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Advanced combustion research is essential 
to designing more efficient engines. Next-
generation engines will operate in noncon-

ventional, mixed-mode, and turbulent conditions. 
Combustion processes in such an environment, 

combined with new physical and 
chemical fuel properties, feature 
complicated interactions that 
are poorly understood at a fun-
damental level. Recently, Sandia 
National Laboratories scientists 
have instrumented their simu-
lations with particles to capture 
and better understand the tur-
bulent dynamics in combustion 
processes. So, how to analyze and 
visualize these particles’ tempo-
ral behaviors from different as-
pects is critical to understanding 
combustion.

When visualizing a large num-
ber of moving particles, we con-

front two main issues. The first is what properties 
of the particle data to visualize; the other is how 
to deal with the large data. To conduct a compre-
hensive study of particle behaviors, a visualiza-
tion system must be able to present the temporal 

variation of particle properties. Conventionally, 
the 3D simulation domain, in which particles are 
advected, is called the physical space; the attribute 
domain, in which particle attributes evolve, is 
called the phase space. A particle’s spatial move-
ment in physical space is called its trajectory, and 
its attribute variation in phase space is called the 
attribute evolution curve. No matter whether we’re 
dealing with the physical or phase space, we can 
record a particle’s history as a sequence of points.

To analyze and visualize particles’ spatial move-
ment and attribute evolution, we’ve developed a 
dual-space method. “Dual space” means a combi-
nation of the physical and phase spaces, in which 
we depict both trajectories and attribute evolution 
curves as lines. Visualizing a large bulk of such 
lines would be a mess, considering the data’s sheer 
size and a constrained display space. Dense lines 
intertwine and interesting features become hid-
den, which prohibit scientists from testing hy-
potheses or discovering phenomena.

To deal with large data, our dual-space system 
incorporates semisupervised learning.1 With do-
main experts’ guidance, the system classifies the 
set of lines into distinct groups. Each group has 
a different pattern and can be visualized in a 
clutter-free manner, with its features clearly vis-

A dual-space method enables 
effective visual analysis of 
particles’ spatial movement 
and attribute evolution. 
Intuitive interaction tools 
integrate users’ domain 
knowledge to steer 
classification. This method 
has been used to analyze 
combustion simulations and is 
applicable to other scientific 
simulations involving particle-
data analysis.
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ible. (For more information on visualizing time-
varying data, see the related sidebar.)

While developing our method, we worked 
closely with combustion scientists (two of whom 

are coauthors of this article) to create a prototype 
system.2 This system successfully characterized 
different particle behaviors in the dual space. So, 
the combustion scientists wanted to enhance this 

V isual analysis of time-varying data has been broadly 
studied by visualization researchers. Several research-

ers have developed automatic approaches. For example, in 
medical-data analysis, Zhe Fang and his colleagues considered 
time-varying data as a 3D array in which each voxel contains 
a time-activity curve.1 They defined three similarity metrics to 
cluster and visualize these curves. Jarke van Wijk and Edward 
van Selow proposed a cluster-and-calendar-based analytical 
system to explore and visualize univariate time series data.2 
They used hierarchical clustering to categorize daily time 
series patterns and visualized them on a yearly calendar.

Researchers have also developed interactive approaches 
to extract interesting patterns from time-varying data. 
TimeSearcher let users retrieve time series by creating 
queries.3 Retrieval employed TimeBoxes, rectangular query 
locators that specified interesting time series. Hiroshi Akiba 
and Kwan-Liu Ma introduced a tri-space visualization 
interface for examining multivariate time-varying data.4 
Zoltán Konyha and his colleagues’ system for exploring and 
analyzing function graphs combined established visualization 
techniques, linked views, and advanced brushing features.5 
To deal with overdrawing and visual clutter when depicting 
large numbers of function graphs, Philipp Muigg and his 
colleagues developed a four-level “focus+context” interactive 
visualization technique, with the context information for 
orientation and three levels of focus in every attribute view.6

