
Parallel Volume Rendering on the IBM Blue Gene/P

Tom Peterka
1
, Hongfeng Yu

2
, Robert Ross

1
, Kwan-Liu Ma

2

1
Argonne National Laboratory

2
University of California at Davis

Abstract

Parallel volume rendering is implemented and tested on an IBM Blue Gene distributed-memory parallel

architecture. The goal of studying the cost of parallel rendering on a new class of supercomputers such as the

Blue Gene/P is not necessarily to achieve real-time rendering rates. It is to identify and understand the extent of

bottlenecks and interactions between various components that affect the design of future visualization solutions

on these machines, solutions that may offer alternatives to hardware-accelerated volume rendering, for example,

when large volumes, large image sizes, and very high quality results are dictated by peta- and exascale data. As

a step in that direction, this study presents data from experiments under a number of conditions, including

dataset size, number of processors, low- and high-quality rendering, offline storage of results, and streaming of

images for remote display. Performance is divided into three main sections of the algorithm: disk I/O, rendering,

and compositing. The dynamic balance among these tasks varies with the number of processors and other

conditions. Lessons learned from the work include understanding the balance between parallel I/O, computation,

and communication within the context of visualization on supercomputers; recommendations for tuning and

optimization; and opportunities for further scaling. Extrapolating these results to very large data and image sizes

suggests that a distributed-memory high-performance computing architecture such as the Blue Gene is a viable

platform for some types of visualization at very large scales.

Categories and Subject Descriptors (according to ACM CCS): I3.1 [Hardware Architecture]: Parallel processing,

I3.2 [Graphics Systems]: Distributed / network graphics, I3.7 [Three-Dimensional Graphics and Realism]:

Raytracing, I3.8 [Applications]

1. Introduction

As data sizes and supercomputer architectures grow toward

the petascale and beyond, an attractive alternative to

rendering on graphics clusters may be to perform software-

based visualization directly on parallel supercomputers.

Benefits include the elimination of data movement between

computation and visualization architectures; the economies

of large-scale, tightly coupled parallelism; and the

possibility of visualizing a simulation in situ [MWY*07].

This paper examines the second benefit, large numbers of

tightly connected processor nodes, within the context of a

parallel ray casting volume rendering algorithm

implemented on the IBM Blue Gene/P (BG/P) architecture

at Argonne National Laboratory.

Volume rendering and parallel volume rendering on

supercomputers have been published extensively in the

literature, but this is the first such study conducted on

BG/P. This research profiles and identifies bottlenecks in

the rendering pipeline and suggests modifications to the

parallel rendering algorithm to achieve scalability. The

study, moreover, is intentionally system-wide and measures

end-to-end frame time that includes disk I/O during the

visualization of a time-varying dataset. Only by studying

the entire visualization pipeline can one get a glimpse of

the optimal balance between I/O, computation,

communication, and interactivity requirements in the

setting of parallel volume rendering on the BG/P.

The experiments include several test conditions,

including small- to medium-sized data sets, real-time

streaming of output images and offline storage of results,

and both low- and high-quality renderings. From the

results, one can draw conclusions about how to best

leverage the strengths of this architecture in visualization

applications. Although the results are specific to a

Direct correspondence to tpeterka@anl.gov

submitted to Eurographics Symposium on Parallel

Graphics and Visualization (2008)

Figure 1: Visualization of the early stages of

supernova collapse.

particular algorithm and architecture, the lessons learned

can potentially apply more broadly to other supercomputer

architectures that share some of the same characteristics as

the Blue Gene, and to other parallel rendering algorithms as

well.

Thus far, we have successfully scaled up to 4096 cores.

Remote streaming of a small, time-varying dataset at

subsecond frame times was demonstrated. For the data

sizes that we currently have available, performance is not

faster than other methods and architectures, but we expect

the benefits to be apparent at still larger scales. Rather than

competing for real-time frame rate with graphics processor

(GPU) accelerated rendering in small to moderate scales,

parallel supercomputer rendering offers one solution to the

peta- and exascale challenges of data sizes that are beyond

the scalability of existing methods. For example, when the

data size is on the order of billions of voxels and image

resolution is on the order of millions of pixels, thousands or

even tens of thousands of processors may be justified.

Research at these scales is ongoing.

2. Background

Dataset

The dataset shown in Figure 1 is one time-step from a

supernova simulation, made available by John Blondin at

the North Carolina State University and Anthony

Mezzacappa of Oak Ridge National Laboratory [BMD03],

through the U.S. Department of Energy’s SciDAC Institute

for Ultrascale Visualization [SCI07]. The model seeks to

discover the mechanism behind the core collapse supernova

mechanism, which is the violent death of short-lived,

massive stars. A spherical accretion shock instability,

SASI, is driven by the response of an initially spherical

shock wave to global acoustic modes trapped in the

interior.

