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Fig. 1. A scalable MPI visualization. Rather than plotting MPI calls per process, this view plots the duration of the call on the y-axis
with a log scale versus time on the x-axis. Patterns such as simultaneous start/end times, clusters and trends of similar calls, and
particularly long communications can be seen. The data was collected from running matrix operations from the ScaLAPACK library
on 256 nodes of NERSC's Franklin supercomputer.

Abstract — In serial computation, program pro ling is often helpful f or optimization of key sections of code. When moving to parallel
computation, not only does the code execution need to be considered but also communication between the different processes
which can induce delays that are detrimental to performance. As the number of processes increases, so does the impact of the
communication delays on performance. For large-scale parallel applications, it is critical to understand how the communication
impacts performance in order to make the code more ef cient. There are several tools available for visualizing program execution
and communications on parallel systems. These tools generally provide either views which statistically summarize the entire program
execution or process-centric views. However, process-centric visualizations do not scale well as the number of processes gets very
large. In particular, the most common representation of parallel processes is a Gantt chart with a row for each process. As the number
of processes increases, these charts can become dif cult to work with and can even exceed screen resolution. We propose a new
visualization approach that affords more scalability and then demonstrate it on systems running with up to 16,384 processes.

Index Terms — Information Visualization, MPI Pro ling, Scalability.
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1 INTRODUCTION

Many phenomena are dif cult or simply impossible to fully study ex{roling the experiment. For example, very large-scale phenomena such
perimentally due to a lack of reliable methods for measuring or coas supernovae cannot be tested experimentally, and very small-scale
phenomena such as interaction of particles at the quantum level cannot
be precisely measured. In order to study such phenomena, scientists
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scienti ¢ research by creating larger and more powerful parallel su-



