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Abstract—This paper presents a study of gradient estimation methods for rendering unstructured-mesh volume data. Gradient

estimation is necessary for rendering shaded isosurfaces and specular highlights, which provide important cues for shape and depth.

Gradient estimation has been widely studied and deployed for regular-grid volume data to achieve local illumination effects, but has

been, otherwise, for unstructured-mesh data. As a result, most of the unstructured-mesh volume visualizations made so far were unlit.

In this paper, we present a comprehensive study of gradient estimation methods for unstructured meshes with respect to their cost and

performance. Through a number of benchmarks, we discuss the effects of mesh quality and scalar function complexity in the accuracy

of the reconstruction, and their impact in lighting-enabled volume rendering. Based on our study, we also propose two heuristic

improvements to the gradient reconstruction process. The first heuristic improves the rendering quality with a hybrid algorithm that

combines the results of the multiple reconstruction methods, based on the properties of a given mesh. The second heuristic improves

the efficiency of its GPU implementation, by restricting the computation of the gradient on a fixed-size local neighborhood.

Index Terms—Volume rendering, gradient estimation, local illumination, unstructured meshes, flow visualization.

Ç

1 INTRODUCTION

LIGHTING plays an important role in volume rendering. On
the one hand, shading and specular reflections provide

important cues of shape and depth. On the other hand,
diffuse shading along the contours of an isosurface helps
disambiguate the overlapping structures that are common in
semitransparent rendering. For example, Fig. 1 shows the
result of applying local illumination to two volumes
sampled in unstructured meshes. On the left, lighting helps
discover turbulent patterns that are lost in the unlit image.
On the right, lighting helps elucidate the spatial relation-
ships between the occluding isosurfaces. Without it, iso-
surfaces appear flat with no apparent depth disambiguation.

To properly apply local illumination to a 3D volume, we
must estimate the gradient of the volume accurately at
every single point, while hiding the effects of mesh
resolution, which introduce undesired artifacts. Gradient
estimation is well known and understood for regular grids,
and its application is now part of commodity visualization
systems. Due to the structured nature of regular grids,
estimating the gradient is a rather simple task. The partial
derivatives of a function with respect to the X, Y, and Z
dimensions are easily approximated using finite differences
given the alignment of a voxel neighborhood with each of
the axes. Unstructured meshes do not provide the same
advantage. Usually, based on finite-element methods, these
grids are used to discretize a scalar or vector field within a
closed volume using a variety of cell types, such as
tetrahedra, hexahedra, and prisms. The use of cells of

varying shape and size enables a better fit of the grid with
complex geometries and adaptive refinement in regions of
interest. Unstructured meshes, with the exception of an
unstructured cloud of points, contain connectivity informa-
tion that may be used to compute the gradient. However, it
is not as straightforward as in regular grids. First, connected
vertices do not align with the main axes, suggesting a
variable contribution to each component of the gradient.
Second, unstructured meshes usually contain elements of
varying shape, where one dimension is better sampled than
the others. The traversal of this connectivity is somewhat
costly when compared to the convolution step usually
required for structured grids. Even with no connectivity,
computing a stencil around a given point demands a spatial
search that may vary in size. For this reason, local
illumination of unstructured-mesh volume data has been
largely ignored. A simple mechanism would be to impose a
regular grid and resample the volume accordingly, but it
results in sampling problems. Resampling an unstructured
mesh into a 3D regular grid at the Nyquist rate might result
in very large volumes that exceed the available system or
graphics memory.

In this paper, we present a comparison and quantitative
analysis of the most prominent methods for linear gradient
reconstruction for the purpose of lighting. Although higher
order elements are becoming increasingly available, linear
elements are still the most common representation for
unstructured meshes, particularly for hardware-accelerated
rendering systems. The cost of storing and rendering higher
order elements has not made it possible to render them at
interactive rates in current graphics processing units.
Understanding the factors that affect the quality of
volume-rendered images in linear unstructured meshes
not only improves current visualization systems, but also
paves the way for similar studies of higher order meshes.

We make the following contributions: 1) We present a
comprehensive comparison of linear gradient reconstruction
methods on unstructured meshes. Our systematic approach
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decomposes the accuracy of the gradient as the product of
different factors, such as mesh resolution, element shape,
and complexity of the scalar field. Our experiments suggest
simple guidelines for applying the appropriate method for a
given unstructured mesh to produce high-quality volume-
rendered images. To the best knowledge of the authors, this
is the first attempt to obtain a comparison of the different
gradient estimation methods from the visualization stand-
point. 2) Based on our results, we present two heuristic
improvements. Hybrid gradient reconstruction improves
the visual quality by applying different methods in a single
mesh according to a given quality metric. In our experi-
ments, regression-based methods behave better for irregular
elements in comparison to methods based on averaging, and
vice versa for regular elements. This suggests that the choice
of method should follow the local mesh quality instead of
being applied globally. Fixed-size neighborhood gradient
reconstruction is another heuristic that ranks the neighbor
vertices of a given point so that the gradient can be
reconstructed as accurately as possible without incurring
in much overhead.

2 RELATED WORK

Volume rendering of unstructured meshes has become an
important tool for understanding computational fluid
dynamics and mesh discretizations of PDEs. The most
predominant rendering approaches are cell projection [27],
point-based approaches [32], [34] and raycasting [11], [30]. For
its simplicity, some practitioners resample the unstructured
mesh into a regular grid and render this grid directly [29],
[31]. GPU-based implementations of these methods exist
[9], [18], [30]. Cell projection and point-based approaches,
often classified as object-order approaches, do not require
an explicit connectivity of the cells. However, they require
visibility sorting. Image-order approaches, such as raycast-
ing, do not require visibility sorting, but they require the
connectivity information to traverse the cells along the view
rays. In this paper, we use raycasting to test our results and
provide a visual comparison. Our implementation is based
on the ones by Garrity [11] and Weiler et al. [30]. The
methods described in this paper and the results of our
evaluation, however, are applicable to both object- and
image-order approaches.