In practice, automatic and interactive approaches both 
have advantages and limitations. There has been a trend to-
ward integrating them for analysis and visualization of large, 
complex datasets.7,8 Jonathan Woodring and Han-Wei Shen 
proposed a technique to semiautomatically generate transfer 
functions for time-varying data through temporal clustering 
and sequencing.9 Teng-Yok Lee and Shen presented an algo-
rithm that identifies important trends in relationships among 
the variables on the basis of how the variables’ values change 
over time and how those changes are related to each other in 
different spatial regions and time intervals.10 Tobias Schreck 
and his colleagues proposed a self-organizing-map cluster-
ing algorithm that lets users visually control and monitor 
the computation to leverage their domain knowledge.11

Our research (see the main article) also integrates auto-
matic data analysis with user interaction that exploits human 
domain knowledge. The automatic technique—clustering 
of time series curves—has been a research focus in both the 
visualization and data-mining communities, and researchers 
have made great advances. To gain a better understanding, 
see the comprehensive surveys on visual analysis of time-
oriented data12 and time series data mining.13,14

References
	 1.	 Z. Fang et al., “Visualization and Exploration of Time-Varying 

Medical Image Data Sets,” Proc. Graphics Interface 2007, ACM 

Press, 2007, pp. 281–288.

	 2.	 J.J. van Wijk and E.R. van Selow, “Cluster and Calendar Based 

Visualization of Time Series Data,” Proc. 1999 IEEE Symp. 

Information Visualization (InfoVis 99), IEEE CS Press, 1999, 

pp. 4–9.

	 3.	 H. Hochheiser and B. Shneiderman, “Interactive Exploration 

of Time Series Data,” Proc. 4th Int. Conf. Discovery Science, 

Springer, 2001, pp. 441–446.

	 4.	 H. Akiba and K.-L. Ma, “A Tri-space Visualization Interface 

for Analyzing Time-Varying Multivariate Volume Data,” Proc. 

Eurographics/IEEE VGTC Symp. Visualization, Eurographics 

Assoc., 2007, pp. 115–122.

	 5.	 Z. Konyha et al., “Interactive Visual Analysis of Families of 

Function Graphs,” IEEE Trans. Visualization and Computer 

Graphics, vol. 12, no. 6, 2006, pp. 1373–1385.

	 6.	 P. Muigg et al., “A Four-Level Focus+Context Approach to 

Interactive Visual Analysis of Temporal Features in Large 

Scientific Data,” Computer Graphics Forum, vol. 27, no. 3, 

2008, pp. 775–782.

	 7.	 E. Bertini and D. Lalanne, “Investigating and Reflecting on 

the Integration of Automatic Data Analysis and Visualization 

in Knowledge Discovery,” SIGKDD Explorations, vol. 11, no. 

2, 2009, pp. 9–18.

	 8.	 D.A. Keim, F. Mansmann, and J. Thomas, “Visual Analytics: 

How Much Visualization and How Much Analytics?” SIGKDD 

Explorations, vol. 11, no. 2, 2009, pp. 5–8.

	 9.	 J. Woodring and H.-W. Shen, “Semi-automatic Time-Series 

Transfer Functions via Temporal Clustering and Sequencing,” 

Computer Graphics Forum, vol. 28, no. 3, 2009, pp. 791–798.

	10.	 T.-Y. Lee and H.-W. Shen, “Visualization and Exploration of 

Temporal Trend Relationships in Multivariate Time-Varying 

Data,” IEEE Trans. Visualization and Computer Graphics, vol. 

15, no. 6, 2009, pp. 1359–1366.

	11.	 T. Schreck et al., “Visual Cluster Analysis of Trajectory Data 

with Interactive Kohonen Maps,” Information Visualization, 

vol. 8, no. 1, 2009, pp. 14–29.

	12.	 W. Aigner et al., “Visual Methods for Analyzing Time-Oriented 

Data,” IEEE Trans. Visualization and Computer Graphics, vol. 14, 

no. 1, 2008, pp. 47–60.

	13.	 T.W. Liao, “Clustering of Time Series Data—a Survey,” 

Pattern Recognition, vol. 38, no. 11, 2005, pp. 1857–1874.

	14.	 E. Keogh, “A Decade of Progress in Indexing and Mining 

Large Time Series Databases,” Proc. 32nd Int’l Conf. Very 

Large Data Bases (VLDB 06), VLDB Endowment, 2006, pp. 

1268–1268.