Visualization plays a key role in understanding the origin

of this instability of the supernova shock wave. By

manipulating the transparency of the rendered data,

scientists can quickly visualize different combinations of

variables or isolate features. In this dataset, a single scalar

variable angular momentum is stored at 864
3
 uniform,

structured grid locations. Each of 200 time-steps of time-

varying data is stored in a separate file. Files are stored in

raw binary format, in 32-bit floating point.

Algorithm

Parallel volume rendering algorithms have been well

documented in the literature. Beginning with Levoy’s

classic ray casting in 1988 [Lev88] and optimizations in

1990 [Lev90], parallel versions began to appear in 1993

with [MPHK93] and [Nue93]. Parker et al. demonstrated

efficient parallelism of ray casting in 1999 [PPL*99] for

isosurfacing and maximal intensity volume rendering on

shared memory architecture. Ma and Camp demonstrated

overlapped I/O, rendering, compression and transmission in

the context of remote visualization [MC00]. More recently,

Yu demonstrated that parallel volume rendering

performance can be further improved by overlapping

simulation with visualization [YMW04]. Parallel volume

rendering has also been studied in the context of cluster

computing [CMF05] and in standard visualization toolkits

such as VTK [BGM*07], ParaView [MAF07], and VisIt

[CBB*05, CDM06].

Our implementation uses post-classification after

trilinear interpolation, optionally includes lighting [DCH88,

Max95], and does not incorporate hierarchical levels of

detail. Sort-last parallelization occurs both in object space

and in image space. The dataset is divided into n

approximately equal size partitions, where n is the number

of processes. Each process computes a completed subimage

corresponding to its local data, including local front-to-

back compositing of samples along each ray of its local

subimage using the “over” operator [PD84] and early ray

termination. This standard technique terminates

compositing along a ray once the accumulated opacity

exceeds a predetermined threshold because further samples

along the ray would be occluded.

Stompel et al. [SML*03] provide an overview of various

methods for sort-last compositing of the n subimages, and

Cavin et al. [CMF05] analyze relative theoretical

performance of these methods. These overviews show that

compositing algorithms usually fall into one of the

following categories: plain or optimized direct send, plain

or optimized tree, and parallel pipeline. The direct send

approach is easiest to understand; each process requests the

subimages from all of those processes that have something

to contribute to it [Hsu93, Neu94, MI97]. Since the

possibility for network contention is high in direct send, the

SLIC [SML*03] optimization attempts to schedule

communication. For simplicity and a high degree of

parallelism, we use the direct send compositing approach.

Rather than sending compositing data monolithically,

tree methods exchange data between pairs of processes,

building larger completed subimages at each level of the

compositing tree. To keep more processes busy at higher

levels on the tree, Ma et al. introduced the binary swap

optimization [MPHK94]. Lee et al. discuss a parallel

pipeline compositing algorithm in [LRN96] for polygon

rendering, although this seldom appears in the context of

parallel volume rendering.

We define the time that a frame takes to complete, tframe,

as the time from the start of reading the time-step from disk

to the time that the final image is ready at the root process.

This frame time has three distinct components, and for a

given data size, the relative contribution of each component

to the total time depends on the number of processes.

tframe = tio + trender + tcomposite (1)

The I/O time, tio, is the length of time required by a

collective reading of the time-step data file by all processes

simultaneously. The rendering time, trender, is the time that it

takes for all processes to complete their local subimage

rendering. The compositing time, tcomposite, is the time to

composite all subimages into a single image on a single

process. The following section describes the

implementation of each component in more detail.

Before the execution of the first frame, a one-time

initialization step allocates data structures and determines

partitioning parameters; the time for this setup is on the

order of tens of seconds and because it occurs only once,

we omit it from the frame time. During the setup time, data

cells are partitioned into block-shaped regions and

allocated to processes. This static load balancing scheme

implies that the uniform data distribution can cause an

uneven rendering workload when the view matrix or

transfer function changes the visibility of subvolumes, as

shown by Marchesin et al. [MMD06]. This is not a problem

in the compositing step, where all processes participate

equally, irrespective of projection area.