The study of gradients in unstructured meshes can be
understood from both the simulation and the visualization

standpoints. In simulation, the study of gradient reconstruc-
tion methods leads to more accurate reconstructions of an
underlying scalar function and better error bounds for the
discretization of PDEs. Most of these studies rely on methods
based on linear regression and the Green-Gauss theorem [7],
[19], [17]. Aftosmis et al. discuss the behavior of linear
reconstruction methods on unstructured meshes [3]. In their
studies, Barth and Jerspesen [7], Mavriplis [17], and
Anderson and Bonhaus [5] found that inverse distance
weighting has a significant impact on linear regression
models for gradient estimation, while methods such as
Green-Gauss degrade. In an attempt to improve the error
bounds of gradient reconstruction, Shewchuk studies the
impact of cell shape in linear reconstruction and provides a
series of quality metrics for tetrahedral cells [26]. Petrovskaya
[25] and Apel et al. [6] also study the impact of cell shape in
reconstruction algorithms. While there is no consensus on
what is a good mesh element, these studies suggest that these
methods produce noticeable differences in the gradient
reconstruction as the mesh becomes more irregular. In this
paper, we aim at validating some of these findings from the
rendering standpoint.

In visualization, gradient estimation becomes important
as shading is an essential cue for shape. For geometric
objects, such as triangle meshes, normals to the surface can
be computed directly from the geometric representation.
Volume representations, however, do not encode explicit
geometry but are sampled in a grid or an unstructured
mesh. The gradient is not computed directly from the
geometric information, but requires the consideration of the
volume data. Yagel et al. survey these methods for
structured grids and classify them into image-space and
object-space methods [33]. With the advent of fast graphics
processors, object-space methods became the norm. Möller
et al. compare normal estimation schemes from the point of
view of the quality of the reconstruction filter [20]. A similar
study is carried out by Bentum et al. in the frequency
domain [8]. In the spirit of generalization, Thürmer and
Wüthrich consider the normal computation in 3D space as
an approximation resulting from sampling a spatial
neighborhood of each point, and describe the importance
of variable weighting of each sample [28]. Neumann et al.
also consider the problem around a neighborhood and pose
the problem as 4D regression [22]. Although these two
methods were described for structured grids, their deriva-
tions also apply to unstructured meshes. While not
designed for volume rendering, the need for reconstructing
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Fig. 1. Effect of lighting in unstructured-mesh rendering for two data sets. Left: Lighting helps discover turbulent structures in the vicinity of the wing
that appear flat, otherwise. Proper gradient estimation should highlight these shapes without adding extraneous artifacts. Right: Lighting also helps
understand the spatial relationship between different occluding isosurfaces. With lighting, the actual shape of the semitransparent isosurfaces can
be easily perceived even in the presence of overlapping surfaces.



smooth functions from unorganized points has emerged in
the point-based rendering community. Estimating the
gradient to a surface has been posed as a total least-squares
problem [12] or a moving least-squares problem [24].
Similar techniques can be applied when we consider an
unstructured mesh as a collection of points.

Cell-based gradient estimation was proved useful in
visualization to speed up the sampling of the scalar fields at
arbitrary points within a cell. This was first proposed by
Garrity [11], who estimated the constant cell gradient via a
linear approximation. This was later used by Weiler et al. in
GPU-based raycasting [30]. A constant cell gradient,
however, is not adequate for lighting, and node-centered
gradients are needed. Cignoni et al. use the average of the
gradient of the incident cells to compute the gradient at a
node [10], and use it to render shaded isosurfaces. Ma et al.
compute the gradient based on an approximation of the
Green-Gauss theorem [15], which was later modified by
Meredith and Ma, who use the directional derivatives of the
scalar field to obtain a fast approximation [18]. Lévy et al.
use unweighted linear regression to estimate the normals
[14]. We show that weighted regression provides a better
estimate of the gradient than unweighted schemes. In recent
approaches, the lack of lighting is compensated with
opacity transformations, which result in an appearance
similar to shaded isosurfaces [21].

This heterogeneity of methods in both the simulation and
the visualization communities demonstrates that there is no
consensus on what are the most adequate methods for
adding lighting to volume data in unstructured meshes. In
this paper, we provide a quantitative and qualitative
evaluation of the most prominent linear gradient recon-
struction methods. We seek to guide future generations of
unstructured-mesh visualization systems toward high-
quality volume rendering.

3 LINEAR GRADIENT RECONSTRUCTION

Let us define an unstructured mesh as a collection of
connected points x that discretize a scalar field f . The linear
approximation of this function at a given point x0 þ h is
given by

fðx0 þ hÞ ¼ fðx0Þ þ rfðx0Þ � hþOðkhk2Þ; ð1Þ

where rðfðx0Þ is the gradient at point x0 and h is a
discretization step. The goal of gradient estimation is,
therefore, to recover the function rf such that (1) holds for
any given point. Because the approximation is linear, these
methods are collectively known as linear gradient recon-
struction methods. We can further classify these methods
into two groups: averaging-based methods, which construct
the gradient as a weighted average of the neighboring
gradients, and regression-based methods, which posit (1) as
a least-squares problem.

To understand the sources of error in these methods, we
can expand the second term of the linear approximation.
The residual of r2 ¼ f � f̂ , where f̂ is the linear approxima-
tion of f , is

r2ðx0 þ hÞ ¼ 1

2!
h>r2fðx0ÞhþOðkhk3Þ; ð2Þ

where r2f is the Hessian matrix of f . Furthermore, the
absolute error can be bounded as

kr2k � khk2kr2ðfð�; �; �ÞÞk; ð3Þ

for some ð�; �; �Þ> 2 ðx0;x0 þ hÞ. Therefore, linear approx-
imation methods are both dependent on the mesh dis-
cretization and the complexity of the scalar field. This is
true for both structured and unstructured meshes. Unlike
structured grids, unstructured meshes have a variable
discretization distance h. Therefore, the shape of the mesh
element is also a factor. Numerous quality metrics have
been proposed for tetrahedra, as described in [26]. The
study of these metrics, of which the most common are
aspect ratio and the ratio of the inscribing sphere and
maximum edge length, has led to tighter bounds on the
approximation error [6]. Here, we are not concerned about
these bounds, but rather in the effects of the different factors
in the volume-rendered image. Mavriplis showed that
regression-based methods provide better estimates on
irregular elements rather than averaging-based methods
[17]. Shewchuk also notes that this effect has been
misunderstood as due to elements of poor aspect ratio,
but argues that it is the presence of large angles that results
in larger approximation error. In our visual analysis, we
show how the different methods behave differently
depending on the element shape.