Time-Varying Data Classification and Visualization



24	 January/February 2012

Visualization Applications and Design Studies

system and incorporate it into their overall scien-
tific validation and discovery process. This article 
describes both the dual-space system’s design and 
the enhancements we’ve made. In particular, we re-
placed heuristic interactive clustering2 with semi
supervised learning because the latter is more flex-
ible in cluster model updating and generates results 
that conform more closely to user specifications.

Visual Analysis in the Dual Space
Figure 1 shows our method’s main steps. To cat-

egorize attribute evolution curves, we follow a 
cluster-label-classify strategy. First, automatic clus-
tering discloses the patterns hidden in the original 
line data and provides an overview of line features. 
Next, users manipulate groups of lines and launch 
a semisupervised learning engine to refine the clas-
sification of the curves. This process iterates until 
it achieves a satisfactory categorization. Finally, for 
the different particle groups, the system displays 
and links the phase-space and physical-space views 
so that users can examine their connections.

Clustering parameter
estimation

Curve labeling Cluster selection
and combination

Initial attribute
evolution curves

Preliminary
clustering results

Semisupervized
classi�cation

Summary visualization
and analysis

User
interaction

Figure 1. The major steps of our method for analyzing and visualizing particle data in the dual space. This 
process iterates until it achieves a satisfactory categorization.

Regression models can be used for curve-like time series 
data modeling. Model-based clustering often applies a 

mixture of regression models.

Linear Regression
Regression fits a curve through a set of points using some 
goodness-of-fit criterion. One of the most common types of 
regression is linear regression. Let x be an independent vari-
able and p(x) be an unknown function of x that we want 
to approximate. Assume there are R observations, and each 
has D dimensions; that is, the values of p(x) measured at the 
specified values of xr are

p(xr) = pr, r = 1, …, R.

Let a sequence of points (p(x1), p(x2), …, p(xR)) represent 
a curve. Regarding each dimension of this curve, the idea 
behind linear regression is to model p(x) by a linear com-
bination of Q basis functions:

p(x) ≈ b1y1(x) + … + bQyQ(x),

where b represents a 1 × D vector and y represents a scalar 
function of x.

For polynomial basis functions,

p(x) ≈ b0 + b1x + … + bQxQ.� (A)

We can write Equation A as

l = Xb + e,	�  (B)

where l is an R × D matrix representing a line of length R in 
D-dimensional space, b is a Q × D matrix of regression coef-
ficients, and e is an R × D noise matrix. X is the usual R × Q 
Vandermonde regression matrix:
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Model Parameter Recovery
Given a set of lines originating from K classes, each of which 
is described by a linear regression associated with a Gauss-
ian error term as shown in Equation B, we get a mixture of 
K component regression models. Let pk denote the prob-
ability at which the component model qk generates a line; 
the mixture density for generating line l is

p l p lk k

k

kΘ( )= ( )∑α θ ,

where ak denotes the probability of class k, which is non-
negative, and all component probabilities (for k = 1 … K) 
sum to one. qk indicates the parameters of component model 
k. Each component qk contains regression coefficients bk 
and the Gaussian covariance parameter dk. So, the mixture 
model is Q = {q1, …, qK}. pk(l|qk) is the probability of compo-

Regression Mixture Models
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Mixture Models
A mixture model is a powerful, flexible probabilis-
tic model in machine learning. It assumes that the 
dataset derives from a mixture of K component 
models corresponding to K classes. Each compo-
nent model has an associated probabilistic den-
sity function, such as a Gaussian or multinomial 
distribution. Once we obtain those distributions’ 
parameters, we know how to do clustering or clas-
sification. In other words, clustering or classifica-
tion with mixture models is about how to recover 
these model parameters.

Researchers have studied several optimization 
methods in depth to find locally optimal model 
parameters. A particularly important method is ex-
pectation maximization (EM).3 We use polynomial-
regression mixture models to cluster and classify 
particle line data with the EM algorithm. (For 
more on this, see the “Regression Mixture Mod-
els” sidebar.)

Automatic Clustering
Using mixture models for clustering is often called 

model-based clustering. This clustering method 
benefits our analysis tasks in two ways:

■■ It’s computationally efficient and possesses a 
complexity of order n, where n is the number of 
items to cluster.

■■ It provides a principled way to cluster lines with 
different lengths, which is a favorable character-
istic in line data clustering.