percomputers. In recent years, large-scale systems have gone fization to analyze and reverse engineer compiled binary code [25].
tera-scale to peta-scale, and are continuing to exa-scale systems,Using visualization to optimize performance has been approached in
abling scientists to study complex problems which were previouseveral ways by existing work. For example, TraceVis [19] visualizes
intractable. the execution times of individual CPU instructions, and Bootchart [1]
Many such systems are being operated by both U.S. Departmeisualizes the performance of programs involved in the boot process
of Energy (DOE) and National Science Foundation (NSF). DOESS an operating system. Both of these examples use variants of Gantt
"Scienti ¢ Discovery through Advanced Computing” (SciDAC) is charts to present the information. However, these tools focus on serial
researching ways to optimize and utilize large-scale systems, gdgramming, where parallel issues such as communication delays do
maintains and funds several of them at different DOE sites, suobt come up.
as the Oak Ridge National Laboratory, Sandia National Laborato- The problem of characterizing communication has been studied by
ries, Lawrence Berkley Laboratory, and Lawrence Livermore Mafio many researchers. Network monitoring tools such as EtherApe [4]
Laboratory [21]. NSF sponsors several systems of its own thoughd EZEL [28] show communication patterns well, but they focus
its PetaApps [18] program, including those at University of Texasn pure network activity and do not incorporate properties particular
Austin [26] and University of lllinois at Urbana-Champaign [16].to distributed communication. The communications between parallel
These systems involve many thousands of processors networkedpi@cesses and data storage servers has also been researcheghl thro
gether to allow for large-scale computational simulations. analysis of access patterns [20, 31, 32]. Visualization of communica-
In order to fully utilize such large parallel systems, the algorithmigon between software modules such as client-server relationships have
and calculations within the simulation must be carefully parallelized@lso been analyzed through the use of graph based visualizations [33].
Most implementations of parallel scienti c computing use a messaddiese visual approaches are effective at analyzing network trafic
passing paradigm, such as that used by the standard Message Pyg®cusing singly on network information, the impact on computation
ing Interface (MPI). While some tasks can be embarrassingly parallef,ciency in a massively parallel computation environment would be
many of the operations necessary for these complex simulations difecult to deduce
not trivial to parallelize. For instance, many of the matrix algorithms One common set of visualization tools for MPI data is Jumpshot
in First Principle Molecular Dynamics (FPMD) simulations takex)(  [2, 30] and its predecessors (Nupshot [10] and Upshot [7]). s&he
operations to work with @) data [13]. The result of this is that the tools use the MPI Parallel Environment (MPE) library to intercept the
more parallel this kind of algorithm is made, the more sparsely dataN#I calls in a parallel program. Then they visualize the collected trace
divided among the processors and hence the more communicatiowith a Gantt chart by plotting process rank versus time using color
necessary between processes to exchange data. As the numher oftprrepresent the MPI calls. ParaGraph [6] is another, older program
cessors increase, it becomes more effective for optimization to analykat visualizes MPI traces collected with the MPICL library which
and reduce the communication than to use metrics such as numberalsd uses Gantt charts, among other metrics such as overall summaries
operations. and communication graphs. Vampir [15] is another visual tool which
One common way to analyze the communications of such prograsmmbines Gantt charts and summary views. The Tuning and Analysis
is through visualization. Several libraries and tools have been develtilities (TAU) [23] suite of tools is one of the more comprehensive
oped to capture MPI events and visualize the captured communit@els. The logging facilities included with it allow for conversion to
tion patterns. These tools, while effective at analyzing small systenmsany of the formats used by other existing tools, such as Jumpshot
often do not scale well to large, massively parallel systems. For iar Vampir. Its own visualizations include Gantt charts, a communica-
stance, one common visualization in most existing tools is a Gatitn matrix view, and a call graph, among others. Virtue [22] is the
chart, which lines up the processes vertically and plots the MPI evemt®st unique of the related works listed here in that it is a real-time
versus time on the horizontal axis. This technique runs into problemisualization. This allows the user to monitor the performance of an
once the number of processes exceeds the number of pixels availagplication while it is running and potentially tune it or interact with
on the display. We propose an alternate visual analysis strategy iforlt also incorporates VR techniques such as a CAVE (Cave Auto-
understanding MPI communications at extreme scales. matic Virtual Environment) to provide a more immersive visualization
Once large-scale computation involves tens-of-thousands to niftan most other tools. For other parallel environments, GVUs PVaniM
lions of processes, it becomes less useful to consider every prod@sl [27] and ATEMPT [11, 12] present some detailed views of com-
individually; it makes more sense to consider groups of processeshaunication events in a PVM (Parallel Virtual Machine) system.
groups of MPI calls before drilling down to individual processes or Some software visualizations address the scalability issues of plots
MPI events. At the highest level, we consider the system as a whelach as Gantt charts. The works of Jerding et al. [8], Moreta and Tele
and see how the overall communications are impacting performaridd], and Cornelissen et al. [3] use plots similar to Gantt charts to
over time. Next, we consider the communications at the level pfo le program execution traces. However, these works maintain the
groups of processes by plotting related communications together sérict ordering of the charts, and use sub-pixel techniques to handle
gardless of the participating processes. This way, MPI calls can be réipe scalability and allow for visibility of both large trends and outliers.
resented at an abstract level regardless of the number of prec€sse In contrast, our approach sacri ces the ordering to spatially separate
nally, individual calls and processes can be singled out from this vielarge trends from individual outliers.
We present a scalable approach to MPI visualization that does this byOur approach draws upon several existing visualization techniques.
using a timeline overview in combination with focused views whicfhe timeline view consists of a stacked graph representation, and the
are abstracted from individual processes. The focused view ashiedetailed view is based on techniques such as scatterplots and arc di-
this by directly mapping the MPI events in a temporal space regardleggams [29]. In order to plot a large number of calls simultaneously,
of process rank and using modulated opacity to show process densitg,also incorporate existing techniques such as high precision alpha
as shown in Figure 1. We also show that with our visualization stratlending and opacity scaling similar to the work by Johansson et al.
egy it becomes possible to understand communication behaviors #la
large scale and identify room for performance optimization.
2 A SCALABLE APPROACH