Blue Gene Architecture

The Blue Gene/L and Blue Gene/P systems at Argonne

National Laboratory provide ample opportunities to

experiment with parallel rendering. This work began with

2,048 cores of the BG/L system and, so far, has scaled to

4,096 cores on the BG/P system. The current single rack of

BG/P is for testing and development; but in the near future,

Argonne’s BG/P system will contain 128K cores. In the

interest of space, we highlight below just a small sample of

relevant features but online documentation from IBM can

be found at [IBM07]; the reader is directed there for

specifications and configuration diagrams. For our

purposes, the key differences between the older BG/L and

the new BG/P are that BG/P provides twice as many cores

per node, twice the memory footprint, approximately a 2X

faster interconnect network, a 1.2X faster clock speed per

core, and once completed, many times more available

nodes and cores.

Processor cores are grouped together into nodes; the

BG/P has four cores per node. Within a node, the cores can

operate together to execute one user process, in pairs for

two processes, or independently for four user processes,

depending on the selected mode. Each BG/P core is a

PowerPC 450 850 MHz processor that contains two parallel

floating-point units that can execute certain pairs of

identical floating-point operations in parallel (SIMD

vectorization).

Application processes execute on top of a microkernel

that provides basic OS services. The Blue Gene

architecture has two separate interconnection networks – a

3D torus for inter-process point-to-point communication

and a tree network for collective operations as well as for

communicating with I/O nodes. BG/P has one I/O node for

every 64 compute nodes. At the front end, the machine has

four login nodes that support full Linux functionality.

3. Implementation

I/O

Our volume rendering application is written by using MPI

for both communication and I/O and executes with one

MPI process on each core. MPI-2 [GGH*96] (a.k.a. MPI-

IO) collective file read calls perform data staging, tio in

equation 1, allowing each process to read its own portion of

the volume in parallel with all of the other processes

[YMW04, YM05]. This approach is more efficient than

having a single master process read the entire dataset and

distribute it to slave processes. More important, for large

datasets it does not require a single process to be able to fit

the entire dataset into its memory.

For example, the largest dataset tested to date in this

work consists of 864
3
 voxels, or approximately 2.5 GB per

time-step. This is problematic for most workstations; even

the BG/P has only 2 GB of memory per node. With

collective I/O, however, the total memory footprint of the

entire machine - not just of one node - is the upper bound

on the maximum data size that can be processed in-core.

This memory limit on the current single-rack BG/P is 2 TB,

but will grow to 64 TB when the system is complete.

Underlying the MPI-2 collective I/O interface is a

parallel file system such as GPFS or PVFS [CLRT00]. By

striping data across multiple volumes controlled by a

number of file servers, application programs can access

noncontiguous regions of a file in parallel. Performance

varies depending on whether reads or writes are executed

(reads in our case), on the number of I/O nodes being used,

and on the size of the partition that each process reads.

Because BG/P is a new system undergoing development,

the parallel I/O system is untuned and I/O throughput is

expected to increase dramatically in the future. In the

meantime, the performance tests use both GPFS and PVFS,

depending on which system is currently available. In

performance tests, it is important to realize that a parallel

file system is shared between all jobs and the login nodes.

During timing measurements, we have taken care to restrict

others’ file system usage and confirmed results over

multiple trials.

Rendering

The computation of local subimages, trender in equation 1,

is highly parallel and requires no interprocess

communication. Its per-core performance is a function of

the efficiency of the Blue Gene’s compute node: clock

speed, pipeline architecture, cache coherence, and the

extent to which the code is tuned to optimize these features.

Compiler and code optimizations thus far have netted 2X

performance gains in trender.

We are currently evaluating low-level performance

counters to gauge the use of BG/P’s dual floating-point

pipeline, and estimate its use to be approximately 5%. Our

tests have shown a correlation between this value and the

rendering time. However, even with appropriate directives

and flags, the compiler still may not be able to vectorize

floating point operations, especially when loops contain

control flow or function calls.

Profiling tools identify where the code spends the

Figure 2: Direct send compositing divides both the

object space and image space among processes.

majority of time, and the IBM compiler reports the

locations within that critical kernel where vectorization

failed, along with reason for failure. To increase SIMD

vectorization within loops, function calls can be replaced

by inline functions or macros, and control flow can be

replaced by data flow, but these substitutions can be non-

trivial in actual code. Tuning the rendering kernel

specifically to the BG/P processor architecture is ongoing

research.

Compositing

Compositing of parallel volume rendered subimages,

tcomposite in equation 1, is implemented with direct send as

follows. At the start of compositing, each of the n processes

owns a completed subimage of its portion of the dataset.

Next, each of the n processes is assigned responsibility for

1/n of the final image area as well. For example, the final

image can be divided into n scan lines or rectangles,

without any spatial correspondence between the completed

subimage from the rendering step and the region of the

final image during the compositing step.