3.1 Averaging-Based Methods

In this family of methods, the gradient is computed as a
weighted average of functions of the gradient or scalar
values at a neighborhood around a node. In general, this
can be expressed as the linear combination:

rfðx0Þ ¼
X
i

wirfðiÞ; ð4Þ

where wi is a weighting factor and rfðiÞ is the constant
gradient at a cell i. The gradient at a cell can be computed
by considering (1) for the four vertices of a tetrahedron, here
denoted as column vectors x0, x1, x2, and x3, resulting in
the 3� 3 linear system:

ðx1 � x0Þ>
ðx2 � x0Þ>
ðx3 � x0Þ>

2
4

3
5rf ¼ fðx1Þ � fðx0Þ

fðx2Þ � fðx0Þ
fðx3Þ � fðx0Þ

2
4

3
5: ð5Þ

The left-hand side consists of a 3� 3 matrix where each row
is a displacement and the three columns are the compo-
nents in each of the spatial dimensions. The right-hand side
is a column vector of scalar differentials. This system can be
solved exactly for nondegenerate tetrahedra, i.e., tetrahedra
that do not collapse into a plane, a line, or a point.

3.1.1 Cell Weighting

Since the cells around a given vertex are not of the same
shape, the weighting factors wi can be computed to give
higher importance to those cells that should contribute
more to the average gradient (Fig. 2a). Here, we consider
four methods:

Uniform. This is the case when all cells are weighted
uniformly. This method is the most commonly used in
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volume rendering due to its simplicity, but does not adapt
to meshes of varying shape.

Volume. Each cell is weighted according to its own
volume. Although it adapts better to meshes of varying
shape, some elements may exhibit small aspect ratio while
having the same volume of other more regular elements.
Later on, we show that this method is equivalent to
obtaining the gradient using the Green-Gauss theorem.

Solid angle. A cell is weighted by the solid angle
subtended by the cell at the central vertex x0, measured as
the surface area of a unit sphere covered by the opposite
face to vertex x0.

Inverse centroid distance. Each cell is weighted by the
inverse of the distance between the central vertex x0 and the
centroid of cell i.

3.1.2 Green-Gauss Method

A different derivation of the gradient is obtained using the
Green-Gauss theorem, which states that for a volume �
enclosed by a surface S,

Z
�

rf d� ¼
Z
@�

fn dS; ð6Þ

where n denotes the outward pointing normal vector to the
surface S, as shown in Fig. 2b. In an unstructured mesh, the
average gradient at a node can be approximated by

rfðx0Þ �
1

j�j

Z
@�

fn dS; ð7Þ

� 1

j�j
X

i2S1;...;Sn

fini: ð8Þ

The first approximation replaces the volume integral of the
region enclosing the vertex by the total volume. The second
approximation is done over the surface integral using the
trapezoidal rule on each of the faces Si defining the surface.
ni denotes the outward pointing normal vector of the face
Si. The scalar value at a face fi is obtained as the linearly
interpolated scalar value at the barycenter of face Si.

We can see that the Green-Gauss method is equivalent to
computing the volume weighted cell average gradient. Let
us define the volume integral of the gradient in a

neighborhood of cells around a central vertex x0. Assuming

that the gradient at the cell is constant [3],

Z
�

rf d� ¼
X
i

rfðiÞ
Z

�i

d� ð9Þ

¼
X
i

rfðiÞVi; ð10Þ

where Vi is the volume of cell i. That is, if we convert each

element volume integral into an element Green-Gauss

surface integral, the contributions from shared internal

faces will cancel out in the summation over the entire

region, resulting in the Green-Gauss approximation.

3.2 Regression-Based Methods

Another family of methods can be derived from (1) by

fitting a hyperplane that best satisfies the equation for a

number of sample points, as depicted in Fig. 2c. In the case

of node-centered gradients, (1) can be generalized to an

overconstrained system of equations:

ðx1 � x0Þ>

ðx2 � x0Þ>

..

.

ðxk � x0Þ>

2
666664

3
777775
rf ¼

fðx1Þ � fðx0Þ
fðx2Þ � fðx0Þ

..

.

fðxkÞ � fðx0Þ

2
66664

3
77775; ð11Þ

where x1; . . . ;xk are the vertex neighbors of vertex x0.

Equivalently, this system can be expressed in matrix form:

Xrf ¼ b; ð12Þ

where X is a k� 3 matrix whose columns are the displace-

ment of each vertex in the spatial dimensions, and b is a

column vector of dimensions k� 1 of scalar value differ-

entials. The problem can be solved using linear least squares.
As can be seen, this method extends naturally to

arbitrary element shapes and neighborhoods. In particular,

considering all the vertices in a spatial neighborhood of x0

leads to a meshless gradient reconstruction scheme. The

same cannot be said about averaging methods. As pointed

out by Mavriplis, the Green-Gauss approximation is

generally not exact for discretizations other than tetrahedra
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Fig. 2. Overview of the gradient estimation methods. (a) Weighted average of the neighboring cell gradients. Typical weights are volume, solid angle
�i, or inverse centroid distance 1=kci � x0k. (b) The Green-Gauss method approximates the gradient as the surface integral of the control volume �.
(c) Regression fits a plane for the gradient based on the contribution of the direct neighbors of vertex x0. (d) Meshless methods apply regression on
scattered points in a spatial neighborhood (e.g., a sphere of radius r).



[17], although different control volumes can be defined for
such cases.

3.2.1 Weighting

To account for the unstructured nature of the mesh,
regression-methods can be modified to add weights to each
of the vertex neighbors. Let wi denote a weighting factor
associated with vertex xi. The gradient reconstruction can
be posed as the overconstrained system:

WXrf ¼Wb; ð13Þ

where W ¼ diagfwig is a k� k diagonal matrix containing
the weights of all k neighbors of vertex xo. The solution to
this system can be computed using weighted least squares,
solving the 3� 3 system:

X>W2Xrf ¼ X>W2b: ð14Þ

With regards to weighting, we consider two cases: unweighted

regression, for wi ¼ 1, commonly used in volume rendering,

and inverse distance weighted regression in which case

wi ¼ 1
kx�x0k2 , where k � k denotes the euclidean norm of a 3D

vector. Mavriplis showed that, in general, weighted regres-

sion provides better estimates than unweighted regression,

especially for irregular elements [17]. We can see this in the

norm of the matrix in (14). The matrix is inherently dependent

on the element shape. For irregular elements, the difference in

edge lengths generates a large conditioning for the matrix. For

unweighted regression, the determinant of X>X grows as

Oðkhk6Þ (since it grows as the cube of the elements in the

matrix, which areOðkhk2Þ) and the problem is ill-conditioned

for nearly coplanar cells. Weighting using inverse distance

cancels out the dependency on the shape of surrounding

tetrahedra, and the determinant of X>W2X grows asOð1Þ so

that it is less sensitive to near-coplanar cases. This difference

in accuracy was observed in our experiments and is

consistent with previous results [17], [25].

