
Content Based Graph Visualization of Audio Data for Music Library Navigation

Chris Muelder, Thomas Provan, and Kwan-Liu Ma
Computer Science Dept.

University of California Davis
Davis, CA, USA

muelder|ma@cs.ucdavis.edu,tcprovan@ucdavis.edu

Abstract—As a user’s digital music collection grows, it can
become difficult to navigate. Music library programs aid in this
task by organizing music according to tags such as artist or
title. However these generally utilize a text based interface, and
they do not take into account the content of the music itself.
As such, they do not handle untagged or mistagged music
well. Automated metrics exist, but are not as widely used since
they have the potential to be unreliable. This paper presents a
graph-based visual interface for exploring a library of music
based on analysis of the content of the music rather than tag
information, which allows the user to navigate a music library
thematically.

Keywords-Information Visualization; Graph Visualization;
Music;

I. INTRODUCTION

Compressed digital media formats have been steadily
becoming more popular due to their small size and conve-
nience, and data storage sizes have been increasing steadily.
The combination of these factors has led to an explosion of
audio data availability. The rise of compressed digital music
(such as the ubiquitous mp3 format) has enabled users to
store hundreds or even thousands of songs on their computer
or portable device. As audio collections grow to this size or
beyond, organization and navigation can become difficult.

Music library software, such as iTunes [1], provide an
automated way to index and organize music according to
tagged information in the music files such as artist or album
names. The user can then search and navigate this indexed
library to create playlists. However, this requires that the
entire library is properly tagged. In the event that music files
get tagged incorrectly or simply lack certain fields, they can
get lost in the library. This can be quite common, particularly
if the user is entering the information by hand. Automated,
crowd-sourced tag entry and tag completion or correction
can help if the audio files are all popular, but obscure music
such as that of local artists or other, non-music audio sources
are often not in these tag databases.

Most music library programs are text based, requiring the
user to read and mentally process the tag information for
each song. This can make it tedious to go through large
numbers of songs to make a playlist of songs that work
well together. That is, if the user wants to make a playlist
that fits a particular mood, either they must either remember

every song in the collection and jumps straight to the ones
that fit the mood (which defeats the purpose of the music
library software), or they must go through the entire music
collection (or at least a large portion of it) and read through
the songs to find ones that fit their mood.

In many cases, the audio data can completely lack use-
ful tag information. Security and intelligence analysts can
encounter large collections of raw audio to sift through.
For instance, identification of unknown participants in a
conversation would require analyzing the raw audio logs.
Collections of these audio logs could be too large to effec-
tively listen through one at a time, and it can be difficult
to recollect and match up similar sounding voices. Speech
recognition can be useful for converting audio data into
transcripts that can be searched through, but this does not
help for identifying the voices themselves.

This paper presents a visual approach to audio collection
organization and navigation which is based entirely on the
content of the audio. This approach is based on a combi-
nation of Fourier analysis techniques common in speech
recognition algorithms with a graph paradigm to present the
relationships between different songs to the user.

A. Related Work

Many existing music tools are essentially text based. The
industry standard is currently music library based applica-
tions such as iTunes [1], which index music according to tag
information such as artist, album, genre, and more. While
this is much better than manually indexing large numbers
of music files by hand, it is still completely reliant on
accurate tagging information, and its text based interface
can be tedious when the number of songs gets large. iTunes
has recently added a ‘Genius Mixes’ feature, which collects
music information, then sends it to a central server which
analyses the song information to create playlists and recom-
mend songs outside the library. While this can be useful,
it is currently a black-box process, which makes it difficult
to evaluate. Also, Apple’s collection of user’s information
raises questions of privacy and anonymity, which makes
some users wary. Similar to the ‘Genius Mixes’ is the
Pandora internet radio approach, which takes an initial song
and some very simple user input to select music according
to a rather extensive number of centralized tags created by

experts. While this can be a very effective way to expose
users to music they might not have encountered before,
it does not aid a user in navigating the music they have
already added to their collection. It is also tag based, and
maintaining such a large tag database is a large task in itself.
CUIDADO [33] is another recommendation based system
which predates Pandora. It uses derived information and not
just tagged data, but it is still text based. MusicLens [18]
is a text based interface used to filter a large collection of
music according to user selections.