For example, consider process P2 in the 9-process 2D

example in Figure 2. The squares represent the 9

subvolumes, and the line along the bottom represents the

image divided into 9 regions. (The image need not be

aligned with the subvolume axes.) Through a global data

structure that all processes share, P2 knows that it must get

the subimages from P6, P3, and P0. It composites the

images in front-to-back order according to Equations 2 and

3 to recursively compute color and opacity,

i = (1.0 – aold) * inew + iold (2)

a = (1.0 – aold) * anew + aold (3)

Where i represents the intensity (r,g,b) premultiplied by its

associated alpha-value, and a represents the accumulated

alpha-value or opacity.

The last step is for processes P1 through P8 to send their

final results to process P0, which tessellates them together

into one image. The average communication complexity of

tcomposite is O(n
4/3

 + n). The first term, n
4/3

, is because on

average, n
1/3

 messages must be sent to each of n recipients

in order for the n processes to composite their portion of

the final image. The second term, n, represents the

gathering of final subimages at the root process.

Streaming and Prefetching

When resulting images are streamed to a remote display

device, rather than being stored on disk, the path requires

several steps. The reason is that the Blue Gene connects to

the outside world only through the front-end login nodes.

Therefore, to send an image from one of the compute

nodes, it first passes via a socket to the IP address of one of

the login nodes. Physically, it actually travels from the

compute node to the I/O node assigned to that compute

node, and from the I/O node to the login node, but the

connection between compute node and associated I/O node

is transparent to the programmer. Finally, a daemon

running on the login node forwards the data stream to the

remote display via a separate socket connection. The

connectivity is diagrammed in Figure 3.

Prefetching of time-steps can hide the I/O time when the

total number of cores available is sufficient. A multi-pipe

application structure, as in Figure 4, is one way to

accomplish this. Each of the four pipelines in this example

functions independently to process four time steps in

parallel. This is not the only way to prefetch data; however,

it maps well to the BG/P architecture and to our goals of

studying real-time, end-to-end visualization performance

that mitigates I/O cost without ignoring it altogether from

the equation. Results from this method will appear in a

future paper.

4. Performance Data

In November 2007, real-time streaming of the volume

rendering application from BG/L was demonstrated,

generating and streaming a series of 200 time-steps

repeatedly from Argonne in Chicago, Illinois, to the

Supercomputing conference exhibit floor in Reno, Nevada.

A single time-step is 103 MB; during the one-hour demo,

approximately 500 GB of data were processed in real time.

Figure 3: Connecting a compute node to a remote

display is a multi-step process.

Figure 4: Processing several time steps simultaneously
can extend the degree of parallelism.

The optimal setting for this data size was 512 cores.

Figure 5 shows updated tests of the same dataset on

BG/P, out to 4K processes. The plot shows a peak

performance still at 512 cores of approximately 2 frames

per second. Performance decreases slightly to 1.75 frames /

s through 2048 cores, and drops below 1 frame / s at 4096

cores. This is expected because the total file size divided by

a large number of cores results in inefficient I/O and poor

compositing behavior. In fact, at 4096 cores, 72% of the

frame time is spent in I/O; compositing accounts for an

additional 25% while the rendering portion is only 3%. In

order to optimize performance, one may either allocate

fewer cores or visualize a larger dataset.

In the next test, the full 864
3
 dataset is scaled from 2

cores up to 4096 cores, and the result appears in Figure 6.

Strong scaling, while still not ideal, improves using this 2.5

GB per time-step data. The full BG/P rack of 4096 cores

produces a frame time of approximately 3.5 seconds. I/O

performance still dominates: at 4096 cores the breakdown

of time is tio = 77%, trender = 10% rendering, and tcomposite =

13%. However, because the file size is larger, I/O is more

efficient at this scale and 4096 cores provides the best

overall frame rate.

Figures 5 and 6 appear quite similar in shape up to 2048

cores. For example, the slope of the curve from 256 cores

to 512 is steeper than from 128 to 256 cores and 512 cores

outperforms 1024 cores in both figures as well. We are

currently investigating cache usage as well as I/O and

communication patterns in order to explain the similarities

in scalability for two different data sizes.

BG/P is capable of executing one, two, or four processes

per node. In IBM terminology, these are called smp mode,

dual mode, vn mode, respectively. In smp mode, one core

performs computation while the other cores idle, with the

exception of low-level OS tasks. The total memory

footprint of 2GB per node is shared among the four cores in

smp mode.

Our tests show approximately 20 - 30% slower

performance in dual and vn modes compared to smp mode.