3.2.2 4D Regression

As an alternative to 3D regression, (1) can be formulated as
a 4D regression problem, as suggested by Neumann et al.
[22]. In this case, the scalar value at a given vertex is
considered as an unknown along with the gradient, and
results in the 4� 4 system of equations:

ðx1 � x0Þ> 1
ðx2 � x0Þ> 1

..

.

ðxk � x0Þ> 1

2
6664

3
7775
rf
fðx0Þ

� �
¼

fðx1Þ
fðx2Þ

..

.

fðxkÞ

2
6664

3
7775:

The solution contains the gradient and also a filtered value
of the scalar at that point. Unlike 3D regression, weighting
based on inverse distance is not as effective, since the last
column of ones gets replaced by the inverse distance, which
may be large for irregular elements.

3.2.3 Meshless Regression

In general, if we consider all points in the neighborhood of a
given vertex, the regression method does not need the

explicit mesh connectivity anymore. This observation has led
to meshless reconstruction methods, such as the raycasting
method presented by Ledergerber et al. [13]. According to
this method, a scalar function f can be approximated as the
linear combination of a set of basis functions:

fðxÞ ¼ gðxÞ>cx; ð15Þ

where g is a set of basis functions and cx is a set of
coefficients, found using regression. For linear approxima-
tions, i.e., gðxÞ ¼ ½x; y; z; 1�> or gðxÞ ¼ ½x; y; z�>, the result is
equivalent to 4D and 3D regression, as described above. The
coefficient is then

cx ¼ X>W2X
� ��1

X>W2b: ð16Þ

The gradient can then be obtained as the partial derivatives
of this function with respect to the spatial coordinates, as
pointed out Ledergerber et al. [13]:

@fðxÞ
@xk

¼ @gðxÞ
@xk

>
cx þ gðxÞ> @cx

@xk
¼ @gðxÞ

@xk

>
cx

� gðxÞ>AðxÞ�1 @AðxÞ
@xk

cx �X>
@W2ðxÞ
@xk

b

� �
;

ð17Þ

where AðxÞ ¼ X>W2ðxÞX. Ledergerber et al. point out that
the first term of this derivative is a good approximation of
the gradient. For the case of linear basis functions, the
resulting derivatives are the coefficients corresponding to
the basis functions x, y, and z. Therefore, approximating the
gradient using the first term of the derivative of f is
equivalent to the regression methods shown in the previous
sections. In the evaluation sections, we compare meshless
methods with those based on an explicit mesh while
varying the size of the neighborhood.

4 EVALUATION

As shown in the previous section, the accuracy of the
gradient reconstruction filter depends on both the resolu-
tion of the mesh and the complexity of the scalar field. In
addition to resolution, the shape of the mesh also
contributes to the accuracy. We ran a series of experiments
to measure the effect of the choice of a particular gradient
method on the accuracy of reconstruction, according to a
given variable. The variables we consider are:

1. mesh resolution, defined as the discretization dis-
tance of a regular grid;

2. irregularity factor, defined as the maximum devia-
tion of the vertices from the regular grid;

3. element shape, defined as the maximum aspect ratio
of the elements in the mesh; and

4. complexity of the scalar field, measured as the
maximum magnitude of the Hessian of the scalar
field.

4.1 Experimental Data Sets

Our experiments consist of both synthetic and “real”
meshes. The synthetic mesh benchmark consists of a series
of meshes obtained from a regular grid. We control two
variables: the size of the grid N , which indicates the
discretization distance khk ¼ 1=N , and the irregularity
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factor �, which indicates a maximum random deviation of
the vertices in the mesh from the grid points. The grid is
then defined as a collection of points (connected using
tetrahedral elements) defined as:

xijk ¼ ðiþ rxð�Þ; jþ ryð�Þ; kþ rzð�ÞÞh; ð18Þ

for i; j; k 2 f1; . . . ; Ng. Functions rxðaÞ, ryðaÞ, and rzðaÞ are
random number generators in the interval ½0; a�. For � ¼ 0,
the mesh is a regular grid. Fig. 3 shows four example
meshes for N ¼ 16 and different values of �. In our
experiments, we tested 40 of these meshes, for sizes N ¼
f8; 16; 24; 32; 40; 48; 56; 64g and deviation factors � 2 f0:0;
0:125; 0:25; 0:375; 0:5g. Although � makes the elements
deviate from the grid, they are, on average, close to regular.
To model highly irregular elements, we created a subset of
these meshes where the z dimension is scaled down by a
decreasing factor. This generates a series of elements of
small aspect ratio and large angles as the element shape
approaches a plane. For scalar fields, we used two types of
analytical functions. A spherical function in a unit cube
(with bounding box from ð0; 0; 0Þ> to ð1; 1; 1Þ>, defined as
fðxÞ ¼ kx� ð0:5; 0:5; 0:5Þ>k, and the Marschner-Lobb func-
tion, as defined in [16]. These scalar functions allow us to
evaluate the accuracy of the gradient reconstruction
methods as we can find the ground truth gradients
analytically. To validate our results in “real” data sets, we
compiled a series of meshes from flow simulation and
tetrahedralizations. Both types of meshes contain a mix of
low- and high-quality elements. For CFD simulations, the
use of elements of varying shape allows the mesh to align to
the flow. For tetrahedralized models, irregular elements are
required to adapt the mesh to the shape of the enclosing
surface. Table 1 summarizes the data sets compiled for our
experiments and their corresponding statistics.

4.2 Quality Metrics

To measure the quantitative accuracy of each method, we
use the mean cosine error (MCE), defined as follows:

MCE ¼ 1

N

XN
i¼1

cos�1 ni � n̂i;

where ni and n̂i are the exact and estimated normals at a
given point, respectively. One of the problems with this
metric is the inability to represent the variance of the

samples. For this reason, we derived a correlation metric,
based on the contribution of the gradient to lighting. In this
case, we define a random variable as the diffuse component
of a point with a directional light at l ¼ ð1; 1; 1Þ, and then,
used the Pearson coefficient as the quality metric between
the ground-truth diffuse component ni � l, and the approx-
imation resulting from a gradient approximation n̂i � l . This
helps us detect different degrees of variability among the
reconstruction methods.

4.3 Effects of Mesh Resolution

In the first experiment, we generated a series of synthetic
meshes with varying resolution, as described above.