1.1 Related work As the number of processes increases, the usefulness of keeing tra
Software visualization is a fairly broad eld. Many visualizations fo-of individual processes lessens, and it becomes more helpful arel m

cus on managing software development and repositories [24]. Staseful to consider the system as a whole or in part before looking
Gate [17] is a tool that visualizes both the evolution of the softwaia individual processes. However, it is still useful to be able to drill

repository and the communication patterns of the developers involveldwn into the details of the data, so we implemented an interactive
Other visualizations focus on visualizing the code itself and aid in tHecus+context visualization which presents a high level abstraction, a
analysis of code dependencies in larger projects. Some use visdatused view, and details on demand. The high level view consists of



at the top of the plot. Since this and other y-axis mappings allow

II’,, the MPI calls to overlap, we modulate the opacity of the calls, which
makes the overall intensity of the visualization represent the density of
the MPI calls. The color is mapped to the MPI function being called

as in the timeline. For the representation of the calls themselves, we
explored several options, including arches, lines, and individuat@oin
examples of which are shown in Figure 4.
Of the representations we use, the arch representation, shown in
A .441AES A.RO3E1E Figure 4(a), is the least scalable, but is probably also the most intuitive.
The beginning point of each arch corresponds to the start time of the
MPI call, and the end point of the arch corresponds to the end time.
Fig. 2. Section of a timeline of MPI calls. The timeline provides an The y-position of t.he apexIs proport[onal to the duration _Of the call
overview of the activity of the entire system on the y-axis versus time on 0N Some scale. Figure 4(a) is on a linear scale, and depicts patterns
the x-axis. Each layer corresponds to an MPI function, and the height ~that show dependency relationships such as when many processes ar
is the fraction of processes calling that function. Distinct homogenous ~ dependent on a previous synchronized MPI call or when one global
sections of the timeline correspond to the various matrix operations per- ~ Communication is blocking. These are indicated by sets of MPI calls
formed in the program. From the timeline, ranges of data can be se- that either start or end nearly simultaneously.
lected to view in more detail. The line representation, shown in Figure 4(b), is the most similar
to traditional Gantt charts. Each line goes from the start of the MPI
call to the end of the MPI call. As in the other representations, the y-

MMPI_ALLREDUCE MPI_IRECY position is proportional to the duration and, in this example, is on a log
MPI_ECAST MPI_LSEND scale. This representation is more scalable than the arc representation
MHPI_REDUCE MPI_PACK as it produces less clutter on the screen. This comes at the cost of
MPI_COMM_CEEATE MPI_PACK_SIZE being able to readily see dependencies, as dependent MPI calls no
MPI_COMM_DUP MMPI_RECY longer touch. However, patterns of simultaneous starting and stopping
:E%—ESHH—EEEEP IHE%—EEEED of MPI calls are readily visible as vertically linear and logarithmic
HP T COMMLRANE MPI_TESTALL trends. Also, clear groupings of MPI calls can be seen, correspgndin

MR _COMM_S IZE MET _WAITALL to the originating MPI functions in the code.

WP _COMM_SELIT HFE_IRECY_WAITED As the duration of the MPI calls are already being encoded in the
height, it is redundant to show duration on the x-axis as well. So the

Fig. 3. Color Legend. The colors used in all gures. For clarity, the most nal an_d most s_calable representatl_on of MPI calls we Implemer_lted
prominent functions have been colored while the less commonly visible uses simple p0|_nts to plot the duration of the M.PI (.:a"s VErsus .elt.her
functions have been grayed out. the start or end times (_)f the MPI calls, as shown_ln Figure 4(0_). Sl_rr}llar
to the line representation, dependency information is not easily visible.
However, vertical and logarithmic trends clearly delimit simultaneous
unction calls and returns. When plotting start times versus duration,

to focus on. The MPI call view plots MPI calls within this range di-, ;

i . . . -9 “'10 the right.
rectly with respect to time, using opacity to handle overplotting issues . )
due to the scale of the data. From the MPI call view, the individua] From any of these representations, details of any MPI call can be

processes can be highlighted to provide speci ¢ details to the user. détermined by selecting it with the mouse, at which point all the calls
from the selected call's process are highlighted, and details about the