There are some graph-based visualizations for music
exploration, but these mostly focus on browsing by artist.
LivePlasma [13] and TuneGlue [30] use graphs to present the
relationships between artists based on statistical information
such as Amazon.com’s users’ purchase histories. Musicov-
ery [20] is an extension of LivePlasma which includes
streaming music. While it introduces a ‘mood’ interface
which filters songs according to tempo and tone, it too
is based primarily on sales statistics. Barcelona Music &
Audio Technologies (BMAT) [3] presents a graph of artists
very similar to the others, which is based on sales and blog
statistics as well as content derived information.

Several music library visualizations approach the problem
with a geographic metaphor. Islands of Music [23], [26],
nepTune [10], PlaySOM [21] and Globe of Music [29] all
use self organizing maps to arrange songs with similar audio
characteristics. This is then presented to the user through a
heat map or, in the case of Globe of Music, pictures on a
globe.

Still other approaches present data in more abstract
spaces. Gnod’s music-map [19] uses input from previous
users to define a database of related artists, which it then
uses to present artists similar to the artists the current user
inputs. Donaldson’s MyStrands [6] uses songs’ playlist co-
occurrence to match up artists or songs. Music Rainbow [24]
and MusicSun [25] use a combination of audio feature com-
parisons with web-crawling and word-based comparisons
to sort artists in order to present an intuitive visualization.
MusicSim [5] presents the user with clusters of music, which
the user can manually refine.

The most closely relevant related works are probably
Lamere’s “Search Inside the Music” [11] and Lillie’s Mu-
sicBox [12]. “Search inside the music” uses audio analysis to
compare music files and plot them in 3d space according to a
dimensionality reduction technique. While this is completely
based on properties of the music itself regardless of tag
information, the results are limited by the layout which is
very dependent on the classification method. In particular,
the authors note that their approach does not work well
when the classification methods produce very tight clusters.
Similarly, MusicBox uses a dimension reduction technique
to generate a layout. However, MusicBox also incorporates
tag based information. In the absence of accurate tag data,
it falls back on content based comparisons, but it is still

Figure 1. The overall process. Music files are transformed into
spectrogram-based signatures, then compared to form a relationship graph.
The user can then select subgraphs to view in more detail.

constrained by the choice of layout. As Hoashi et al. have
shown [8], such dimensionality reduction based layouts
can be effective, but unintuitive and unfamiliar to many
users. Our work proposes a more intuitive graph-based view
which produces results similar to these previous works by
analyzing music information at a very low level without
depending on tag information and uses this analysis to gen-
erate a visualization which avoids overlap issues generated
by dimensional reduction based layouts.

When analyzing the contents of individual audio files,
common techniques involve Fourier analysis. Thus, many
of the aforementioned works utilize discrete Fourier trans-
forms (DFT) to convert the sampled audio waveform to
frequency space. From the frequency information, Mel-
frequency cepstrums [2], [4], [14], [27], [28], [31] are
another common technique for deriving signatures of audio
data for comparison. We utilize these algorithms to analyze
and compare music files against each other. We then employ
and extend the visualization techniques of [17] in order to
create an intuitive representation and interface. And we add
some of the interaction techniques of [32] to support query
based interactions and fisheye lens techniques [7] for detail
exploration.

II. METHODOLOGY

Our approach consists of a graph-based representation of
similarities derived from frequency analysis. Unlike in our
previous work [17], this approach does not use wavelets.
Rather, it uses discrete Fourier transforms to convert the
music files to frequency space in the form of spectrograms.
These spectrograms are then statistically reduced to sig-
natures and compared against each other via a similarity
metric. This generates a matrix of similarity values which
we represent with a graph. The user can then interact with
this graph by selecting subgraphs to populate a second detail
view, which can then be refined, adjusted, and/or exported
as a playlist. The overall process is depicted in Figure 1.