Fig. 4 shows the gradient reconstruction error for a
sphere scalar field in relation to the resolution of the mesh.
As N increases, the discretization distance decreases,
improving the accuracy of the reconstruction. Notice that
solid angle and inverse weighted centroid distance produce
better estimates than uniform weighting. Volume weight-
ing, i.e., Green-Gauss reconstruction, provides the least
accurate reconstruction. Also, notice the quadratic trend as
the discretization distance decreases. When we keep the
discretization distance constant and vary the irregularity
factor, we notice a linear trend.

Fig. 5 shows the progression of gradient accuracy for the
purposes of lighting as the resolution of the mesh increases.
On top, we show the effects of inverse centroid weighted
average. At the bottom, we show the results for unweighted
3D regression. Though having the same geometry, there is a
discernible bumpiness in the appearance of the spheres for

310 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 3, MARCH 2011

Fig. 3. Example synthetic data sets for N ¼ 16 and increasing irregularity factors. We render the volume with constant interpolation through the cells
to highlight the shape of the mesh elements.

TABLE 1
Summary of Data Sets for Our Quantitative and Visual Analysis



the case of regression, and the meshing quality is apparent.

For weighted average, the sphere looks smooth.

4.4 Effects of Element Shape

As noted above, although the mesh is irregular, the average
element has a regular shape. To measure the effects of
element shape, we created a series of meshes where we
scale down one of the dimensions of the mesh, thereby
decreasing the aspect ratio of the elements. Fig. 6 shows the
mean cosine error for the sphere scalar function for both
averaging- and regression-based methods. Note the parti-
cular behavior of solid angle weighting versus volume
weighting (or Green-Gauss). For better shaped meshes, it
appears more accurate than Green-Gauss, but this trend
changes as the shape quality decreases. Overall, however,
the accuracy of averaging methods seems to converge.

For regression-based methods, the difference is more
dramatic. We can clearly see the effects of weighting, as
reported by Mavriplis [17]. For low-quality meshes (in this
case, for stretch factor below 0.05), weighted 3D regression
performs even better than averaging methods. Unweighted
3D regression is consistently poor in comparison. For the
case of 4D regression, weighting has no apparent effect.

To visualize these results, we show the rendering
results for a spherical data set in a highly irregular mesh
(Fig. 7). Weighted regression, as suggested by the
quantitative results, provides the higher quality. Notice
the smoothness of the color on the surface and in the
specular highlights. It is followed closely by averaging
methods. The most noticeable difference of these is the
solid angle averaging. Notice a bumpier appearance in the
specular reflections. 4D regression provides a poorer
estimate of the gradient, but the worst quality is obtained
with unweighted 3D regression.

4.5 Effects of Neighborhood Size

As pointed out above, regression-based models can be easily
extended to estimate the gradient based on an arbitrary
neighborhood, instead of the neighbors given by the mesh
connectivity. This meshless approximation requires a spatial
neighborhood around each vertex. Since the mesh density
may change dramatically from vertex to vertex, this spatial
neighborhood is usually defined adaptively. To compare this
method with mesh-based reconstruction, we define the
neighborhood as a variable isotropic radius RC proportional
to the radius of the sphere circumscribing the immediate
neighbors of a vertex (as defined by the mesh), as depicted in
Fig. 2d. Therefore, when the support radius R ¼ 1:0RC , the
meshless approximation contains all the points that are
considered in a mesh-based approximation (although it may
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Fig. 4. Gradient reconstruction accuracy (MCE) in terms of mesh resolution and regularity for a spherical scalar field. (a) Average weighting methods
for two meshes of decreasing regularity. Error decreases quadratically with mesh resolution, and linearly with irregularity (right). For a regular mesh
(� ¼ 0), the error is very small, but nonzero. (b) Regression-based methods. Notice the disparity between 3D weighted and unweighted regression.
Weighting has little effect for 4D regression.

Fig. 5. Visual comparison of (a) inverse centroid weighted average and
(b) unweighted 3D regression for meshes of increasing resolution and
irregularity factor � ¼ 0:25. Unweighted regression results in a bumpy
appearance and the mesh elements are evident when compared to
averaging.



contain more), and we expect to see similar accuracy. In
general, anisotropic weights are more useful to account for
the variation of point density in the mesh. The evaluation of
this aspect and the accuracy of meshless gradient reconstruc-
tion are well beyond the scope of this paper. Here, we
consider the gradient reconstruction using linear basis
functions and isotropic neighborhoods. As the radius
increases, the accuracy of the linear meshless approximation
improves, as more points are considered. However, at some
point, the accuracy is expected to decrease, since it approx-
imates a larger region with a plane. Fig. 8 shows the result of
the gradient of the local meshless approximation and the
analytical derivatives, i.e., the first term and the full
expression in (17), respectively. The plot also shows the
result of averaging (using inverse centroid weighting) and
weighted regression, computed once using the connected
neighbors of a vertex, as baselines. On the top, we see the
accuracy for a spherical function, as describe above, and the
bottom shows the accuracy for the Marschner-Lobb data set.
We can see that meshless reconstruction becomes as accurate
(or better) than average-based methods for certain neighbor-
hood sizes. The accuracy is much better for a smooth function,
such as a sphere, compared to the Marschner-Lobb function,
which exhibits a higher spatial frequency. We see that as the
number of neighbors increases, the accuracy of the recon-
struction starts to decrease. This is more noticeable for the
latter data set, since the reconstruction “flattens” the surface
(it approximates the region with a plane) and deviates
considerably from the ground truth gradient.

Fig. 9 shows three volume-rendered images for increasing
neighborhood radii. Although the numerical result is not as
accurate, the visual effect of adding more points is a smoother

surface that retains the overall shape of the isosurfaces. Note,

in particular, the disappearance of artifacts near the contours

of the sinusoidal ridges. We compare the reconstruction using

the regression approximation (Fig. 9a) with the one obtained
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Fig. 7. Visual comparison of the different methods with respect to the element shape (Here, the maximum aspect ratio is 0.01). Notice the bumpiness
of other methods compared to 3D weighted regression as suggested by the specular highlights. 3D unweighted regression leads to poor estimates
that impacts negatively the benefit of the rendering.

Fig. 6. Effects of element shape on accuracy. For averaging methods, solid angle appears to be more accurate, but it becomes less effective as the
mesh becomes highly irregular. Inverse centroid remains as the most accurate. For the case of regression methods, 3D weighted regression
outperforms the other methods and becomes even more accurate than averaging-based methods.