The largest increase is in tio, because the number of I/O

nodes assigned to a job is a fraction of the number of

compute nodes, not compute cores. On the BG/P, this

number is 64 compute nodes to 1 I/O node. Using more

compute nodes allocates more I/O nodes available for tio.

Therefore, in these tests smp mode is used through 1024

cores; dual mode is used for 2048 cores (since the total

number of nodes is 1024) and only 4096 cores employ vn

mode.

Figure 7 compares the contribution to tframe of each of tio,

trender, and tcomposite for the same 864
3
 dataset. At smaller

numbers of processes, rendering time dominates the frame

time, but I/O cost dominates at 1024 processes and beyond.

Figure 6: Total frame rate of BG/P on the full 864

3
 dataset

is plotted on a logarithmic scale.

Figure 5: Total frame rate of BG/P on the 300
3

downsampled dataset is plotted on a logarithmic scale.

Figure 7: Relative contribution to tframe of each of tio,

trender, and tcomposite is shown.

Figure 8: Efficiency of tio, trender, and tframe is plotted as a

function of the number of processors.

This result underlines the need to further optimize parallel

I/O operation on BG/P. Compositing time is still a

relatively small fraction of the total time, reaching a

maximum of 14% and usually less than 10%. However,

Figure 7 clearly shows its relative contribution steadily

increasing, and surpassing rendering time by 4096 cores.

Hence, compositing time cannot be ignored indefinitely,

especially if one expects to scale to tens of thousands of

processes. Note that because Figure 7 displays relative

percentages, features in one curve may be the result of

another. For example, the dip in compositing contribution

at 1024 cores is caused by an increase in I/O cost, not by a

decrease in compositing itself.

Even when the parallel file system is optimized on BG/P,

some configurations may be more efficient than others. For

example, all of the curves in Figures 5-8 show an increase

in both I/O and rendering performance at 512 cores. These

may be functions of the underlying storage, computation,

and communication architecture – things that we cannot

change. However, a better understanding of the hardware

may enable improved performance of visualization

applications.

The ratio of speedup to the scaled increase in core count

defines efficiency. Figure 8 shows efficiency of tio, trender,

and tframe. Compositing efficiency is not shown separately

because compositing is a communication-bound operation.

In an ideal setting, efficiency would remain near 100%:

using n times as many processes should result in

approximately n times the frame rate. Figure 8 tells quite a

different story, and exposes the realities of both

architecture and algorithm.

The upper curve, rendering efficiency, drops quickly but

then remains at 30 – 60% throughout the experiment. Load

imbalance between processes causes the drop from 100% to

60% between 2 and 16 cores. This is due to the static load

distribution scheme that divides the dataset into uniform

subvolumes irrespective of the actual rendering work to be

done in each subvolume. For example, in this scheme it is

possible for some subvolumes to have no data. Beyond

that, the other poor performing locations are at 256, 1024,

and 2048 cores. We hypothesize that cache coherence is

worse at these configurations because of combinations of

data size and cache size and we will be testing this further.

The lower curve, I/O efficiency, decreases rapidly early on,

and then slowly degrades further. Overall, I/O does not

scale well yet on BG/P; at 4096 cores it is 6% compared to

2 cores. We expect this to improve in the near future. The

middle curve is the efficiency of the total time, tframe, and is

principally an average of upper and lower curves.

The complete performance data for the 864
3
 dataset and

1600
2
 image appears in Table 1. These data include all

three phases of the pipeline: I/O, rendering, and

compositing. Sometimes, the I/O cost can be amortized

over many frames, effectively hiding it. This is the case, for

example, when multiple views of a single file or time step

are visualized. We hope to similarly hide the I/O cost

through prefetching multiple time steps of time-varying

data in the future. Table 2 shows theoretical frame time

assuming I/O cost can be completely hidden in this way.

5. Conclusions

We implemented a parallel ray-casting direct volume

rendering algorithm on the IBM Blue Gene/P and tested

performance over a large number of cores. In order to

assess the viability of this architecture for large scale

visualization, we intentionally chose to measure end-to-end

frame time that includes not only classical visualization

components such as rendering and compositing, but I/O

time as well.

Our tests show that the Blue Gene architecture can be an

appropriate platform for high-quality software visualization

of large data. Its salient features with respect to this

application are large numbers of tightly connected cores, a

flexible programming model (MPI), a high-bandwidth

connection to the parallel I/O system (MPI-IO and PVFS),

and the ability to connect via sockets to remote displays.

Software rendering cannot produce better performance than

graphics clusters for small to medium-sized problems; but

if current trends in data size [Mou04, JR07] continue,

software volume rendering on massively parallel

supercomputers may become a viable method in the future.

