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Abstract 

Parallel volume rendering is implemented and tested on an IBM Blue Gene distributed-memory parallel 

architecture. The goal of studying the cost of parallel rendering on a new class of supercomputers such as the 

Blue Gene/P is not necessarily to achieve real-time rendering rates. It is to identify and understand the extent of 

bottlenecks and interactions between various components that affect the design of future visualization solutions 

on these machines, solutions that may offer alternatives to hardware-accelerated volume rendering, for example, 

when large volumes, large image sizes, and very high quality results are dictated by peta- and exascale data. As 

a step in that direction, this study presents data from experiments under a number of conditions, including 

dataset size, number of processors, low- and high-quality rendering, offline storage of results, and streaming of 

images for remote display. Performance is divided into three main sections of the algorithm: disk I/O, rendering, 

and compositing. The dynamic balance among these tasks varies with the number of processors and other 

conditions. Lessons learned from the work include understanding the balance between parallel I/O, computation, 

and communication within the context of visualization on supercomputers; recommendations for tuning and 

optimization; and opportunities for further scaling. Extrapolating these results to very large data and image sizes 

suggests that a distributed-memory high-performance computing architecture such as the Blue Gene is a viable 

platform for some types of visualization at very large scales. 

 

Categories and Subject Descriptors (according to ACM CCS): I3.1 [Hardware Architecture]: Parallel processing, 

I3.2 [Graphics Systems]: Distributed / network graphics, I3.7 [Three-Dimensional Graphics and Realism]: 

Raytracing, I3.8 [Applications]  
 

 

1. Introduction 

 

As data sizes and supercomputer architectures grow toward 

the petascale and beyond, an attractive alternative to 

rendering on graphics clusters may be to perform software-

based visualization directly on parallel supercomputers. 

Benefits include the elimination of data movement between 

computation and visualization architectures; the economies 

of large-scale, tightly coupled parallelism; and the 

possibility of  visualizing a simulation in situ [MWY*07]. 

This paper examines the second benefit, large numbers of 

tightly connected processor nodes, within the context of a 

parallel ray casting volume rendering algorithm 

implemented on the IBM Blue Gene/P (BG/P) architecture 

at Argonne National Laboratory.  

Volume rendering and parallel volume rendering on 

supercomputers have been published extensively in the 

literature, but this is the first such study conducted on 

BG/P. This research profiles and identifies bottlenecks in 

the rendering pipeline and suggests modifications to the 

parallel rendering algorithm to achieve scalability. The 

study, moreover, is intentionally system-wide and measures 

end-to-end frame time that includes disk I/O during the 

visualization of a time-varying dataset. Only by studying 

the entire visualization pipeline can one get a glimpse of 

the optimal balance between I/O, computation, 

communication, and interactivity requirements in the 

setting of parallel volume rendering on the BG/P. 

The experiments include several test conditions, 

including small- to medium-sized data sets, real-time 

streaming of output images and offline storage of results, 

and both low- and high-quality renderings. From the 

results, one can draw conclusions about how to best 

leverage the strengths of this architecture in visualization 

applications. Although the results are specific to a 
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Figure 1: Visualization of the early stages of 

supernova collapse. 



particular algorithm and architecture, the lessons learned 

can potentially apply more broadly to other supercomputer 

architectures that share some of the same characteristics as 

the Blue Gene, and to other parallel rendering algorithms as 

well. 

Thus far, we have successfully scaled up to 4096 cores. 

Remote streaming of a small, time-varying dataset at 

subsecond frame times was demonstrated. For the data 

sizes that we currently have available, performance is not 

faster than other methods and architectures, but we expect 

the benefits to be apparent at still larger scales. Rather than 

competing for real-time frame rate with graphics processor 

(GPU) accelerated rendering in small to moderate scales, 

parallel supercomputer rendering offers one solution to the 

peta- and exascale challenges of data sizes that are beyond 

the scalability of existing methods. For example, when the 

data size is on the order of billions of voxels and image 

resolution is on the order of millions of pixels, thousands or 

even tens of thousands of processors may be justified. 

