a
long time. The these MPI Reduce calls form a very distinctive pattern
where they start synchronously, but their ends follow a logarithmic
trend. This pattern could be indicative of a network communication
issue. For instance, this pattern could be induced by using a logical
tree communication network when the underlying physical network
topology is a actually a torus.

The eigenproblem is an eigenvector/eigenvalue solver and is the
single largest matrix operation in this case study, so in Figure 6(e),
we only show a representative part of it. Most of the MPI calls
here also group together into distinct clusters, and they are a mix
of MPI Reduce and MPI Recv calls, with the MPI Reduce taking
slightly longer. However, they are all very short compared to the single
large MPI Bcast which starts at the top of Figure 6(e), gradually locks
more processes as the program progresses, and does not finish until
the middle of Figure 6(f), at which point some processes have been
idle for more than half of the total computation time. This can be seen
in its entirety at the top of Figure 1. Figure 6(f) depicts more calcula-
tions that were involved in the eigenproblem after the long operation
finished, such as MPI All Reduce calls, along with the MPI Reduce
and MPI Recv calls which are running very synchronously.

The sixth section, shown in 6(g) shows a Gram-Schmidt orthogo-
nalization, which is composed of 4 individual matrix operations, one
of which is trivially parallelizable and takes nearly no time to com-
plete. The communications in the other three operations look much
like the matrix multiplication, with the exception that there are gaps
between the operations where the processes synchronized and that
there are some MPI All Reduce calls. However, there is one large
cluster of calls to MPI Send and MPI Recv near the end which are
substantially longer. We determined that this occurred in the middle
of the pdtrsm() operation. If this were due to a straggling process or
poor load balancing, the calls would end simultaneously. Since they
do not, this could indicate a network bottleneck or other system inter-
ference.

Testing Scalability While Figure 6 demonstrates our approach on a
series of matrix operations on a moderate size system, larger systems
should also be considered. In order to investigate the effects of scal-
ing on the visualization, we focus on matrix multiplication, as it is a
commonly performed operation. Figure 7 demonstrates the effects of

scaling up a matrix multiplication from a modestly small set of pro-
cesses (64) up to large numbers of processes (16,384). As the number
of processes is scaled up, so is the size of the data it is working on.
This keeps the communication effects from completely overwhelm-
ing the execution, and vice versa. The first observation that can be
made from these timelines is that the proportion of time spent doing
the actual calculation decreases as the scale goes up. That is, as more
processes are used, it takes longer to finish the initialization process to
set up the communication channels and distribute the initial data. By
4,096 processes (Figure 7(d)), it already takes more time to initialize
the program than to calculate the result. However, this effect would
be offset on the more complex programs or larger datasets used in ac-
tual simulations, as the shorter computation offered by larger systems
marginalizes the cost of initialization. Another observation that can be
made is that within the matrix multiplication itself, the more processes
there are, the greater the proportion of them that are in the middle of
some form of communication at any given time, and thus the lower the
efficiency of the system. In particular, by the time we reach 16,384
processes, almost all the time is spent in communication rather than
actual computation. Finally, while the communication patterns were
fairly cyclic at smaller scales, variances in the communications add up
in the larger scales leading to acyclic patterns, as can be seen well in
Figure 7(c). To understand what goes on within the matrix operation
at large scales, we then focus on it in the detail view.

Figure 8 shows the detail of the matrix multiplication on 16,384
processes shown near the end of Figure 7(d). As this scale, the MPI
calls are quite dense, so we use the point representations of plotting
either start or end times versus duration separately. Figure 8(b) shows
the end points of the communication calls. The first major trend visible
in this view is that there are two stages in the operation. While the sec-
ond half is much the same as in smaller scales such as in Figure 6(b),
the first half is quite different. It contains MPI calls that took much
longer than at the smaller scale. Namely, it begins with MPI Recv
calls that take a long time followed by some MPI Reduce calls which
took longer than normal. It can be seen that there were still unfinished
MPI Comm Create calls, which would explain the perturbation of the
matrix multiplication. Thus in this case, to improve the performance
of the matrix multiplication itself it would help to optimize the ini-
tialization procedures. After that, the matrix multiplication is a fairly
dense mix of MPI Send, MPI Recv, and MPI Reduce calls with some
of the MPI Recv calls taking distinctly longer than the rest of the MPI
calls.