A. Fourier Analysis and MFCCs

The audio waveforms in music cannot be directly com-
pared, as issues such as compression artifacts, noise, and
phase shifts prevent direct correlation. So the first step in
analyzing the content of the music data is to transform
it to a space in which it can be compared. The wavelet
scalogram method of [17] was tried, but it did not produce
effective results, so another method was needed. One of the

most common methods for analyzing audio data is a Fourier
transform, which converts a data series to frequency space.
However, converting the entire waveform to frequency space
can lose large scale features and would require O(n log n)
computation where n is the total number of samples in
the song. Fourier based spectrograms offer an improvement
on these points. Spectrograms work by performing Fourier
transforms on small subsections of the song at a time.
The result of this is that the spectrogram produces a two
dimensional representation of the data which plots frequency
against time. This frequency information can subsequently
be used to derive a ‘fingerprint’ of the signal that is rel-
atively invariant to changes due to phase or noise. Also,
spectrograms require only O(n log w) calculation, where n
is the length of the song and w is the length of the window.
We utilize spectrograms as a first step in analyzing the audio.
In order to generate the spectrogram for each song, we
first divide the song into discrete sequential chunks of a
fixed window size. Then, a FFT is applied to each chunk to
transform it to frequency space.

One result of using spectrograms is that frequencies high
enough to fit within the window size are transformed to
frequency space, while frequencies which are lower than
the frequency defined by the window size remain in the time
domain. In audio data, this is an intuitive representation, as
the human ear only interprets frequencies which are above
a certain threshold (around 20Hz) as pitch. Any frequencies
below that correspond to more temporal aspects such as
rhythm or the tempo of a song. Now as the window size
w is flexible algorithmically, we can choose one which cor-
responds to this natural threshold. As most audio is sampled
at 44KHz, this window size is around 2,200 samples. For
computational simplicity, we adjusted this to the nearest
power of 2 - specifically we set the window size to 2,048
samples, which captures frequencies of 21.48Hz and above,
while leaving lower frequency patterns in the time domain.

While spectrograms transform the audio signal into a
more intuitive form, they are still too large and noisy for
direct comparison. We found experimentally that simple
statistical metrics such as finding the averages of or the
standard deviations of amplitudes at each frequency pro-
duces fairly effective signatures, but these are still quite large
(about 1000 dimensions). Also, the linear scale in frequency
space can potentially over-emphasize the contributions of
high frequencies, as audio is perceived with the frequencies
on a logarithmic scale. One commonly used solution to this
problem is to transform the data to the mel scale, which
is a frequency mapping that is perceived as linear to the
ear. From there, the a common technique is to take the mel-
frequency cepstrum (MFC) of the audio signal [2], [4], [14],
[27], [28]. This approach is used by many existing audio
fingerprinting libraries [27], including the freely available,
open-source library Marsyas [31].

The MFC of a signal is a set of mel-frequency cepstral

coefficients (MFCCs) which form a cepstrum (a ‘spectrum
of a spectrum’) centered around mel frequencies which are
perceptually equidistant. Specifically, it is calculated for each
sample window by taking the spectrogram of the signal,
resampling it on the mel scale using overlapping triangular
windows, scaling the amplitudes at each mel frequency
logarithmically, then taking discrete cosine transform of the
resulting powers at mel frequencies as if they were a signal.