Model-based clustering is basically a general-
ization of the K-means algorithm. Polynomial-
regression model-based clustering assumes that the 
whole set of lines derives from a mixture model of 
K polynomial-regression components correspond-
ing to K clusters. Each component model has an 
associated Gaussian error term. The EM algorithm 
solves the model-based clustering problem by re-
covering parameters of regression mixture models.

Users must specify the number of clusters into 
which the data are partitioned. Because the goal isn’t 
to create clustering results accurately but to reveal 
line patterns comprehensively during automatic 

nent model k generating l. In our research (see the main 
article), the component model takes the form of Equation 
B. As a result, the regression model leads to a class-specific 
probabilistic density function for l:

p l lk k k k
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where N() is a D-dimensional Gaussian probability den-
sity function; Xbk and σk

2I  are the mean vector and covari-
ance matrix of the kth Gaussian density function.

To find the model parameters Q under the criterion of 
the maximum-likelihood estimate, the expectation maxi-
mization (EM) algorithm provides a locally optimal solu-
tion. In practice, given a line dataset L(L = {l1, l2, …, lN}), 
we can represent the likelihood L(Q|L) by any function of 
Q that’s proportional to the probability p(L|Q). In our ap-
plication, we apply the log of likelihood L:

L Θ ΘL L( )= ( )= ( )∑∑log logp p lk k

k

K

n

n kα θ .

The EM algorithm has two stages. The first initializes the 
probability pik of each line li belonging to class k as a random 
number, constrained by

pik
k

K
=

=∑ 1
1

.

The second stage iteratively performs two steps to find the 
locally optimal solution. The E-step calculates the expecta-
tion of the log of likelihood L,
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The posterior wnk that gives the probability of the nth line 
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in the last iteration. The M-step maximizes the expectation 
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clustering, users only need to empirically set the 
cluster number. A comparatively larger number 
tends to produce more line patterns. An extreme 
case is that if the cluster number is the same as the 
number of attribute evolution curves, the system 
will display all the curve patterns. Users should 
select the possible lowest number of clusters that 
represents patterns as completely as possible, so as 
to ease later interaction.

Semisupervised Classification
Machine-learning algorithms fall into roughly 
three categories based on how much human su-
pervision they involve:

■■ unsupervised learning (for example, clustering 
and outlier detection), in which all data are un-
labeled;

■■ supervised learning (for example, classification 
and regression), in which all data are labeled; and

■■ semisupervised learning, which comes some-
where between the other two.

Unsupervised learning needs no human supervi-
sion and extracts hidden structures directly from 
the unlabeled data. However, it doesn’t guarantee 
results that meet user requirements.

Acquiring labeled data often requires experienced 
agents’ knowledge and is usually time-consuming. 
When complex large data are involved, as in our case, 
labeling’s cost makes supervised learning prohibitive.

On the other hand, semisupervised learning ex-
ploits the strengths of both supervised and unsu-
pervised learning. It can classify data using a lim-
ited amount of labeled data and a larger amount of 
unlabeled data. This combination produces better 
learning behaviors in that the labeled data incor-

porate experts’ domain knowledge and the un
labeled data help identify data patterns.

We adopt semisupervised learning to classify 
particle attribute evolution curves to refine the  
automatic-clustering results. Users browse through 
the preliminary clusters and designate the number 
of groups and the type of curves in each group. 
Our system provides two tools for selecting rep-
resentative curves. With the mouse-based picking 
tool, users click on a curve to select it. With the 
brushing tool, users sketch directly on the inter-
face, and the tool selects the underlying curves 
that intersect with the sketching. As users repeat 
this selection, the system determines the number 
of clusters and the representative curves in each 
cluster. In other words, user selection implicitly 
labels representative lines as distinct groups ac-
cording to the users’ domain knowledge.

Figure 2 illustrates our semisupervised-
classification algorithm. First, it smoothes the 
lines with the B-spline model and resamples them 
to obtain their vector descriptors. Next, it calcu-
lates each cluster’s initial model parameters on the 
basis of the representative lines the user labeled. 
Then, the algorithm performs iterative EM to find 
each cluster’s locally optimal model parameters.