In order to better understand the normal communication patterns
at this scale, we zoom into a small region of the operation where the
communication was fairly regular. Even at this scale, the number of
communications and thus points on the screen is quite dense. How-
ever, some small trends and clusters of communication are visible.
One point of interest is how the communication does split into several
very distinct layers. The MPI Send calls are still the shortest, as in
Figure 6(b). Next is a layer of MPI Recv calls which are also fairly
short. Above that are the MPI Reduce calls, which take longer to dis-
tribute data among all processes involved. Finally, there is the distinct
layer of clusters of MPI Recv calls above, which are clearly separated
from the rest of the calls.

4 CONCLUSIONS

As massively parallel computer systems are constantly moving to
larger scales, it is becoming ever more important to understand how
to use these systems efficiently. Access to these systems is often lim-
ited, so scientists cannot usually afford to thoroughly analyze their
codes during long term and computation intensive simulations. Our
approach uses process independent visualization and focus+context
techniques to offer more scalability than traditional parallel system
visualizations. And by analyzing a common scientific computation li-
brary on a modern supercomputer, our results can aid in refining and
optimizing the underlying library used by the scientists, which would
allow for more efficient use of the limited access time the scientists are
allotted on similar large-scale systems.



(a) Timeline

(b) Matrix Multiplication (“pdgemm()”). This operation seems to be optimized

fairly well. While there is much communication going on, the calls are staggered

well, keeping overall communication lengths small.

(c) Matrix Inversion - LU decomposition (“pdgetrf()”). In the LU decompo-

sition, communications alternate between distinct groups of short and medium

length calls, indicating synchronizations.

(d) Matrix Inversion - Invert using LU (“pdgetri()”). This operation has two

parts, each with a single large MPI Reduce and many smaller, staggered com-

munications. The MPI Reduce calls are potentially inefficient.

(e) Eigenproblem (“pdsyevd()”). The longest operation, so only a small sec-

tion is shown here. Mostly, the communications are quite short, but gradually,

processes get stuck in very long, inefficient call to MPI Bcast.

(f) Eigenproblem cont.. All the MPI calls from the previous section end syn-

chronously, including the very long MPI Bcast. Communications are sparse

in this next section, indicating periods of heavier computation. The patterns

themselves are quite synchronized, similar to the LU decomposition patterns in

Figure6(c)

(g) Gram-Schmidt orthogonalization cont. (“pdsyrk(),” “pdsyr(),” “pdpotrf(),”

and “pdtrsm()”). The patterns here are similar to the matrix multiplication pat-

terns in Figure6(b), with two exceptions: the two major synchronization points

near the middle which delimit a small section, and abnormally long calls to

MPI Send and MPI Recv near the end.

Fig. 6. A series of matrix operations. The timeline shows the entire run of program consisting of a series of matrix operations on 256 processes.
The individual matrix operations are visible as distinct sections in the timeline (a). Each section is shown in more detail with call plots (b-g). The
ScaLAPACK functions are listed in the parentheses.



(a) 64 Processes, 10,000x1,000 matrices. Measured = 199 GFlop/s. Peak = 589 GFlop/s. Efficiency = 34%

(b) 256 Processes, 10,000x2,000 matrices. Measured = 725 GFlop/s. Peak = 2355 GFlop/s. Efficiency = 31%

(c) 1,024 Processes, 20,000x2,048 matrices. Measured = 1,263 GFlop/s. Peak = 9,420 GFlop/s. Efficiency=13%

(d) 4,096 Processes, 20,480x2,048 matrices. Measured = 1,611 GFlop/s. Peak = 37,683 GFlop/s. Efficiency = 4.2%

(e) 16,384 Processes, 20,480x2,048 matrices. Measured = 1,438 GFlop/s. Peak = 150,733 GFlop/s. Efficiency = 0.9%

Fig. 7. Effect of scale on matrix multiplication. As the number of processes increases, so does the cost of setting up the communication structures
before actually executing the matrix operation. Overall time for running the program increases with the number of processes and scale of the data,
but the multiplication takes less time per element. The efficiency of the system drops substantially with large numbers of processes.