These MFCs are much smaller than the original spec-
trogram, as the number of mel frequencies to sample is
adjustable. Most existing works and implementations seem
to use 10-15 mel frequencies, so we chose to use 13 mel
frequencies. However, since this calculation is done per
chunk of the signal, there are 13 times the number of chunks
in the data MFCC’s to consider. In order to create feature
vector small enough for general comparison, we aggregate
the MFCCs in temporal space. Specifically, we calculate
the mean and standard deviation of each MFCC over the
duration of the signal as

Avg = {avgi|avgi =
∑

n
t=1 m f cct,i

n
}

Std = {stdi|stdi =

√
∑

n
t=1(m f cct,i −avgi)2

n
}

By calculating the feature vectors in this way, the average
vector should capture high frequency patterns such as timbre,
while the standard deviation vector should correlate with
lower frequency patterns.

B. Similarity Metrics

The next step is to take the signatures and represent how
well pairs of them match with a single number to be used as
an edge weight. This can be done in many different ways,
such as taking the arithmetic mean of the relative differences,
the geometric mean of the differences, or the inverse of the
Euclidean distance between the two signatures. The methods
we use are calculated as follows. Let a = (a1,a2, ...,an) and
b = (b1,b2, ...,bn) be the signatures corresponding to two
nodes, then the weight w of the connection is:

• Arithmetic: w = ∑
n
i=1

1− :ai−bi:
ai+bi
n

• Geometric: w = n
√

∏
n
i=1(1−

:ai−bi:
ai+bi

)

• Geometric(no root): w = ∏
n
i=1(1−

:ai−bi:
ai+bi

)
• Inverse Euclidean: w = 1

1+
√

∑
n
i=1(ai−bi)2

• Inverse Euclidean2: w = 1
1+∑

n
i=1(ai−bi)2

Different methods can be more or less effective with
different data transformations. That is, the arithmetic and
geometric means are calculated relatively, so they are more
effective when there are large changes in the signatures
relative to the average value. When the signatures tend to
have large average values and the relative changes are small,
then one of the Euclidean functions work better. In practice,
we found the Euclidean metrics to work well on MFCC data.

(a) PCA Layout (b) LinLog Layout

(c) Treemap Layout (d) Space Filling Curve Layout

Figure 2. A graph of a music library. Different layouts produce different
results, but some take more computation than others. Hierarchical edge
bundling [9] is used to route the edges in order to reduce clutter.

C. Graph Representation

In order to create an overview of an entire music library,
a graph paradigm was employed. In this graph, each node
represents a song, and the connection between any two nodes
is weighted according to the statistical similarity between
them, with 0% being completely different and 100% being
identical. Since this is a complete graph, a cutoff is employed
to simplify the graph – any connection where the nodes
match less than some user-defined threshold is dropped. This
threshold ranges from 0 to 1 and is adjustable by a slider.
From here, the graph is laid out on the screen in order to
group similar songs together.

We used 4 different layout algorithms: an algebraic lay-
out, a force directed layout, and 2 hierarchical clustering
based layouts. For the algebraic layout, we used Principal
Component Analysis (PCA) on the high dimensional input
data to organize the data. This is quite fast, and produces
results similar to existing works such as MusicBox [12]. An
example is shown in Figure 2(a). However, the PCA layout
runs into problems with nodes being placed very close to
each other or even completely on top of each other, making
them hard to discern. The force-directed layout we used was
the LinLog algorithm [22]. This approach is quite slow on
larger data sets, taking upwards of a minute on the larger
graphs shown here, but produces the most aesthetic results.
As it still works well on smaller graphs, we often use it

for the detail graphs. An example is shown in Figure 2(b).
Finally, we used the treemap based layout and space-filling
curve layout of [16] to quickly generate efficient layouts
which try to minimize clutter and collisions while still
grouping clusters of songs together. The treemap based
layout in particular was found to be effective for interactions
such as box-selection. An example of the treemap based
layout is shown in Figure 2(c) and the space-filling curve
layout is shown in Figure 2(d).

In each layout, nodes with higher match percentages are
placed closer to each other more than nodes that do not
match as well. Thus, similar songs are clustered together.
This effect can be clearly seen in Figure 2, which shows
a graph of a sample library. Additional information can be
shown in the color of the nodes. Any given node can be
colored according to details such as artist, genre, or song
length. While these do not directly affect the clustering, often
after the clusters have formed, patterns can be seen in the
data, such as clusters that are all the same artist or genre.