The semisupervised classification exploits the la-
beling information in two ways. First, it employs 
the labeled lines to initialize the number of mixture 
model components and their parameters, which is 
critical in recovering mixture models. Second, it 
uses both labeled and unlabeled lines in the EM it-
eration to classify all data, integrating users’ knowl-
edge to improve the preliminary clustering results.

Data Visualization and Analysis
Visualizing particles’ temporal behaviors in the dual 

Input: A dataset of labeled and unlabeled lines, L
Output: K classes of lines
 1: // Preprocessing
 2: Smooth each line with the uniform B-spline model
 3: Sample each line to obtain its vector descriptor
 4: // Initialization
 5: Calculate model parameters Q using the labeled lines
 6: while true do
 7:   // E-Step
 8:   Determine the probability of each labeled or unlabeled line belonging to a class k
 9:   if likelihood L(Q|L) converges then
10:     break
11:   end if
12:   // M-Step
13:   Calculate Q using both the labeled and unlabeled lines
14: end while
15: // Generating final classification
16: Put each line in the class k with the highest probability

Figure 2. Semisupervised classification with regression mixture models. This process employs the labeled lines to initialize the 
number of mixture model components and their parameters. It uses both labeled and unlabeled lines during iterated expectation 
maximization to classify all data, integrating users’ knowledge to improve the preliminary clustering results.
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space helps scientists explore, understand, and pre
sent their data. Direct line rendering provides an in-
tuitive visual expression of how the particles traverse 
the physical space and how particles’ attributes in-
teract in the phase space. With the classification re-
sults, scientists can check different line patterns and 
use them to test hypotheses or discover phenomena.

In the phase space, on the basis of the classifica-
tion of attribute evolution curves, we directly visu-
alize each class of lines to demonstrate the distinct 
attribute variation patterns. Because each class has 
an associated mean regression curve, we provide an 
abstract visualization that shows each class’s line 
trend. By examining each class, scientists can per-
ceive a clear overview of the line patterns.

In the physical space, we incorporate line 
rendering and volume rendering to visualize the 
trajectories with respect to each particle cluster. The 
system embeds trajectories into the surrounding 
instantaneous field data at each time step and can 
animate the particle movement simultaneously in 
the phase and physical spaces.

The two views in the dual-space visualization 
appear in separate windows in the same application. 
By being able to see the data in two different views 
simultaneously, users gain a better understanding 

of the connections between particle movement 
and attribute evolution. In this way, they can 
examine each particle category’s movement pattern 
individually to reveal the particles’ evolution and 
the correlation between the particle attributes.

Two Case Studies
For non-premixed combustion (that is, the fuel and 
oxidizer are initially separate), the attribute evolu-
tion state is largely a function of the mixture frac-
tion. To a coarse approximation, to solve the gov-
erning equations of non-premixed flames, scientists 
frequently employ analytic approaches that use the 
mixture fraction to form a coordinate system.4

We evaluated our dual-space system’s effective-
ness by analyzing how the temperature variable 
and hydroxide (OH) species interact with the 
mixture fraction. In one simulation, Sandia’s di-
rect numerical simulation (DNS) code S3D can 
generate several millions of particles with history 
records relating 3D particle positions and attri-
bute evolution states. To illustrate our method, 
we used a smaller dataset of several hundreds of 
particle records. (For details on DNS and S3D, see 
the “Direct Numerical Simulation for Combustion 
Research” sidebar.)

Scientists use direct numerical simulation (DNS) to 
capture and describe the key turbulence chemistry in-

teractions. Sandia National Laboratories developed S3D, a 
massively parallel solver, to solve the DNS governing equa-
tions originating from a Eulerian viewpoint.1 The Eulerian 
specification of the flow field focuses on specific locations 
in the space through which the fluid flows over time.2,3

The Lagrangian viewpoint is another common method 
to describe fluid flows. In the Lagrangian specification, 
the observer follows a fluid parcel as it moves through 
space and time.2,3 The parcel evolves along a path with 
the instantaneous position 