5 FUTURE WORK

While the results we achieved were quite effective at the scale we were
dealing with, further extension of this work to greater scales could
prove challenging. For instance, we currently load the entire log file
into memory before visualizing it. Very large log files would need out-
of-core access. Support for more log formats would be very beneficial
to this end. We support clog and clog2 formats, but extending to slog2
format would aid out-of-core visualization, as it was designed with
that intent. Extending the work to include profiling a real simulation
would be useful, but the resulting log file would likely be much larger
than the ones shown here. This would necessitate not only out-of-core
data access, but also a higher level interface than the current time-
line, such as one that abstracts the data to the matrix operation level.
The data formats we use do not clearly identify the MPI call across
processes. If we move to a data format that identifies the calls hier-
archically from the function level, the MPI calls could be accurately
clustered together, which would allow for a hierarchically based visu-
alization. As our current approach only uses two views, it would be
interesting to either add an intermediate level view or a more detailed
view based on selections from the MPI call plot. Further understand-
ing could also be achievable by taking into account the topology of the
supercomputer itself, or by drilling down to the underlying network
traffic. This would allow for detection of network bottlenecks, which
our current system cannot explicitly show.

ACKNOWLEDGMENTS

This work is supported in part by the National Science Foundation
through grants CCF-0938114, CCF-0808896, OCI-0749227, OCI-
0749217, CNS-0551727, and CCF-0811422, and the U.S. Depart-
ment of Energy through the SciDAC program with Agreement No.
DE-FC02-06ER25777. This research used resources of the National
Energy Research Scientific Computing Center (NERSC) through the
DOE SciDAC program.

REFERENCES

[1] Bootchart, a visualization of system startup processes for optimizing boot

times. http://www.bootchart.org/.

[2] A. Chan, W. Gropp, and E. Lusk. An efficient format for nearly constant-

time access to arbitrary time intervals in large trace files. Scientific Pro-

gramming, 16(2-3):155–165, 2008.

[3] B. Cornelissen, A. Zaidman, D. Holten, L. Moonen, A. van Deursen, and

J. J. van Wijk. Execution trace analysis through massive sequence and

circular bundle views. J. Syst. Softw., 81(12):2252–2268, 2008.

[4] EtherApe: A graphical network monitor. http://etherape.

sourceforge.net.

[5] Franklin at NERSC: http://www.nersc.gov/nusers/

systems/franklin/.

[6] M. T. Heath. Paragraph: a tool for visualizing performance of parallel

programs. In Second Workshop on Environments and Tools for Parallel

Sci. Comput, pages 221–230, 1994.

[7] V. Herrarte and E. Lusk. Studying parallel program behavior with

upshot. Technical Report ANL–91/15, Argonne National Laboratory,

1991.

[8] D. F. Jerding, J. T. Stasko, and T. Ball. Visualizing interactions in pro-

gram executions. In ICSE ’97: Proc. of the 19th Intl. Conf. on Software

engineering, pages 360–370. ACM, 1997.

[9] J. Johansson, P. Ljung, M. Jern, and M. Cooper. Revealing structure

within clustered parallel coordinates displays. In InfoVis ’05: Proc. of

the 2005 IEEE Symposium on Information Visualization, pages 125–132.

IEEE Computer Society, 2005.

[10] E. Karrels and E. Lusk. Performance analysis of MPI programs. In

J. Dongarra and B. Tourancheau, editors, Proc. of the Workshop on En-

vironments and Tools For Parallel Scientific Computing, pages 195–200.

SIAM Publications, 1994.

[11] D. Kranzlmueller and J. Volkert. Debugging point-to-point communica-

tion in MPI and PVM. Lecture Notes in Computer Science, 1497:265–

272, 1998.

[12] D. Kranzlmüller, S. Grabner, and J. Volkert. Debugging massively paral-

lel programs with atempt. In HPCN Europe 1996: Proc. of the Intl. Conf.

and Exhibition on High-Performance Computing and Networking, pages



(a) End points (b) Zoomed in focus with start points

Fig. 8. Running on 16,384 processes: At this scale, the matrix multiplication looks similar to Figure 6(b), with some differences. There is a clear
section early in the operation with longer MPI calls caused by interference from the previous operation, as seen in the upper left of (a). When
zoomed in further, some detailed trends can be seen in the midst of the ocean of communication, but these clusters are generally small, indicating
good division of processes.