While the graph representation is relatively intuitive, the
density of the network can make the graph hard to read;
as the number of edges increase, the visualization becomes
cluttered. One solution to this problem is the edge bundling
approach of Holten [9] which routes similar edges together
according to a hierarchy. As we are already generating a
clustering hierarchy as part of the layout process, this same
hierarchy can be used to implement edge bundling. The
result of this is a much cleaner, aesthetic looking graph,
while losing the ability to easily follow individual edges
through the bundles. In order to alleviate this limitation,
edge highlighting on node mouse-over was added to make
it easier to identify neighboring nodes.

D. Detail Graph

Similar to the overview graph, the detail graph shows the
relationships between different pieces of music. However,
it only displays a user-selected subgraph of the data. Since
the data shown in this view is generally much smaller than
the entire data set, more space is available to show details.
In particular, we represent each node in the graph with the
album art when available, and a default image otherwise.
We tried using the spectrogram of each song for the detail
representation, but found it unintuitive and less useful than
the album art. When the user mouses over a song in this
detail graph, the detail representation is expanded to a larger
size and the song’s tags are presented textually in order
for the user to identify it. Also, the edges connected to the
node of interest are highlighted to help the user see what it
connects to. As in the overview graph, there is the option to
employ a fisheye lens centered on the mouse, which pushes
the rest of the nodes out of the way as the user explores
particular nodes of interest. Closely related nodes that were
not selected are hinted at through the use of fading edges
to invisible nodes, as in [32]. The user can then click on

(a) Box Selection. The user drags out a selection
box, and its contents are used to populate the
detail graph.

(b) Individual+Neighbor Selection. When the
user selects a single node from the overview,
the detail graph is populated with its immediate
neighbors.

(c) Keyword Selection. The user can use key-
words as a filter for the data. The detail graph
is populated by matches.

Figure 3. Subgraph selection and Interaction. User-selected subgraphs are shown in a second, more detailed view, which can the be refined and explored.

these hidden nodes can be used to expand the subgraph.
Alternately, if the detail graph is still too large, the user can
refine it through a box selection which discards all the nodes
outside of the selected box. Finally, the user can export the
subgraph in whole or in part to create a standard playlist
which can be opened in most media players.

The two views (overview graph and detail graph) are
linked through user interaction. From the graph overview,
the user can select a subset of the data to be shown in detail
in the second view while highlighting the selected nodes in
the original graph to show context. This can be done with a
selection box, by clicking an individual node, or by entering
a keyword with which the data is filtered. Examples of all
three of these are shown in Figure 3. The selection box
is probably the most familiar to the average user, as it is
a common interaction in most desktop operating systems.
The user drags out a selection box with the mouse, then a
subgraph is generated from the nodes inside the selection
box. Figure 3(a) shows an example of this with a fairly
diverse selection. In this example, a section of the graph
was selected which contains a wide variety of music, and
the detail view shows how they relate to each other. For the

individual node selection, the user clicks an individual node
and a subgraph is generated consisting of the clicked song
and all nodes whose edge to the clicked song exceed the
current display threshold. Figure 3(b) shows an example of
selecting one song in a dense part of the graph, and it is
then focused on with the fisheye lens in the detail graph.
This selection reveals that there are a large number of songs
which are all quite similar to each other. However, within
this dense graph, songs by the same album tend to group
together, indicating that they are still more tightly connected
to each other than to the rest of the graph. The third method
of interaction with the overview graph is search based: when
a keyword is entered, a subgraph is generated consisting
of all nodes which match the keyword. This mimics the
search process of traditional music library software, but
still presents the results in comparison to each other. An
example of this is shown in Figure 3(c), where the library
was searched for “Creed”. In this example, the songs group
according to album, but there is some overlap between them
and some clear outliers.