� �
x x t0 ,( )  and the initial position �

x0  according to

∂ ( )
∂

= ( )
� �

� �x x t

t
u x t

0
0

,
, ,

where 
� �
u x t0 ,( )  is the instantaneous field velocity at 

� �
x x t0 ,( ) .4 

The transport of combustion turbulence is dominated 
by advective transport, so the Lagrangian description is 
natural and useful for the treatment of turbulent mixing.4 
At Sandia National Laboratories, recent combustion 
simulations of a turbulent lifted autoignitive ethylene-
air jet flame in a hot-air coflow have employed particles 
originating from both the fuel and oxidizer sources.1 

These simulations provided a Lagrangian description of 
the combustion environment. The passive tracer particles 
were disseminated in the combustion flames and advected 
by the velocity field in situ with a fourth-order Runge-
Kutta time advance. At each Runge-Kutta substep, trilinear 
interpolation determined the particle velocity from the 
Eulerian solution. When the simulations integrated the 
particle position, they also saved the thermochemical state 
(temperature, composition, and so on), interpolated from 
the Eulerian grid to the particle positions. In this way, DNS 
provides a set of particles, each of which contains a record 
of the history of its movement positions and changing 
thermochemical states. The main article briefly introduces 
these simulations.

References
	 1.	 J.H. Chen et al., “Terascale Direct Numerical Simulations of 

Turbulent Combustion Using S3D,” Computational Science 

and Discovery, vol. 2, no. 015001, 2009.

	 2.	 G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge 

Univ. Press, 1967.

	 3.	 S.H. Lamb, Hydrodynamics, 6th ed., Cambridge Univ. Press, 

1994.

	 4.	 P. Yeung, “Lagrangian Investigations of Turbulence,” Ann. Rev. 

Fluid Mechanics, vol. 34, 2002, pp. 115–142.

Direct Numerical Simulation for Combustion Research



28	 January/February 2012

Visualization Applications and Design Studies

Temperature and the Mixture Fraction
Two typical temporal relations of temperature and 
the mixture fraction are the mixing and burning 
solutions. For the mixing solution (in which no 
flame is present), the temperature varies linearly 
with the mixture fraction.

The burning solution takes a more complex 
representation. The maximum temperature occurs 
around the stoichiometric mixture fraction, in 
which the fuel and air are mixed in exactly the 
right proportions. At lower mixture fractions, air 
remains after the fuel is gone; at higher mixture 
fractions, fuel remains when the air is gone.

Figure 3a shows an overview of the attribute evo-
lution curves in the phase space; Figure 3b shows 
the corresponding trajectories in the physical space. 
In Figure 3a, the points around spot P2 are found 
in the fuel jet before it mixes with the oxidizer at 
P3. Between these extreme spots, most of the points 
occur along one of two branches: a mixing branch 
and a burning branch. The green curve illustrates 
mixing behavior, which has a negative correlation 
between temperature and mixture fraction. The 
blue curve illustrates burning behavior, which has 
a positive correlation for a low mixture fraction and 
a negative correlation for a high mixture fraction. 
P1 is the stoichiometric mixture fraction point.

The two correlation curves corresponding to the 
different branches of the temperature and mixture 
fraction solutions are relatively well understood. 
However, many particles are transitioning between 
the branches and are less clear. So, combustion 
experts have a sound fundamental basis for 
expecting particle trajectories to move from the 
edges to the center along either the mixing or 
burning branch and to transition between the 

(a) (b)

Figure 3. The relation between temperature and the mixture fraction, 
which are two key parameters in the combustion simulation of a turbulent 
lifted autoignitive ethylene/air jet flame. (a) The attribute evolution 
curves in the phase space. (b) The corresponding particle trajectories in 
the physical space, with volume rendering of the hydroperoxy field. Both 
images show much clutter; users will have difficulty perceiving detailed 

correlation patterns.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4. Automatic model-based clustering 
generated these 10 groups of attribute evolution 
curves of temperature and the mixture fraction. The 
clustering provided an initial partition of the curves 
with much less clutter than in Figure 3a. With the 
improved visualization, users can label distinct curve 
patterns and refine the categorization using domain 
knowledge. For more on these images, see the section 
“Clustering of attribute evolution curves” on p. 29.
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branches. In the next section, we show how we 
used the cluster-label-classify strategy to confirm 
or deny these expectations and to qualify the 
nature of the transition.