Fig. 8. Effects of neighborhood size for a mesh with (a) a spherical
scalar function and (b) the Marschner-Lobb function. We plot the error of
meshless methods (approximation and analytical derivatives) as the
support radius increases, and compare it to regression and averaging
methods. For a support radius factor near 1, the error is similar to that of
mesh-based regression. Larger support improves the reconstruction
momentarily, until the real shape of the scalar function deviates from the
linear approximation (a plane).



as the analytical gradient of the meshless reconstruction
(Fig. 9b). Consistent with the results in Ledergerber et al. [13],
the difference is only noticeable for models presenting high
frequencies. Note that the meshless reconstruction was only
performed on the gradient and not the function itself, for the
purposes of evaluation. In general, meshless raycasting
approximates both the function and its gradient.

4.6 Effects of Scalar Field Complexity

To test the effects of scalar field complexity, we kept the size
and shape of the mesh fixed and changed the complexity of
the scalar function. To this purpose, we used a synthetic
grid of N ¼ 48 and � ¼ 0:25. For the scalar field, we used a
Marschner-Lobb function, as described in [16], while
varying � and fM . The trace of the Hessian TrðHðfÞÞ grows
proportional to the product of these two parameters. Fig. 10
shows the mean cosine error for several Marschner-Lobb
functions, labeled as ij, where � ¼ 0:1i and fM ¼ 0:1j.
Notice that overall, the accuracy decreases as the complex-
ity of the scalar function (measured as the trace of the
Hessian) increases. There are some cases, however, where
the accuracy improves. This is noticeable in the regular grid
more than the irregular mesh. This can be explained as a
case of alignment of the scalar field with the mesh, as noted
by Shewchuk [26]. When we plot correlation of the errors,
we see an overall increasing trend that accounts for the
variability in the gradient reconstruction error. Also, we
noted that 3D weighted regression appears more correlated
than 4D unweighted regression, even though the mean
error appears larger. This implies a systematic error that,
although deteriorates the average error, appears correlated.

4.7 Quantitative Comparison

To test in “real” meshes, we applied the reconstruction to a
series of meshes from CFD simulations and finite-element
simulations. Fig. 11 shows the result for both types of

meshes on a sphere scalar function. By looking at this result,
we can confirm the trends exhibited in our previous
experiment. In general, averaging methods perform better
than regression. Furthermore, inverse centroid distance
appears more accurate than other weighting methods, and
volume weighting (Green-Gauss) provides the least accu-
rate reconstruction. A notable exception is the heart data set.
Further inspection showed the presence of near degenerate
tetrahedra due to meshing errors. Interestingly, weighted
3D regression also performs better when compared to other
regression methods for this data set, as with the skull and
hand data sets. These three data sets are tetrahedralizations
of 3D surfaces. For CFD simulations, a notable case is the
post data set, where 3D weighted regression performs better
than other regression methods. This data set is character-
ized by the varying element shapes and low quality of the
mesh near the outer boundary regions.

4.8 Efficiency Analysis

Another dimension of our evaluation is the computational
cost of the different methods. The results are summarized in
Fig. 12 for the synthetic data sets. We used an Intel Core 2
quadcore processor with 3.0 GHz and 4 GB of RAM. The
results were obtained in a CPU-based implementation using
a comparable set of operations for each of the methods. We
expect the relative performance of each method to be similar
under different machines, including GPUs. Although
parallel computation may decrease the gap between the
different methods, the relative cost per element is still the
same. Cell average is, in general, the costliest approach, in
particular for the solid angle and inverse centroid weighting
schemes. Green-Gauss, on the other hand, is the fastest of all
methods. Compare it to averaging with volume weighting,
which provides equivalent results. Regression methods do
not differ greatly in speed, and the cost of weighting is
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Fig. 9. Visual comparison on the effects of neighborhood size for the Marschner-Lobb scalar function. As we introduce more points, the rendered
surfaces become smoother and artifacts due to meshing become less apparent. Increasing the neighborhood further makes the surface to appear
flatter. (a) Local meshless approximation. (b) Analytical derivatives of meshless reconstruction.



insignificant in comparison to unweighted regression, and
are outweighted by their benefits in accuracy. Due to the

speed, Green-Gauss reconstruction is attractive for inter-
active visualization. However, as seen above, volume
weighted reconstruction is not robust to low-quality meshes,
whereas 3D weighted regression is. This motivates one of

our heuristic methods, which combines the benefits of these
two approaches, as described in Section 5.1.

4.9 Visual Comparison

Fig. 13 shows the volume rendering of a jet wing wind
simulation data set. This is a representative mesh of CFD

simulations, where an adaptive mesh is used to populate
densely regions of interest (around the wing and missile). In
our rendering, we aim at highlighting the shock waves on
the wing. Lighting helps understand the shape of these

shock waves. As suggested by the quantitative results, all
methods produce good results on high-quality regions,
while differences become noticeable for poor-quality tetra-

hedra. As we move from averaging methods to 3D
regression, we see a decrease in quality. At the bottom of
Fig. 13, we provide close-up views of certain regions of the
volume and compare the results for inverse centroid

weighted average and unweighted 3D regression. On the
left, we see the effects of meshing more noticeable in the

case of 3D regression as shown in the shape of the specular
highlight. In the middle, weighted average shows a
smoother surface near the boundary of the mesh. On the
right, a portion of one of the shock waves appears smooth
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Fig. 11. Comparison of gradient reconstructions for different meshes with an embedded spherical scalar field.

Fig. 12. Time to compute gradient for test benchmark (grid with
� ¼ 0:25, sphere scalar field). The Green-Gauss method is significantly
faster than the rest (including volume weighted averaging, which
produces equivalent results). Weighting may be costly for averaging
methods, but does not have a significant impact in regression-based
methods.

Fig. 10. Effects of scalar field complexity. Averaging-based methods are, in general, more accurate. Of the regression-based methods, 4D weighted
is the only comparable, which estimates similar to volume weighting. When these methods are compared in terms of correlation, we notice that 3D
weighted regression has a better estimate (correlated error) than 4D unweighted regression. 3D unweighted regression is significantly less accurate.



when using averaging, but appears broken and bumpy for

the case of 3D regression.
Fig. 14 shows a different case, where a smoothly

changing function is embedded in a variable quality mesh

(oxygen post data set). Both weighted regression and cell

average methods produce similar results. The Green-Gauss

method is also similar, except for a few changes in the

apparent curvature of the shapes due to the use of low-

quality cells near the boundary. Unweighted regression

suffers most from the low quality of the mesh. In this case,

poor-quality gradient reconstruction leads to the appear-

ance of creases and folds where there are none, and the

apparent flatness of regions where there should be a smooth

curved surface.