Research at these scales is ongoing. 

 

2. Background 

 

Dataset 

 

The dataset shown in Figure 1 is one time-step from a 

supernova simulation, made available by John Blondin at 

the North Carolina State University and Anthony 

Mezzacappa of Oak Ridge National Laboratory [BMD03], 

through the U.S. Department of Energy’s SciDAC Institute 

for Ultrascale Visualization [SCI07]. The model seeks to 

discover the mechanism behind the core collapse supernova 

mechanism, which is the violent death of short-lived, 

massive stars. A spherical accretion shock instability, 

SASI, is driven by the response of an initially spherical 

shock wave to global acoustic modes trapped in the 

interior.  

Visualization plays a key role in understanding the origin 

of this instability of the supernova shock wave. By 

manipulating the transparency of the rendered data, 

scientists can quickly visualize different combinations of 

variables or isolate features. In this dataset, a single scalar 

variable angular momentum is stored at 864
3
 uniform, 

structured grid locations. Each of 200 time-steps of time-

varying data is stored in a separate file. Files are stored in 

raw binary format, in 32-bit floating point. 

 

Algorithm 

 

Parallel volume rendering algorithms have been well 

documented in the literature. Beginning with Levoy’s 

classic ray casting in 1988 [Lev88] and optimizations in 

1990 [Lev90], parallel versions began to appear in 1993 

with [MPHK93] and [Nue93]. Parker et al. demonstrated 

efficient parallelism of ray casting in 1999 [PPL*99] for 

isosurfacing and maximal intensity volume rendering on 

shared memory architecture. Ma and Camp demonstrated 

overlapped I/O, rendering, compression and transmission in 

the context of remote visualization [MC00]. More recently, 

Yu demonstrated that parallel volume rendering 

performance can be further improved by overlapping 

simulation with visualization [YMW04]. Parallel volume 

rendering has also been studied in the context of cluster 

computing [CMF05] and in standard visualization toolkits 

such as VTK [BGM*07], ParaView [MAF07], and VisIt 

[CBB*05, CDM06]. 

Our implementation uses post-classification after 

trilinear interpolation, optionally includes lighting [DCH88, 

Max95], and does not incorporate hierarchical levels of 

detail. Sort-last parallelization occurs both in object space 

and in image space. The dataset is divided into n 

approximately equal size partitions, where n is the number 

of processes. Each process computes a completed subimage 

corresponding to its local data, including local front-to-

back compositing of samples along each ray of its local 

subimage using the “over” operator [PD84] and early ray 

termination. This standard technique terminates 

compositing along a ray once the accumulated opacity 

exceeds a predetermined threshold because further samples 

along the ray would be occluded. 

Stompel et al. [SML*03] provide an overview of various 

methods for sort-last compositing of the n subimages, and 

Cavin et al. [CMF05] analyze relative theoretical 

performance of these methods. These overviews show that 

compositing algorithms usually fall into one of the 

following categories: plain or optimized direct send, plain 

or optimized tree, and parallel pipeline. The direct send 

approach is easiest to understand; each process requests the 

subimages from all of those processes that have something 

to contribute to it [Hsu93, Neu94, MI97]. Since the 

possibility for network contention is high in direct send, the 

SLIC [SML*03] optimization attempts to schedule 

communication. For simplicity and a high degree of 

parallelism, we use the direct send compositing approach. 

Rather than sending compositing data monolithically, 

tree methods exchange data between pairs of processes, 

building larger completed subimages at each level of the 

compositing tree. To keep more processes busy at higher 

levels on the tree, Ma et al. introduced the binary swap 

optimization [MPHK94]. Lee et al. discuss a parallel 

pipeline compositing algorithm in [LRN96] for polygon 

rendering, although this seldom appears in the context of 

parallel volume rendering. 