Clustering of attribute evolution curves. In the phase 
space, we first used model-based clustering to par-
tition the attribute evolution curves into an esti-
mated number of groups. We knew that there were 
at least two distinct groups of correlation curves 
(the mixing and burning branches) and some oth-
ers between them. So, we set the initial number 
of clusters at 10, a comparatively large number, in 
the hope of disclosing component patterns thor-
oughly. Naming an even larger number wouldn’t 
have hurt the final results because we could have 
revised this parameter in the next step.

This automatic clustering aimed to alleviate the 
visual clutter in a single visualization (see Figure 
3a) and reveal interesting cluster patterns (see 
Figure 4). Generally, these initial clustering results 
might not be the most satisfying. For example, 
Figures 4e, 4f, and 4g have similar patterns and 
would be better if they were combined. In addition, 
the clusters of Figures 4b and 4i contain outliers.

Semisupervised classification of attribute evolution 
curves. When analyzing attribute evolution curves, 
domain experts usually have certain background 
knowledge and might suggest their preferences in 
classifying the data. In this case study, two clusters 
of lines we wanted to see are those in Figures 5b 
and 5d, which correspond to the burning and 
mixing branches.

Figures 5a, 5c, 5e, and 5f depict sets of abnormal 
curves. The domain experts are very interested in 
such curves, which aren’t clearly understood yet. 
So, we labeled representative curves in each of the 
six groups and divided the whole dataset into six 
classes, each with a distinct curve pattern.

Line data visualization and analysis. For each pair 
of images in Figure 6, the left image shows the 
classification results, and the right image shows the 
corresponding particle trajectories. The trajectory 
groups demonstrate that particles with different 
patterns of attribute evolution curves traversed the 
physical space differently. This process produced a 
much more reasonable and organized clustering.

OH and the Mixture Fraction
As in the previous case study, directly rendering all 
the attribute evolution curves in the phase space 
generated visual clutter (see Figure 7a). Also, as in 
that case study, a mixing branch and a burning 

branch are discernible. The mixing branch is char-
acterized by zero OH mass fraction (a horizontal 
line) for all mixture fractions. The burning branch 
has a positive correlation for low mixture fraction 
values and a negative correlation for high values. 
The mixing branch corresponds to pure mixing 
between the fuel and oxidizer with no chemical 
reactions, and hence the absence of radicals such 
as OH.

Clustering of attribute evolution curves. On the basis 
of our experience with the first case study, we first 

(a) (b)

(c) (d)

(e) (f)

Figure 5. Six groups of curves correlating temperature and the mixture 
fraction, which the user labeled for semisupervised classification. These 
images correspond to Figures 4a, 4b, 4d, 4g, 4h, and 4i; the user 
employed our mouse-based picking tool to reject the outlier curves 
(in gray). For more on these images, see the section “Semisupervised 
classification of attribute evolution curves” on this page.
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clustered all attribute evolution curves into 10 
groups. The initial results in Figure 8 show distinct 
line patterns. For example, Figures 8b, 8d, and 8f 
have similar patterns and would be better if they 
were combined, as is the case for 8e and 8i. In 
addition, all the clusters contain outliers.

Semisupervised classification of attribute evolution 
curves. The preliminary clustering results revealed 
six major line patterns (see Figure 9). With the 
brushing and picking tools, we obtained six groups 
of representative lines for further classification.

Line data visualization and analysis. Figure 10 shows 
the classification results and the corresponding 
particle trajectories. The first four classifications 
are similar and seem to qualitatively resemble 

Figure 6. The classification result of curves correlating temperature and the mixture fraction. In each pair of images, the left 
image shows the classification results based on the user-labeled representative curves in each group. The dots, calculated with 
the regression mixture models, represent the average trends of classes. The direction is from the gray dot to the cyan dot. The 
right image in each pair shows the corresponding particle trajectories. Particles with distinct patterns of attribute evolution 
curves traversed the physical space differently.

(a) (b)

Figure 7. The relation between the hydroxide (OH) species and the mixture 
fraction. (a) The attribute evolution curves. (b) The corresponding particle 
trajectories, with volume rendering of the hydroperoxy field. Directly 
rendering all the attribute evolution curves generated visual clutter.
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the burning branch described earlier—a positive 
correlation for small values of the mixture fraction 
and a negative correlation for high values. On the 
other hand, the fifth classification seems close to 
the mixing branch characterized by nearly zero 
values of the OH mass fraction.