III. CASE STUDIES

We applied our technique to a music library with 30 al-
bums by 14 artists of various genres. Subgraphs of different
selections, shown in Figure 4, show some results of our
approach. If we select the Beatles (Figure 4(a)) we find that
the songs end up arranged mostly by album. However, there
are still many connections between the albums, and even
a song that is disconnected in this view. When we select
the Creed albums (Figure 4(b)) there is an even clearer
distinction between albums. In particular, their second album
is completely separate. Interestingly, only the songs from the
third album have strong ties to the rest of the library. Also
of note is the song on the right side which is isolated from
the rest of the network. On inspection it can be seen that
this song is a lullaby, which is very different from the rest of
the songs in the subgraph, even though it is tagged as being
similar (same artist, album, and genre). Another interesting
album is the Dr. Horrible soundtrack (Figure 4(c)). As Dr.
Horrible is a musical, the songs in it are varied and involve
a number of different singers and styles. While many of
the songs are clustered fairly tightly, there are a few on the
outside of the cluster which are not that closely tied and
even pairs of songs that are completely separate. One pair
of isolated songs are actually both sung by Felicia Day with
piano accompaniment. The other pair consists of the ‘Bad
Horse’ theme songs. Both pairs are quite different from the
rest of the album, and this difference is distinctly visible.
One other interesting example has to do with the New
York Philharmonic Orchestra and its relation to jazz music
(Figure 4(d)). In this example, the system mostly splits the
two jazz albums apart, which makes sense as the Ken Burns
album is big-band swing music, while The Ambassadors’
album is more traditional jazz. What is interesting is that it
also splits the Philharmonic album in half, and associates
each half with one of the jazz albums. Upon inspection, it
can be seen that the tracks in the half of the Philharmonic
recordings associated with the big-band swing music are
symphonic works, while the tracks in the half associated
with the traditional jazz are actually spoken introductions to
the symphonic works.

IV. FUTURE WORK

While we found the spectrogram analysis to be effective,
it often became computationally time-consuming. However,
this is alleviated by the fact that it is a pre-processing
step. In order to fully address this problem, a stochastic
sampling of the audio could be effective. One limitation
in our approach is our handling of the change in MFCCs
over time. Namely, by saving only the average and standard
deviations of the MFCCs, we potentially lose a lot of the
lower frequency patterns, such as tempo or rhythm. Apply-
ing wavelet or Fourier analysis to the MFCCs themselves
over time could yield interesting new metrics which capture
these properties. As our system is not dependent on the

MFCC metric, it would be possible to use other audio
metrics, and compare, contrast, and combine them to create
more robust signatures, as in [15]. While it is very difficult
to establish the correctness of approaches such as ours, it
would be interesting to see how well they agree with other
measures of similarity, such as tag based, or co-purchasing
metrics. Alternately, a user study would be beneficial for
establishing how well automated similarity metrics agree
with perceptual similarity. We have not yet extended the
system to handle audio collections which grow too large to
fit on the screen at one time. However, the treemap based
layout was developed with this kind of interaction in mind,
so it should be straightforward to implement through the
use of this layout. Another interesting direction would be
to distribute the system on the Internet and see how other
people use it. In the process, it would be very beneficial
to anonymously collect the signatures of large quantities of
user’s music to make suggestions to the user from outside
their own music library, similar to current music library
systems. We also found that scalability of the overview can
be an issue, so an alternate overview could be of merit. Our
approach would be applicable to other forms of media such
as images or video. However, complexity issues could arise
due to the extra dimensions.

V. CONCLUSION

We have taken a graph-based approach to the analysis of
large audio collections, which is founded on frequency anal-
ysis of the audio itself. The graph representation provides
an intuitive visual interface for interactive navigation that
does not require the user to have a predetermined goal nor
accurate tag information for the audio pieces. In this paper,
we present the results of applying our method to analyzing
a music library of thousands of songs, but we have also
employed it to a collection of speech recordings and found
interesting results. It is clear that our method is extensible for
the analysis of larger or more general audio data comparison
tasks, which are often found in security applications. Such
a visual-based method is thus appealing to analysts and can
assist them to more quickly obtain important insights in
audio collections.