5 IMPLICATIONS

Our study has provided interesting insight on the behavior
of different gradient reconstruction methods for the
purposes of lighting. We summarize these as follows:

1. Averaging-based methods provide the most accurate
gradient reconstruction in general, and the inverse
centroid distance is consistently more accurate than
other methods, such as Green-Gauss, that are based
on volume weighting. This is especially true for
highly regular meshes.

2. Regression-based methods are less accurate, but can
adapt better to low-quality meshes. Unweighted
regression leads to poor gradient reconstructions,
especially when the mesh is highly irregular. Since
inverse distance weighted regression has a similar
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Fig. 14. Visual comparison of a smoothly changing function on a variable quality mesh (Oxygen post data set). Regions of good mesh quality (near
the post) are reconstructed well for all methods. Because the function is smoothly changing, there is little difference between regression and
averaging methods. For the Green-Gauss methods, the shape appears more pronounced near the boundary (where there are poor-quality cells). For
unweighted regression, the effects of a poor-quality mesh are more dramatic. Some regions appear to have creases and folds where there are none,
while some other regions appear flat.

Fig. 13. Visual comparison of four methods for a aerodynamics flow simulation. Here, lighting helps understand the shape of the shock waves around
the wing of an aircraft. At the bottom, close-up views of different regions show that gradients in unweighted regression make the meshing evident,
while surfaces appear smoother with averaging.



computational cost, it should be preferred. The
benefits of this weighting, however, do not apply
for 4D regression, which behaves similar to volume
weighted averaging.

3. To improve the accuracy of the reconstruction, one
may have to increase the neighborhood. Although
this would require an additional structure for
weighted cell average methods, as it requires to find
the extended cell neighborhood of a cell, it becomes
easy to do for regression-based methods. Inverse
distance weighting leads to a Moving Least-Squares
reconstruction, popular in surface reconstruction
from point sets. Although introducing more points
produces smoother results, they are not necessarily
more accurate, as it approximates regions with high
frequencies to planes.

4. Although volume weighted average and Green-
Gauss are equivalent, their implementations differ
greatly and the speed gap becomes noticeable. The
Green-Gauss method then becomes attractive for
interactive rendering systems.

Based on our observations, we propose two heuristics for

obtaining high-quality rendering of unstructured meshes at

reasonable speeds.

5.1 Hybrid Gradient Reconstruction

Similar to recent hybrid rendering methods, we can derive a

hybrid gradient reconstruction method that favors a

method depending on the local structure of the mesh.

Many unstructured meshes, particularly in CFD simula-

tions, are defined adaptively so that large tetrahedra are

located in regions of low interest, whereas small tetrahedra

populate regions of interest. Connecting these usually

results in tetrahedra of disparate size and aspect ratios. By

probing the mesh quality in a preprocessing step, we can

define the gradient using averaging methods for high-

quality regions and regression for low-quality regions.
For example, Fig. 15 shows the results of applying hybrid

gradient reconstruction to the oxygen post data set. We see

a difference between the shape of features as estimated by

the weighted regression and Green-Gauss methods, as

suggested by the specular highlights. Green-Gauss methods
also introduce mesh-aligned normals near the boundaries,
but the normals are, for the most part, smoother. The hybrid
reconstruction uses a threshold � ¼ 0:125 on the aspect ratio
to determine which method to use. Regression is only used
when the minimum aspect ratio of the neighboring cells of a
vertex is less than � . This binary operator introduces
discontinuities, as shown in the third image from the left.
To avoid artifacts in the boundary of these two regions, we
define a continuous measure, clamped between 0 and 1,
and use it as a modulation factor in linear (or spherical)
blending between the two normals. Let us define nGðxÞ and
nW ðxÞ as the gradients computed using Green-Gauss and
weighted regression, respectively. The normal at a given
point can be found as

nðxÞ ¼ �ðxÞnGðxÞ þ ð1� �ðxÞÞnwðxÞ; ð19Þ

where �ðxÞ 2 ½0; 1� is a function of volume, aspect ratio, or
any other metric that describes the irregularity of the mesh
at any given point. To avoid computing two normals for
each point, this equation only needs to compute one of them
when �ðxÞ tends to 0 or 1. In Fig. 15, we use

�ðxÞ ¼
mini2NeighðxÞðAðiÞ � �Þ

�

� �1

0

; ð20Þ

where AðiÞ is the aspect ratio of element i, NeighðxÞ is the
set of incident cells of vertex x, and ½x�10 is a clamping
operation that keeps the values between 0 and 1. Here, we
assume that the aspect ratio is defined between 0 and 1 such
that badly shaped elements have aspect ratio close to 0.
Notice how the discontinuity is removed and the shape
now appears smooth.

We tested our hybrid reconstruction in a set of meshes of
variable element shape. Similar to the meshes constructed
for Section 4.4, we varied the scaling factor along one of the
dimensions. Instead of a uniform scaling (generating
elements of same quality), we modulate the scaling along
a direction, giving a range of elements from regular to
irregular shapes in the same mesh. Fig. 16 shows the results
for a hybrid reconstruction between Green-Gauss and
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Fig. 15. Hybrid reconstruction based on a threshold on the aspect ratio of cells. Using a binary threshold, however (third from the left), results in
visible discontinuities. With blending, the normals are adapted smoothly between both methods.



weighted regression using two different thresholding
values. As expected, the accuracy of the hybrid reconstruc-
tion follows the “best” reconstruction for a given mesh.
When the shape is highly regular, the hybrid reconstruction
behaves as an averaging method, and conversely, when the
shape is bad, the reconstruction behaves as a regression
method. Interestingly, the hybrid reconstruction improves
the mean accuracy over weighted regression for highly
irregular meshes, suggesting that local adaptation of the
gradient reconstruction helps reduce the error variability
introduced by elements of varying shape.

5.2 Fixed-Size Neighborhood Reconstruction

One of the issues with gradient reconstruction is the
reliance on connectivity information. Certain rendering
mechanisms, such as cell projection, do not require
connectivity information. Others, such as raycasting, use
cell-to-cell connectivity to traverse rays into the mesh, at
the cost of increased memory requirements. This poses a
problem for dynamic meshes, where gradients need to be
recomputed as the scalar function and the mesh change. We
can alleviate the requirements with the use of fixed-size
neighborhoods for gradient computation. For time-varying
data, this fixed-size neighborhood can be precomputed.
Furthermore, it can be efficiently encoded in the texture
memory of contemporary graphics cards for GPU-assisted
volume rendering.