In the lifted-flame data considered here, chemi-
cal reactions occurred at a certain height, called 
the lift-off height, above the inlet. This region is 
marked approximately by the appearance of the 
green region in the volume rendering of hydroper-
oxy. All the trajectories for the first four classifica-
tions seem to originate above the lift-off height 
and thus represent burning solutions. In contrast, 
the trajectories for the fifth classification seem to 
originate closer to the inlet before liftoff and thus 
didn’t experience much chemical activity. It’s en-
couraging that the classification can extract these 
characteristics.

The sixth classification in Figure 10 is an inter-
esting case; it seems to follow the mixing branch 
up to some point and then traverse the burning 
branch, but in the negative mixture fraction di-
rection. Identifying such trajectories from large 
data would be difficult without our system. This 
classification, if statistically significant, is a valu-
able insight for domain experts from a modeling 
viewpoint.

Discussion
The combustion and visualization experts have 
been working closely together to develop and 
deploy the capabilities described in this article. 
There’s an “unstimulated need” for this capabil-
ity: the domain experts were struggling to process 
the actual data used to demonstrate the meth-
odology in this article. When this project began, 
the domain experts had several hypotheses about 
the nature of the particle trajectories. However, 
they couldn’t determine whether the particle data 
were consistent with their expectations, and they 
couldn’t present the data coherently to the com-
bustion community.

Using the current system, we’ve made an exposi-
tory movie that the domain scientists have been 
using when discussing their simulation results 
with colleagues. (You can view the movie at http://
doi.ieeecomputersociety.org/10.1109/MCG.2011. 
108.) Moreover, as we mentioned before, the dual-
space technique can highlight the relationship be-
tween the particle attribute evolution curves and 
the particle trajectories. This provides combustion 
scientists with detailed information regarding the 
evolution of fluid parcels traversing a turbulent 
autoignitive environment.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 8. Automatic model-based clustering generated 
these 10 groups of attribute evolution curves of OH 
and the mixture fraction. The results provided an 
initial partition of the curves with much less clutter 
than in Figure 7a. With the improved visualization, 
users can label distinct curve patterns and refine the 
categorization using domain knowledge. For more on 
these images, see the section “Clustering of attribute 
evolution curves” on pp. 29–30.
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Advanced supercomputing continues to increase 
scientists’ ability to model more complex 

problems at higher fidelity. Although our research 
targets turbulent-combustion simulations, model-
based clustering and dual-space visualization are 
applicable to many other time-varying flow field 
data. The cluster-label-classify strategy is particu-
larly powerful for analyzing large complex data 
that would be too dense and cluttered to visualize 
directly and wholly.

Interaction is the key to data analysis tasks, for 
not only exploring visual results but also steering 
semisupervised classification. We plan to improve 
our interaction tools and develop new ones to 
help users exploit their domain knowledge to steer 

semisupervised classification. For instance, free 
sketching is a promising method by which users 
can specify curve patterns according to their 
knowledge. These curve patterns can then guide 
classification algorithms.

Currently, we use mixture models to analyze bi-
variate time series data. We could easily extend 
our method to handle multivariate time series 
data. But how to visualize and interactively explore 
the clustering or classification results of multi-
variate time series curves needs further study. So, 
we’ll develop visualization and interaction meth-
ods to represent and manipulate high-dimensional 
clustering and classification results. Recently, we 
developed parallelized regression-mixture-model-
based clustering that leverages the power of het-
erogeneous computers to categorize and visualize 
large line data derived from detailed scientific 
simulations.5 We plan to further investigate using 
parallel computing to improve our method’s scal-
ability with large simulation data.�
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Figure 10. The classification result of curves correlating OH and the mixture fraction. In each pair of images, the left image shows 
the classification results based on the user-specified class prototypes. The dots, calculated with the regression mixture models, 
represent the average trends of classes. The direction is from the gray dot to the cyan dot. The original OH data were all positive 
values, but some dots on the representative curves go below the x-axis. This is because we approximated the original lines with 
B-spline models during preprocessing. The right image in each pair shows the corresponding particle trajectories. Particles with 
distinct patterns of attribute evolution curves traversed the physical space differently.