REFERENCES

[1] Apple iTunes, http://www.apple.com/itunes/.

[2] J.-J. Aucouturier and F. Pachet. Music similarity measures:
What’s the use? In Ircam, editor, Proceedings of the 3rd
International Symposium on Music Information Retrieval,
pages 157–163, Paris, France, October 2002.

[3] Barcelona Music & Audio Technologies (BMAT). http://bmat.
com/discover.

[4] A. Berenzweig, B. Logan, D. P. W. Ellis, and B. P. W.
Whitman. A large-scale evaluation of acoustic and subjective
music-similarity measures. Comput. Music J., 28(2):63–76,
2004.

(a) The Beatles Our approach organizes songs by The Beatles according to
album, while finding branches of similarity between them and identifying
outliers.

(b) Creed Here, our approach splits the albums even more strongly, while
finding connections between their 3rd and 1st albums, and many connections
from their 3rd album out to the rest of the graph. Also, the lullaby is isolated
completely, even though its tags say it is the same as the other songs.

(c) Dr. Horrible. The “Dr. Horrible” album contains songs with a variety of
singers and a range of styles. As such, it is very spread out in the main graph,
but the detail graph reveals that there are both similarities and differences. In
particular, Felicia Day’s solo songs with piano accompaniment are distinctly
isolated in the lower left, as are the ‘Bad Horse’ songs in the upper left.

(d) Jazz and Philharmonic The system was used to search for Jazz and the
Philharmonic. Interestingly, the two jazz albums are quite distinct, and the
Philharmonic music splits between them. Looking at the details shows that
one half of the Philharmonic tracks are performances and are linked to big-
band swing music, while the other half of the Philharmonic tracks are actually
spoken introductions to the songs, and are linked to more traditional Jazz.

Figure 4. Case studies. Exploring the graph though selection or searching reveals some interesting specifics of the music library and demonstrates the
effectiveness of our approach.

[5] Y.-X. Chen and A. Butz. MusicSim: Integrating Audio
Analysis and User Feedback in an Interactive Music Browsing
UI. In Proceedings of the 14th international conference on
Intelligent User Interfaces, IUI 2009, Sanibel Island, Florida,
USA, February 8-11, 2009. ACM New York, NY, USA, Feb.
2009.

[6] J. Donaldson. Music recommendation mapping and inter-
face based on structural network entropy. In ICDEW ’07:
Proceedings of the 2007 IEEE 23rd International Conference
on Data Engineering Workshop, pages 811–817, Washington,
DC, USA, 2007. IEEE Computer Society.

[7] G. W. Furnas. Generalized fisheye views. In CHI ’86:
Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 16–23, New York, NY, USA, 1986.
ACM.

[8] K. Hoashi, S. Hamawaki, H. Ishizaki, Y. Takishima, and
J. Katto. Usability evaluation of visualization interfaces
for content-based music retrieval systems. In International
Symposium on Music Information Retrieval, 2009, Oct 2009.

[9] D. Holten. Hierarchical edge bundles: Visualization of ad-
jacency relations in hierarchical data. IEEE Transactions on
Visualization and Computer Graphics, 12:741–748, 2006.

[10] P. Knees, M. Schedl, T. Pohle, and G. Widmer. An innovative
three-dimensional user interface for exploring music collec-
tions enriched. In MULTIMEDIA ’06: Proceedings of the
14th annual ACM international conference on Multimedia,
pages 17–24, New York, NY, USA, 2006. ACM.

[11] P. Lamere and D. Eck. Using 3d visualizations to explore and
discover music. In S. Dixon, D. Bainbridge, and R. Typke,
editors, Proceedings of the 8th International Conference on
Music Information Retrieval (ISMIR 2007), pages 173–174,
Vienna, Austria, September 2007. Österreichische Computer
Gesellschaft.