2.1 Timeline View selected MPI call are presented to the user textually, as is demonstrated

The timeline view depicts a stacked graph of the overall process ?%_all three examples in Figure 4. MPI functions can also be high-

tivity over time. Each stacked area of the graph is associated Wmhted by selecting them from the color legend, at which point all

an MPI function, and its height represents the fraction of the procesggéls to that function get highlighted in the call view.

that were calling that function at that time. One result of this is that the
height of the remaining space which is empty corresponds to the ef,-5
ciency of the system as a whole, as that is the fraction of processes not
involved in communication at that time. Figure 2 shows a small poywhen plotting the MPI calls with our approach, many of them overlap,
tion of the timeline view blown up for clarity, with the MPI functions particularly when they start or end simultaneously. A simple way to
colored according to the legend in Figure 3. The more common fun@solve this overlap is to make the calls semitransparent and use alpha
tions are colored in unique colors while the less common functions arnding to combine them. However, this very quickly runs into limi-
all grey. The timeline view is also used as an interface to select smallgfions as the number of calls increases, as shown in Figure5(a). First,
time ranges to view in more detail, and the selected range is indicatgé standard 8-bit alpha buffer only allows for a maximum overplot-
by the semi-transparent box shown in Figure 2. ting of 256. And second, in order to show overlap of large numbers

. of MPI calls, the opacity has to be set so low that outliers are nearly
2.2 MPI Call View invisible. In order to keep both the opacity of outliers high and the
The most direct representation of the MPI calls is to render each catimbined opacity of dense overlap from over owing the alpha buffer,
from each process with respect to time. Gantt charts do this, but theg utilize the opacity scaling techniques of [9]. In our implementation
restrict the y-axis to represent the MPI calls' originating processes. this technique, we rst render to a high precision density buiier
While we retain the use of the x-axis as time, we chose to use thewhich keeps track of the total amount of overplot and then to a high
axis to represent other properties of the MPI calls. In particular, weecision color buffe€ which blends the input color information with
found it effective to use the y-axis to represent duration of the MPBlpacity inversely proportional to the density information to result in
calls, particularly on a log scale as the durations vary over sevegal average color that is fully opaque. We then combine these buffers
orders of magnitude. The advantage to using duration on the y-awigh a transfer function to render the nal pixefsto the screen. We
is that large delays due to communication will be prominently seémplemented two such functions: a linear map, and a logarithmic map.

Opacity Scaling



(a) Arches

(b) Lines

(c) Points (start points pictured)

Fig. 4. MPI Call Plots. Different representations of MPI calls for direct
visualization. Arches (a) are easier to visually follow, while lines (b) and
start/end points (c) are more scalable with respect to screen space. In
each case, one call is selected, with details presented in text form, and
with all calls from the same process highlighted.

The linear map (shown in Figure5(b)) is de ned as:

!
Dxy
(Dmax

Py = Cxy Omin*t (1  Omin)

And the logarithmic map is de ned as (shown in Figure5(c)):

!
log Dy
Ry = Cxy Omin*+ (1  Omin) ﬁ

ma

Whereonin is a user de ned minimum opacity level amdlyax is

(a) Standard opacity accumulation

(b) Linear opacity map with minimum value

(c) Logarithmic opacity map with minimum value

Fig. 5. Opacity Scaling. Standard opacity accumulation (a) has trouble
both with too much overplotting and with outliers being too transparent.
Applying a minimum value and scaling the opacity (b) helps, and apply-
ing a logarithmic scale (c) helps even more.

3 CASE STUDIES

Many simulations are performed through the use of large linear al-
gebra calculations. One of the most common tools used to run these
calculations is the ScaLAPACK library, which utilizes MPI communi-
cations to perform distributed linear algebra calculations. The Qbox
FPMD simulation codes, for instance, utilize ScaLAPACK functions
intensively. In order to demonstrate our approach of visualizing large
parallel MPI traces, we use it to analyze matrix operations which use
the ScalLAPACK library and its underlying libraries.