We define the time that a frame takes to complete, tframe, 

as the time from the start of reading the time-step from disk 

to the time that the final image is ready at the root process. 

This frame time has three distinct components, and for a 

given data size, the relative contribution of each component 

to the total time depends on the number of processes. 

 

tframe = tio + trender + tcomposite (1) 

 

The I/O time, tio, is the length of time required by a 

collective reading of the time-step data file by all processes 

simultaneously. The rendering time, trender, is the time that it 

takes for all processes to complete their local subimage 

rendering. The compositing time, tcomposite, is the time to 

composite all subimages into a single image on a single 

process. The following section describes the 

implementation of each component in more detail.  

Before the execution of the first frame, a one-time 

initialization step allocates data structures and determines 

partitioning parameters; the time for this setup is on the 

order of tens of seconds and because it occurs only once, 

we omit it from the frame time. During the setup time, data 

cells are partitioned into block-shaped regions and 



allocated to processes. This static load balancing scheme 

implies that the uniform data distribution can cause an 

uneven rendering workload when the view matrix or 

transfer function changes the visibility of subvolumes, as 

shown by Marchesin et al. [MMD06]. This is not a problem 

in the compositing step, where all processes participate 

equally, irrespective of projection area. 

 

 

Blue Gene Architecture 

 

The Blue Gene/L and Blue Gene/P systems at Argonne 

National Laboratory provide ample opportunities to 

experiment with parallel rendering. This work began with 

2,048 cores of the BG/L system and, so far, has scaled to 

4,096 cores on the BG/P system. The current single rack of 

BG/P is for testing and development; but in the near future, 

Argonne’s BG/P system will contain 128K cores. In the 

interest of space, we highlight below just a small sample of 

relevant features but online documentation from IBM can 

be found at [IBM07]; the reader is directed there for 

specifications and configuration diagrams. For our 

purposes, the key differences between the older BG/L and 

the new BG/P are that BG/P provides twice as many cores 

per node, twice the memory footprint, approximately a 2X 

faster interconnect network, a 1.2X faster clock speed per 

core, and once completed, many times more available 

nodes and cores.  

Processor cores are grouped together into nodes; the 

BG/P has four cores per node. Within a node, the cores can 

operate together to execute one user process, in pairs for 

two processes, or independently for four user processes, 

depending on the selected mode. Each BG/P core is a 

PowerPC 450 850 MHz processor that contains two parallel 

floating-point units that can execute certain pairs of 

identical floating-point operations in parallel (SIMD 

vectorization). 

Application processes execute on top of a microkernel 

that provides basic OS services. The Blue Gene 

architecture has two separate interconnection networks – a 

3D torus for inter-process point-to-point communication 

and a tree network for collective operations as well as for 

communicating with I/O nodes. BG/P has one I/O node for 

every 64 compute nodes. At the front end, the machine has 

four login nodes that support full Linux functionality. 

 

3. Implementation 

 

I/O 

 

Our volume rendering application is written by using MPI 

for both communication and I/O and executes with one 

MPI process on each core. MPI-2 [GGH*96] (a.k.a. MPI-

IO) collective file read calls perform data staging, tio in 

equation 1, allowing each process to read its own portion of 

the volume in parallel with all of the other processes 

[YMW04, YM05]. This approach is more efficient than 

having a single master process read the entire dataset and 

distribute it to slave processes. More important, for large 

datasets it does not require a single process to be able to fit 

the entire dataset into its memory.  

For example, the largest dataset tested to date in this 

work consists of 864
3
 voxels, or approximately 2.5 GB per 

time-step. This is problematic for most workstations; even 

the BG/P has only 2 GB of memory per node. With 

collective I/O, however, the total memory footprint of the 

entire machine - not just of one node - is the upper bound 

on the maximum data size that can be processed in-core. 

This memory limit on the current single-rack BG/P is 2 TB, 

but will grow to 64 TB when the system is complete. 