[12] A. S. Lillie. Musicbox: Navigating the space of your music.
Master’s thesis, Massachusetts Institute of Technology, 2008.

[13] G. Linden, B. Smith, and J. York. Amazon.com recommen-
dations: Item-to-item collaborative filtering. IEEE Internet
Computing, 7(1):76–80, 2003.

[14] B. Logan and A. Salomon. A music similarity function based
on signal analysis. Multimedia and Expo, IEEE International
Conference on, 0:190, 2001.

[15] McKay, C., and I. Fujinaga. 2010. Improving automatic
music classification performance by extracting features from
different types of data. Proceedings of the ACM SIGMM In-
ternational Conference on Multimedia Information Retrieval.
25766.

[16] C. Muelder and K.-L. Ma. Rapid graph layout using space
filling curves. In In Proceedings of IEEE Information Visu-
alization Conference (InfoVis), 2008.

[17] C. Muelder, K.-L. Ma, and T. Bartoletti. A visualization
methodology for characterization of network scans. In ACM
VizSEC 2005 Workshop, pages 29–38, 2005.

[18] MusicLens, http://finetunes.musiclens.de/.

[19] musicmap. http://www.music-map.com/.

[20] Musicovery : interactive webradio. http://musicovery.com/.

[21] R. Neumayer, M. Dittenbach, and A. Rauber. Playsom
and pocketsomplayer, alternative interfaces to large music
collections. In Queen Mary, University of London, pages
618–623, 2005.

[22] A. Noack. An energy model for visual graph clustering.
Lecture Notes in Computer Science, 2912:425–436, Mar.
2004.

[23] E. Pampalk. Islands of Music: Analysis, Organization,
and Visualization of Music Archives. Master’s thesis, Vi-
enna University of Technology, Austria, December 2001.
http://www.oefai.at/˜elias/music.

[24] E. Pampalk and M. Goto. Musicrainbow: A new user interface
to discover artists using audio-based similarity and web-based
labeling. In Labeling, in the Proceedings of the ISMIR
International Conference on Music Information Retrieval,
pages 367–370, 2006.

[25] E. Pampalk and M. Goto. Musicsun: A new approach to artist
recommendation. In Proceedings of the 8th International
Conference on Music Information Retrieval (ISMIR ’07),
pages 101–104, Vienna, Austria, September 2007.

[26] E. Pampalk, A. Rauber, and D. Merkl. Content-based Organi-
zation and Visualization of Music Archives. In Proceedings of
the ACM Multimedia, pages 570–579, Juan les Pins, France,
December 1-6 2002. ACM.

[27] T. Phole, E. Pampalk, G. Widmer. “Generating Similarity-
based Playlists Using Traveling Salesman Algorithms.” Proc.
of the 7th International Conference on Digital Audio Effects
(Madrid, Spain, 2005). DAFx ’05.

[28] L. Rabiner and B.-H. Juang. Fundamentals of speech recog-
nition. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1993.

[29] L. Stefan and M. Topf. Globe of music - music library visu-
alization using geosom. In 8th International Conference on
Music Information Retrieval (ISMIR 2007), Vienna, Austria,
9 2007. sterreichische Computer Gesellschaft (OCG).

[30] TuneGlue Relationship Explorer. http://audiomap.tuneglue.
net/.

[31] G. Tzanetakis, “Marsyas: a case study in implementing Music
Information Retrieval Systems.” Intelligent Music Informa-
tion Systems: Tools and Methodologies 31-49. 2008.

[32] F. van Ham and A. Perer. “Search, Show Context, Expand on
Demand”: Supporting large graph exploration with degree-of-
interest. IEEE Transactions on Visualization and Computer
Graphics, 15:953–960, 2009.

[33] H. Vinet, P. Herrera, and F. Pachet. The cuidado project. In
Ircam, editor, Proceedings of the 3rd International Symposium
on Music Information Retrieval. Ircam, October 2002.