We captured the MPI communication using the Multi-Processing
Environment (MPE) library. This generates a standardized log le in
either clog2 or slog2 format, which we can then visualize. The ex-
amples shown here were run on NERSC's Franklin, which is a Cray
XT4 massively parallel processing system with 38,128 Opteron com-

the maximum level of overplotting that occurred. By calculating thpute cores and a peak performance of 356 TFlops/sec [5]. All tests
nal opacity in this manner, we guarantee that any outliers will have atere run with one process per processor, so that no extraneadexicon
least opacityomin, that no overplotting exceeds the maximum opacitgwitching overhead would be incurred. While tracing adds overhead
and, in the case of the logarithmic map, that the system will be ableftir writing the log le out at the end of the program, we found that the

handle many orders of magnitude of overplotting.

impact on performance of actual computation was negligible.



Common Matrix Operations Figure 6 shows the results of visualiz-scaling up a matrix multiplication from a modestly small set of pro-
ing a series of common matrix operations. The operations chosen eesses (64) up to large numbers of processes (16,384). As theenum
commonly used in scienti ¢ calculations. In this example, the openf processes is scaled up, so is the size of the data it is working on.
ations were run on 256 processes. From the timeline in Figure 6(@his keeps the communication effects from completely overwhelm-
the rst thing that is plainly visible is that the program went throughing the execution, and vice versa. The rst observation that can be
several visually distinct stages, each of which correspond to differanade from these timelines is that the proportion of time spent doing
matrix operations. We visualize each section in more detail, then cothe actual calculation decreases as the scale goes up. That is, as more
pare and contrast them. processes are used, it takes longer to nish the initialization process to
The rst operation performed was a matrix multiplication, shown irset up the communication channels and distribute the initial data. By
Figure 6(b). As indicated by the colorings, the matrix multiplication'#,096 processes (Figure 7(d)), it already takes more time to initialize
communication pattern mostly consists of MBnd, MPIRecv, and the program than to calculate the result. However, this effect would
MPI_Reduce, with the MPRecv calls generally taking the longest.be offset on the more complex programs or larger datasets used in ac-
The calls are staggered and generally quite short, indicating that tbel simulations, as the shorter computation offered by larger systems
algorithm is already well optimized. It ends with a single largenarginalizes the cost of initialization. Another observation that can be
MPI_All _Reduce which resynchronizes the system. made is that within the matrix multiplication itself, the more processes
Inversion is more complicated than multiplication, involving multhere are, the greater the proportion of them that are in the middle of
tiple steps. It starts with an LU decomposition (Figure 6(c)), thepPme form of communication at any given tlme,.and thus the lower the
uses the resulting triangular matrices to calculate the actual inve§&iency of the system. In particular, by the time we reach 16,384
(Figure 6(d)). The LU decomposition consisted almost entirely ¢ffOCeSses, almqst all t.he time is spent in communication rather than
MPI_Recv calls, with the corresponding MBiend calls barely visible. actual computation. Finally, while the communication patterns were
Interestingly, there is a very cyclic pattern, alternating between shéadrly cyclic at smaller scales, variances in the communications add up
calls and long calls. The strong synchronicity of the communicatioff3 the larger scales leading to acyclic patterns, as can be seen well in
in this section is also interesting, and it could indicate potential fdrigure 7(c). To understand what goes on within the matrix operation
optimization either through redistribution of the data or changing ti# large scales, we then focus on it in the detail view.
communication methods to be more asynchronous. Figure 6(d) showd$igure 8 shows the detail of the matrix multiplication on 16,384
the completion of the matrix inversion and contains two sub-sectiongocesses shown near the end of Figure 7(d). As this scale, the MPI
These sections each start with large calls to M¥Huce, and there calls are quite dense, so we use the point representations of plotting
are many shorter calls to MBcast in the rst half and MPRecv in either start or end times versus duration separately. Figure 8(b) shows
the second half. While the calls to MBicast and MPIRecv are quite the end points of the communication calls. The rst major trend visible