We believe that this approach will prove useful for data

sizes of several gigavoxels in conjunction with image sizes

Table 1: Performance data for 864
3
 dataset, 1600

2

image

Procs

tframe

(s)

tio %

of
tframe

trender

% of
tframe

tcomposite

% of
tframe

tframe %

effcncy.

2 453.83 11.3 88.6 0.1 100.0

4 243.22 13.7 86.2 0.1 93.3

8 125.94 14.7 85.1 0.2 90.1

16 103.20 18.9 80.9 0.3 55.0

32 56.13 30.1 69.5 0.4 50.5

64 28.21 30.1 69.2 0.8 50.3

128 21.03 43.5 55.5 1.0 33.7

256 12.96 41.4 57.0 1.6 27.4

512 4.30 37.4 57.7 4.7 41.2

1024 5.01 54.3 41.3 4.4 17.7

2048 4.80 68.3 26.0 5.6 9.2

4096 3.41 77.4 9.4 13.2 6.5

Table 2: Theoretical visualization performance

assuming I/O costs are entirely hidden

Procs

trender

(s)

tcomposite

(s)

vis. time =

trender +
tcomposite (s)

vis.

efficiency

2 401.94 0.4 402.34 100.00

4 209.56 0.32 209.88 95.85

8 107.15 0.3 107.45 93.61

16 83.47 0.27 83.74 60.06

32 39.01 0.24 39.25 64.07

64 19.51 0.22 19.73 63.73

128 11.67 0.21 11.88 52.92

256 7.39 0.21 7.60 41.36

512 2.48 0.2 2.68 58.64

1024 2.07 0.22 2.29 34.32

2048 1.25 0.27 1.52 25.85

4096 0.32 0.45 0.77 25.51

of several megapixels. The method is also promising for in

situ visualization [TYR*06], or in general when a very

large dataset resides on the system already. As data sizes

increase, transporting data between machines becomes

nontrivial.

The relative cost of the three phases of the algorithm

changes with the number of processes, although ultimately

the application is I/O bound. Trade-offs exists between

applying the correct number of cores to optimize I/O,

rendering, and compositing, because these components of

the total time trend in opposite directions and have various

“sweet spots.” It is unlikely that this method alone can

effectively produce highly interactive performance, for

example, 30 frames per second. More likely, its niche will

be for very large data sets that cannot be accommodated by

graphics clusters and can produce frame times on the order

of a few seconds for such data.

Nonetheless, there is room for improvement. The parallel

I/O system on BG/P will improve considerably over time –

we know that it is not performing near capacity and work is

ongoing in that regard. More sophisticated load-balancing

techniques can improve the rendering efficiency, together

with closer attention to cache and dual floating point

pipeline usage. Compositing needs to be written with the

communication backbone of the BG/P in mind.

When fully completed, BG/P will offer over one hundred

thousand cores. This capacity can be leveraged by

visualizing several frames through a multi-pipeline layout.

Additional cores can also improve the quality of the

rendering, for example to enable lighting and shading

calculations. In the performance results, lighting was

disabled; but Figure 1 shows that very high quality images

can result through the addition of lighting.

6. Future Work

Our next tests will focus on scaling data size to gigavoxels

and image size to megapixels and on improving image

quality through lighting and shading. With 4 cores per

node, BG/P offers the opportunity to experiment with

multi-threading within an MPI process. This hybrid

programming model may enable more efficient scaling,

especially since the four cores share 2 GB of memory. This

new level of parallelism can be exploited by modifying the

rendering algorithm. We also are experimenting with tree-

based compositing as a replacement for direct send. This

may include binary swap [MPHK94] as a way to balance

the number of messages with the size of a message and to

keep more processes busy during the late stages of

compositing.

We also plan to study how this research can be extended

to encompass adaptive mesh refined (AMR) time-varying

datasets [Ma99, WHH*01]. Varying levels of spatial

resolution encoded in AMR data provide a compromise

between the rigidity of completely structured data and the

randomness of entirely unstructured data.

Another goal is to collate the performance data into a

coherent model for predicting future performance. An open

question is: what input criteria, such as processor speed,

data size, number of processes, network bandwidth,

memory bandwidth, and aggregate I/O throughput should

be included in such a model. The result should be a

relatively simple-to-use module that can analyze a parallel

volume rendering problem and suggest an optimal

configuration and predict its performance.