Regression methods can be easily set up to handle fixed-
size neighborhoods, since they provide the best (linear) fit
of the gradient function to the available set of points. The
choice of neighbors, however, may also affect the quality of
the reconstruction. According to our evaluation, in general,
inverse distance weighted regression provides better
estimates of the gradient than unweighted regression. If
we estimate the gradient based on a subset of the neighbors,
the order in which we select them becomes important.
Similar to meshless approximations, nearest neighbors
should contribute more to the gradient. To test the effects
of neighborhood size and selection criteria, we computed
the gradient for an unstructured mesh under three neighbor
ranking procedures: 1) Unsorted, which chooses K < N

neighbors randomly; 2) distance, which ranks them in
decreasing order based on distance; and 3) inverse distance,
which performs the inverse ranking. Fig. 17 shows the
result in the mean error. We notice that inverse distance
ranking provides more accurate reconstructions than other
rankings. Interestingly, for only three neighbors, unsorted
neighbors produce a better estimate. Second, we notice that
inverse distance ranking results in higher accuracy than
considering the full neighborhood, which suggest the
presence of outliers. Similar results were obtained for other
meshes of varying size and element shape.

An important implication is that progressive lighting of
unstructured meshes can be done on-the-fly. The lowest
quality may be obtained by encoding only the four highest
ranked neighbors. A medium quality can be obtained by
encoding the eight highest ranked neighbors for each
vertex. Although it may not be accurate, the result is
acceptable for interactive exploration. In this way, time-
varying data sets can be explored at good quality without
much computation cost, at the expense of extra memory
required for storing the neighbors.

6 IMPLEMENTATION DETAILS

The methods described above can be implemented and
deployed for all the predominant unstructured-mesh
rendering techniques, including cell projection, raycasting,
and point-based methods. Here, we discuss implementation
details for realizing these methods in GPU-based raycast-
ing. Raycasting on the GPU is achieved by encoding the
unstructured mesh in one 2D and one 3D texture. Volume
rendering is obtained by traversing rays into the unstruc-
tured mesh, using the connectivity to move from a cell to
the next one.

In our implementation, the x, y, and z coordinates of
each vertex are encoded in the color components of each
texel in a 2D texture verts. For compact encoding, we store
the scalar value of each vertex in the alpha channel. Cell
information is stored in a 2D texture cells, where each
channel encodes an index to the vertex array. Raycasting is
achieved by rendering a quadrilateral of the size of the
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Fig. 17. Effect of ranked fixed-size neighborhood on accuracy (Data set
is a grid with � ¼ 0:5 and sphere scalar function). We plot MCE of the
estimated gradient versus number of neighbors for three neighbor
ranking procedures. Inverse distance ranking, as suggested by our
quantitative analysis, produces more accurate estimates than naive
(distance) or random selection.

Fig. 16. Accuracy of the hybrid reconstruction scheme (Data sets are the
same as in Fig. 6). For irregular elements, the hybrid method favors the
regression method. As the shape quality improves, the hybrid method
favors the Green-Gauss method. As seen in the plot, the adaptive
scheme also improves the mean accuracy.



screen, and creating a ray for each pixel. Each ray is
traversed in the mesh by finding the intersection with the
current cell and moving to the corresponding adjacent cell.
For this reason, this implementation also requires the
storage of the cell-to-cell connectivity. The per-vertex
gradient can be stored in a texture similar to the texture
verts in a preprocessing step. This preprocessing step
makes use of additional structures, such as vertex-to-vertex
(for the case of regression) and vertex-to-cell (for averaging
methods) connectivity. For time-varying data sets, it is
desirable to compute the per-vertex gradient on-the-fly.
However, the vertex-to-vertex and vertex-to-cell connectiv-
ity are costly to encode and access via textures, due to its
irregularity. Fixed-size neighborhood reconstruction, how-
ever, can be encoded efficiently in the GPU. The vertex-to-
vertex connectivity can be encoded in a 2D textures, up to a
fixed-size (say, four or eight neighbors), similar to the cell
texture. In a rendering prepass, we traverse in parallel all
vertices in the mesh by drawing the vertex texture in a
quadrilateral of the size of the texture. A shader program
implements the regression method on the fixed-size
neighborhood and the result is directed to the gradient
texture. This method, although fast, requires enough GPU
memory to store the additional gradient texture. Alterna-
tively, regression-based reconstruction of the gradient can
be included in the volume rendering shader, which
increases the cost of rendering, but lessens the texture
memory requirements.

7 CONCLUSIONS AND FUTURE WORK

We have conducted a systematic evaluation of linear
gradient reconstruction methods for unstructured-mesh
volume rendering. Mesh resolution and scalar field com-
plexities are two important factors in the accuracy of
gradient reconstruction methods and their bounds can be
found analytically. Our experiments confirm the quadratic
trend for the linear methods. However, the shape of
elements is also a factor and can lead to noticeable
differences when the mesh becomes highly irregular. We
notice that despite being a good weighting scheme, in
general, solid angle weighting of neighboring cell gradients
leads to errors when the mesh elements become almost
planar. Inverse distance weighted regression, on the other
hand, produces the highest accuracy as the mesh becomes
highly irregular. The implementation of these methods
implies additional costs. As numerous meshes have a larger
ratio of cells to vertices, storing the vertex-to-vertex
connectivity may be more efficient than the vertex-to-cell
connectivity, suggesting a preference for regression-based
methods. Alternatives such as the Green-Gauss theorem are
computationally more efficient but require the vertex-to-cell
connectivity. Aftosmis et al. suggested an alternative
implementation that uses only vertex-vertex connectivity
[3]. Nevertheless, Green-Gauss methods may fail to adapt to
regions of badly shaped elements. Due to the lack of ground
truth, volume rendering of real meshes cannot be accurately
compared except for smoothness and continuity in the
reconstructed shapes. Two isosurfaces may still look
smooth and yet provide different cues for shape, as
exhibited in our visual comparison. In other cases, the
effects of meshing are evident. As higher order meshes
become more widely used and the GPU implementations

begin to support mixed meshes, the need for higher order
gradients will more become important. Our evaluation can
be followed for further comparative studies. Furthermore,
higher order meshes may be used to obtain gradients of
higher accuracy to measure the error of linear methods.
With our study on gradient computation, we attempt
making lighting and gradient-based rendering of arbitrary
meshes a commodity, and enable high-quality rendering of
unstructured-mesh volume data.
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