numerous, they are generally short and staggered. The realsexpdhn this view is that there are two stages in the operation. While the sec-
here are the MPReduce calls, which keeps many processes idle forand half is much the same as in smaller scales such as in Figure 6(b),
long time. The these MPReduce calls form a very distinctive patternthe rst half is quite different. It contains MPI calls that took much
where they start synchronously, but their ends follow a logarithmlonger than at the smaller scale. Namely, it begins with NRetv
trend. This pattern could be indicative of a network communicatiozalls that take a long time followed by some MRéduce calls which
issue. For instance, this pattern could be induced by using a logit@dk longer than normal. It can be seen that there were still un nished
tree communication network when the underlying physical netwoMPI_CommCreate calls, which would explain the perturbation of the
topology is a actually a torus. matrix multiplication. Thus in this case, to improve the performance
The eigenproblem is an eigenvector/eigenvalue solver and is @lethe matrix multiplication itself it would help to optimize the ini-
single largest matrix operation in this case study, so in Figure 6( iplization procedures. After that, the matrix multiplication is a fairly
we only show a representative part of it. Most of the MPI call§eénse mix of MPISend, MPIRecv, and MPIReduce calls with some
here also group together into distinct clusters, and they are a n§ikthe MPLRecv calls taking distinctly longer than the rest of the MPI
of MPI_Reduce and MPRecv calls, with the MPReduce taking calls.
slightly longer. However, they are all very short compared to the single In order to better understand the normal communication patterns
large MPLBcast which starts at the top of Figure 6(e), gradually lockat this scale, we zoom into a small region of the operation where the
more processes as the program progresses, and does not rish wommunication was fairly regular. Even at this scale, the number of
the middle of Figure 6(f), at which point some processes have beesmmunications and thus points on the screen is quite dense. How-
idle for more than half of the total computation time. This can be seewer, some small trends and clusters of communication are visible.
in its entirety at the top of Figure 1. Figure 6(f) depicts more calculd@ne point of interest is how the communication does split into several
tions that were involved in the eigenproblem after the long operatiaery distinct layers. The MP&end calls are still the shortest, as in
nished, such as MPAIl _Reduce calls, along with the MBReduce Figure 6(b). Next is a layer of MPRecv calls which are also fairly
and MPLRecv calls which are running very synchronously. short. Above that are the MEReduce calls, which take longer to dis-
The sixth section, shown in 6(g) shows a Gram-Schmidt orthogtiibute data among all processes involved. Finally, there is the distinct
nalization, which is composed of 4 individual matrix operations, orlgyer of clusters of MPRecv calls above, which are clearly separated
of which is trivially parallelizable and takes nearly no time to comfrom the rest of the calls.
plete. The communications in the other three operations look much
like the matrix multiplication, with the exception that there are gap
between the operations where the processes synchronized and Z?haPONC"USIONS
there are some MPAIl_Reduce calls. However, there is one large\s massively parallel computer systems are constantly moving to
cluster of calls to MPISend and MPRecv near the end which arelarger scales, it is becoming ever more important to understand how
substantially longer. We determined that this occurred in the middie use these systems ef ciently. Access to these systems is often lim-
of the pdtrsm() operation. If this were due to a straggling process igsd, so scientists cannot usually afford to thoroughly analyze their
poor load balancing, the calls would end simultaneously. Since theydes during long term and computation intensive simulations. Our
do not, this could indicate a network bottleneck or other system intefpproach uses process independent visualization and focus+contex
ference. techniques to offer more scalability than traditional parallel system
Testing Scalability While Figure 6 demonstrates our approach on wisualizations. And by analyzing a common scienti ¢ computation li-
series of matrix operations on a moderate size system, larger systémasy on a modern supercomputer, our results can aid in re ning and
should also be considered. In order to investigate the effects of sagptimizing the underlying library used by the scientists, which would
ing on the visualization, we focus on matrix multiplication, as it is allow for more ef cient use of the limited access time the scientists are
commonly performed operation. Figure 7 demonstrates the effectsatibtted on similar large-scale systems.