806–811, London, UK, 1996. Springer-Verlag.

[13] R. M. Martin, ”Electronic Structure. Basic Theory and Practical Methods

in Physics” (Cambridge University Press, 2004) Ch. 23.

[14] S. Moreta and A. Telea. Multiscale visualization of dynamic software

logs. In EuroVis, pages 11–18, 2007.

[15] W. E. Nagel. http://www.vampir-ng.de/index.html.

[16] National Center for Supercomputing Applications (NCSA) at University

of Illinois at Urbana-Champaign: http://www.ncsa.uiuc.edu/.

[17] M. Ogawa and K.-L. Ma. Stargate: A unified, interactive visualization

of software projects. In Proc. of IEEE PacificVis 2008, pages 191–198,

March 2008.

[18] Accelerating Discovery in Science and Engineering through Petascale

Simulations and Analysis (PetaApps), the National Science Foundation,

http://www.nsf.gov/pubs/2007/nsf07559/nsf07559.

htm.

[19] J. E. Roberts, ”TraceVis: An execution visualization tool,” Master’s the-

sis, Department of Computer Science, University of Illinois, Urbana, IL,

July 2004.

[20] R. Ross, T. Peterka, H.-W. Shen, Y. Hong, K.-L. Ma, H. Yu, and K. More-

land. Visualization and parallel i/o at extreme scale. Journal of Physics,

July 2008. Proc. of DOE SciDAC 2008 Conf.

[21] Scientific Discovery through Advanced Computing (SciDAC): http:

//www.scidac.gov/.

[22] E. Shaffer, D. Reed, S. Whitmore, and B. Schaeffer. Virtue: performance

visualization of parallel and distributed applications. IEEE Computer,

32(12):44–51, Dec 1999.

[23] S. S. Shende and A. D. Malony. The tau parallel performance system.

Int. J. High Perform. Comput. Appl., 20(2):287–311, 2006.

[24] M.-A. D. Storey, D. Čubranić, and D. M. German. On the use of visual-

ization to support awareness of human activities in software development:

a survey and a framework. In SoftVis ’05: Proc. of the 2005 ACM sympo-

sium on Software visualization, pages 193–202. ACM, 2005.

[25] A. Telea and L. Voinea. An interactive reverse engineering environment

for large-scale c++ code. In SoftVis ’08: Proc. of the 4th ACM symposium

on Software visualization, pages 67–76. ACM, 2008.

[26] Texas Advanced Computing Center (TACC) at University of Texas,

Austin: http://www.tacc.utexas.edu/.

[27] B. Topol, J. T. Stasko, and V. Sunderam. PVaniM: a tool for visualization

in network computing environments. j-CPE, 10(14):1197–1222, Dec.

1998.

[28] L. Voinea, A. Telea, and J. J. van Wijk. Ezel: a visual tool for performance

assessment of peer-to-peer file-sharing network. In InfoVis ’04: Proc. of

the 2004 IEEE Symposium on Information Visualization, pages 41–48,

2004.

[29] M. Wattenberg. Arc diagrams: Visualizing structure in strings. InfoVis

’02: Proc. of the 2002 IEEE Symposium on Information Visualization,

0:110, 2002.

[30] C. E. Wu, A. Bolmarcich, M. Snir, D. Wootton, F. Parpia, A. Chan,

E. Lusk, and W. Gropp. From trace generation to visualization: A perfor-

mance framework for distributed parallel systems. In Proc. of ACM/IEEE

Supercomputing (SC00), November 2000.

[31] H. Yu and K.-L. Ma. A study of I/O techniques for parallel visualization.

Journal of Parallel Computing, 31(2):167–183, Feb 2005.

[32] H. Yu, K.-L. Ma, and J. Welling. A parallel visualization pipeline for

terascale earthquake simulations. In Proc. of ACM/IEEE Supercomputing

(SC04), Nov 2004.

[33] D. Zeckzer, R. Kalcklösch, L. Schröder, H. Hagen, and T. Klein. Analyz-

ing the reliability of communication between software entities using a 3d

visualization of clustered graphs. In SoftVis ’08: Proc. of the 4th ACM

symposium on Software visualization, pages 37–46. ACM, 2008.