One of our long-term goals is to study how a

supercomputer architecture can be used to support

interactive rendering. The research so far has not included

any elements of interactivity and performance data reveals

that reaching interactive rates is difficult because of the

tradeoffs between tio, trender, and tcomposite. The next steps

toward interactive rates may include LOD rendering as well

as local view interpolation at the display machine(s). The

ideal configuration may be the supercomputer and the

graphics machine(s) sharing responsibilities in a client-

server architecture.

Acknowledgments

We thank John Blondin and Anthony Mezzacappa for

making their dataset available for this research. This work

was supported in part by the Mathematical, Information,

and Computational Sciences Division subprogram of the

Office of Advanced Scientific Computing Research, Office

of Science, U.S. Department of Energy, under Contract

DE-AC02-06CH11357. Work is also supported in part by

NSF through grants CNS-0551727 and CCF-0325934, and

DOE with agreement No. DE-FC02-06ER25777.

References

[IBM07] IBM Redbooks.

http://www.redbooks.ibm.com/redpieces/abstracts/sg247

287.html?Open 2007.

[SCI07] SciDAC Institute for Ultra-Scale Visualization.

http://ultravis.ucdavis.edu/ 2007.

[BGM*07] BIDDISCOMBE, J., GEVECI, B., MARTIN, K.,

MORELAND, K. THOMPSON, D.: Time Dependent

Processing in a Parallel Pipeline Architecture. IEEE

Transactions on Visualization and Computer Graphics,

13, 6, (October 2007), 1376-1383.

[BMD03] BLONDIN, J. M., MEZZACAPPA, A. DEMARINO,

C.: Stability of Standing Accretion Shocks, with an Eye

Toward Core Collapse Supernovae. The Astrophysics

Journal, 584, 2, (2003), 971.

[CLRT00] CARNS, P., LIGON, W. B. I., ROSS, R. THAKUR,

R.: PVFS: A Parallel File System for Linux Clusters.

Proceedings of 4th Annual Linux Showcase &

Conference, Atlanta, GA, (2000), 28.

[CMF05] CAVIN, X., MION, C. FIBOIS, A.: COTS Cluster-

based Sort-last Rendering: Performance Evaluation and

Pipelined Implementation. Proceedings of IEEE

Visualization 2005, (October 2005), 111-118.

[CDM06] CHILDS, H., DUCHAINEAU, M. MA, K.-L.: A

Scalable, Hybrid Scheme for Volume Rendering

Massive Data Sets. Proceedings of Eurographics

Symposium on Parallel Graphics and Visualization

2006, Braga, Portugal, (May 2006), 153-162.

[CBB*05] CHILDS, H. R., BRUGGER, E. S., BONNELL, K.

S., MEREDITH, J. S., MILLER, M. C., WHITLOCK, B. J.

MAX, N. L.: A Contract Based System for Large Data

Visualization. Proceedings of IEEE Visualization 2005,

Minneapolis, MN, (October 2005), 190-198.

[DCH88] DREBIN, R. A., CARPENTER, L. HANRAHAN, P.:

Volume Rendering. ACM SIGGRAPH Computer

Graphics, 22, 4, (August 1988), 65-74.

[GGH*96] GEIST, A., GROPP, W., HUSS-LEDERMAN, S.,

LUMSDAINE, A., LUSK, E., SAPHIR, W. SKJELLUM, T.:

MPI-2: Extending the Message-Passing Interface.

Proceedings of Euro-Par'96, Lyon, France, (October

1996).

[Hsu93] HSU, W. M.: Segmented Ray Casting for Data

Parallel Volume Rendering. Proceedings of 1993

Parallel Rendering Symposium, San Jose, CA, (1993), 7-

14.

[JR07] JOHNSON, C. ROSS, R.: Visualization and

Knowledge Discovery: Report from the DOE/ASCR

Workshop on Visual Analysis and Data Exploration at

Extreme Scale, 2007.

[LRN96] LEE, T.-Y., RAGHAVENDRA, C. S. NICHOLAS, J.

B.: Image Composition Schemes for Sort-Last Polygon

Rendering on 2D Mesh Multicomputers. IEEE

Transactions on Visualization and Computer Graphics,

2, 3, (September 1996), 202-217.

[Lev88] LEVOY, M.: Display of Surfaces from Volume

Data. IEEE Computer Graphics and Applications, 8, 3,

(May 1988), 29-37.

[Lev90] LEVOY, M.: Efficient Ray Tracing of Volume

Data. ACM Transactions on Graphics, 9, 3, (July 1990),

245-261.

[Ma99] MA, K.-L.: Parallel Rendering of 3D AMR Data

on the SGI/Cray T3E. Proceedings of 7th Annual

Symposium on the Frontiers of Massively Parallel

Computation 1999, Annapolis MD, (February 1999),

138-145.