(a) Timeline

(b) Matrix Multiplication (“pdgemm()”). This operation seems to be optimized (c) Matrix Inversion - LU decomposition (“pdgetrf()”) In the LU decompo-
fairly well. While there is much communication going on, the galte staggered sition, communications alternate between distinct groupshoft and medium
well, keeping overall communication lengths small. length calls, indicating synchronizations.

(d) Matrix Inversion - Invert using LU (“pdgetri()”) This operation has two (e) Eigenproblem (“pdsyevd()”) The longest operation, so only a small sec-

parts, each with a single large MRleduce and many smaller, staggered com+ion is shown here. Mostly, the communications are quite shortt gradually,
processes get stuck in very long, inef cient call to MBtast.

munications. The MRPReduce calls are potentially inef cient.

(f) Eigenproblem cont. All the MPI calls from the previous section end syn- (g) Gram-Schmidt orthogonalization cont. (“pdsyrk(),” “pd<y;” “pdpotrf(),’
Communications are sparse and “pdtrsm()”). The patterns here are similar to the matrix multiplication pat

chronously, including the very long MHcast.
in this next section, indicating periods of heavier compatat The patterns terns in Figure6(b), with two exceptions: the two major syodization points
near the middle which delimit a small section, and abnormallygloalls to

themselves are quite synchronized, similar to the LU decortipngiatterns in
Figure6(c) MPI_Send and MPRecv near the end.

Fig. 6. A series of matrix operations. The timeline shows the entire run of program consisting of a series of matrix operations on 256 processes.
The individual matrix operations are visible as distinct sections in the timeline (a). Each section is shown in more detail with call plots (b-g). The

ScaLAPACK functions are listed in the parentheses.



(a) 64 Processes, 10,000x1,000 matrices. Measured =

(b) 256 Processes, 10,000x2,000 matrices. Measured =

199/6HReak = 589 GFlop/s. Ef ciency = 34%

72pBFPeak = 2355 GFlop/s. Ef ciency = 31%

(c) 1,024 Processes, 20,000x2,048 matrices. Measured 8 GRBp/s. Peak = 9,420 GFlop/s. Ef ciency=13%

(d) 4,096 Processes, 20,480x2,048 matrices. Measured £ GBlbp/s. Peak = 37,683 GFlop/s. Ef ciency = 4.2%

(e) 16,384 Processes, 20,480x2,048 matrices. Measure®8 GRlop/s. Peak = 150,733 GFlop/s. Ef ciency = 0.9%

Fig. 7. Effect of scale on matrix multiplication. As the number of processes increases, so does the cost of setting up the communication structures
before actually executing the matrix operation. Overall time for running the program increases with the number of processes and scale of the data,
but the multiplication takes less time per element. The ef c iency of the system drops substantially with large numbers of processes.

5 FUTURE WORK

While the results we achieved were quite effective at the scale we welg]
dealing with, further extension of this work to greater scales could
prove challenging. For instance, we currently load the entire log lel2]
into memory before visualizing it. Very large log les would need out-
of-core access. Support for more log formats would be very beake

to this end. We support clog and clog2 formats, but extending to slog®!
format would aid out-of-core visualization, as it was designed with
that intent. Extending the work to include pro ling a real simulation
would be useful, but the resulting log le would likely be much larger (4]
than the ones shown here. This would necessitate not only out-of-CO@
data access, but also a higher level interface than the current time-
line, such as one that abstracts the data to the matrix operation Ievgg]
The data formats we use do not clearly identify the MPI call acros
processes. If we move to a data format that identi es the calls hier-
archically from the function level, the MPI calls could be accurately[7]
clustered together, which would allow for a hierarchically based visu-
alization. As our current approach only uses two views, it would be
interesting to either add an intermediate level view or a more detailefs]
view based on selections from the MPI call plot. Further understand-
ing could also be achievable by taking into account the topology of the
supercomputer itself, or by drilling down to the underlying network[9]
traf c. This would allow for detection of network bottlenecks, which
our current system cannot explicitly show.

(10]
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