[MC00] MA, K.-L. CAMP, D. M.: High Performance

Visualization of Time-Varying Volume Data over a

Wide-Area Network. Proceedings of Supercomputing

2000, Dallas, TX, (November, 2000), 29.

[MI97] MA, K.-L. INTERRANTE, V.: Extracting Feature

Lines from 3D Unstructured Grids. Proceedings of IEEE

Visualization 1997, Phoenix, AZ, (October 1997), 285-

292.

[MPHK93] MA, K.-L., PAINTER, J. S., HANSEN, C. D.

KROGH, M. F.: A Data Distributed, Parallel Algorithm

for Ray-Traced Volume Rendering. Proceedings of 1993

Parallel Rendering Symposium, San Jose, CA, (October

1993), 15-22.

[MPHK94] MA, K.-L., PAINTER, J. S., HANSEN, C. D.

KROGH, M. F.: Parallel Volume Rendering Using

Binary-Swap Compositing. IEEE Computer Graphics

and Applications, 14, 4, (July 1994), 59-68.

[MWY*07] MA, K.-L., WANG, C., YU, H. TIKHONOVA, A.:

In-Situ Processing and Visualization for Ultrscale

Simulations. Journal of Physics, 78, (June 2007).

[MMD06] MARCHESIN, S., MONGENET, C. DISCHLER, J.-

M.: Dynamic Load Balancing for Parallel Volume

Rendering. Proceedings of Eurographics Symposium of

Parallel Graphics and Visualization 2006, Braga,

Portugal, (May 2006)

[Max95] MAX, N. L.: Optical Models for Direct Volume

Rendering. IEEE Transactions on Visualization and

Computer Graphics, 1, 2, (June 1995), 99-108.

[MAF07] MORELAND, K., AVILA, L. FISK, L. A.: Parallel

Unstructured Volume Rendering in ParaView.

Proceedings of IS&T SPIE Visualization and Data

Analysis 2007, San Jose, (January 2007).

[Mou04] MOUNT, R.: The Office of Science Data-

Management Challenge. Report from the DOE Office of

Science Data-Management Workshops, 2004.

[Neu94] NEUMANN, U.: Communication Costs for Parallel

Volume-Rendering Algorithms. IEEE Computer

Graphics and Applications, 14, 4, (July 1994), 49-58.

[Neu93] NEUMANN, U.: Parallel Volume-Rendering

Algorithm Performance on Mesh-Connected

Multicomputers. Proceedings of 1993 Parallel

Rendering Symposium, San Jose, CA, (October 1993),

97-104.

[PPL*99] PARKER, S., PARKER, M., LIVNAT, Y., SLOAN,

P.-P., HANSEN, C. D. SHIRLEY, P.: Interactive Ray

Tracing for Volume Visualization. IEEE Transactions on

Visualization and Computer Graphics, 5, 3, (July 1999),

238-250.

[PD84] PORTER, T. DUFF, T.: Compositing Digital Images.

Proceedings of 11th Annual Conference on Computer

Graphics and Interactive Techniques, (1984), 253-259.

[SML*03] STOMPEL, A., MA, K.-L., LUM, E. B., AHRENS,

J. PATCHETT, J.: SLIC: Scheduled Linear Image

Compositing for Parallel Volume Rendering.

Proceedings of IEEE Symposium on Parallel and Large-

Data Visualization and Graphics, Seattle, WA, (October

2003), 33-40.

[TYR*06] TU, T., YU, H., RAMIREZ-GUZMAN, L., BIELAK,

J., GHATTAS, O., MA, K.-L. O'HALLARON, D. R.: From

Mesh Generation to Scientific Visualization: An End-to-

end Approach to Parallel Supercomputing. Proceedings

of Supercomputing 2006, Tampa, FL, (November 2006).

[WHH*01] WEBER, G. H., HAGEN, H., HAMANN, B., JOY,

K. I., LIGOCKI, T. J., MA, K.-L. SHALF, J. M.:

Visualization of Adaptive Mesh Refinement Data.

Proceedings of IS&T/SPIE Visual Data Exploration and

Analysis VIII, San Jose, CA, (2001), 121-132.

[YM05] YU, H. MA, K.-L.: A Study of I/O Methods for

Parallel Visualization of Large-Scale Data. Parallel

Computing, 31, 2, (February 2005), 167-183.

[YMW04] YU, H., MA, K.-L. WELLING, J.: A Parallel

Visualization Pipeline for Terascale Earthquake

Simulations. Proceedings of Supercomputing 2004,

(November 2004), 49.