Underlying the MPI-2 collective I/O interface is a 

parallel file system such as GPFS or PVFS  [CLRT00]. By 

striping data across multiple volumes controlled by a 

number of file servers, application programs can access 

noncontiguous regions of a file in parallel.  Performance 

varies depending on whether reads or writes are executed 

(reads in our case), on the number of I/O nodes being used, 

and on the size of the partition that each process reads. 

Because BG/P is a new system undergoing development, 

the parallel I/O system is untuned and I/O throughput is 

expected to increase dramatically in the future. In the 

meantime, the performance tests use both GPFS and PVFS, 

depending on which system is currently available. In 

performance tests, it is important to realize that a parallel 

file system is shared between all jobs and the login nodes. 

During timing measurements, we have taken care to restrict 

others’ file system usage and confirmed results over 

multiple trials. 

 

Rendering 

 

The computation of local subimages, trender in equation 1, 

is highly parallel and requires no interprocess 

communication. Its per-core performance is a function of 

the efficiency of the Blue Gene’s compute node: clock 

speed, pipeline architecture, cache coherence, and the 

extent to which the code is tuned to optimize these features. 

Compiler and code optimizations thus far have netted 2X 

performance gains in trender. 

We are currently evaluating low-level performance 

counters to gauge the use of BG/P’s dual floating-point 

pipeline, and estimate its use to be approximately 5%.  Our 

tests have shown a correlation between this value and the 

rendering time. However, even with appropriate directives 

and flags, the compiler still may not be able to vectorize 

floating point operations, especially when loops contain 

control flow or function calls.  

Profiling tools identify where the code spends the 

 

 
Figure 2: Direct send compositing divides both the 

object space and image space among processes. 
 



majority of time, and the IBM compiler reports the 

locations within that critical kernel where vectorization 

failed, along with reason for failure. To increase SIMD 

vectorization within loops, function calls can be replaced 

by inline functions or macros, and control flow can be 

replaced by data flow, but these substitutions can be non-

trivial in actual code. Tuning the rendering kernel 

specifically to the BG/P processor architecture is ongoing 

research. 

 

Compositing 

 

Compositing of parallel volume rendered subimages, 

tcomposite in equation 1, is implemented with direct send as 

follows. At the start of compositing, each of the n processes 

owns a completed subimage of its portion of the dataset. 

Next, each of the n processes is assigned responsibility for 

1/n of the final image area as well. For example, the final 

image can be divided into n scan lines or rectangles, 

without any spatial correspondence between the completed 

subimage from the rendering step and the region of the 

final image during the compositing step. 

For example, consider process P2 in the 9-process 2D 

example in Figure 2. The squares represent the 9 

subvolumes, and the line along the bottom represents the 

image divided into 9 regions. (The image need not be 

aligned with the subvolume axes.) Through a global data 

structure that all processes share, P2 knows that it must get 

the subimages from P6, P3, and P0. It composites the 

images in front-to-back order according to Equations 2 and 

3 to recursively compute color and opacity, 

 

i =   ( 1.0  –  aold) * inew + iold  (2) 

a = ( 1.0  –  aold) * anew + aold  (3) 

 

Where i represents the intensity (r,g,b) premultiplied by its 

associated alpha-value, and a represents the accumulated 

alpha-value or opacity.  

The last step is for processes P1 through P8 to send their 

final results to process P0, which tessellates them together 

into one image. The average communication complexity of 

tcomposite is O(n
4/3

 + n). The first term, n
4/3

, is because on 

average, n
1/3

 messages must be sent to each of n recipients 

in order for the n processes to composite their portion of 

the final image. The second term, n, represents the 

gathering of final subimages at the root process. 

 

Streaming and Prefetching 

 

When resulting images are streamed to a remote display 

device, rather than being stored on disk, the path requires 

several steps. The reason is that the Blue Gene connects to 

the outside world only through the front-end login nodes. 

Therefore, to send an image from one of the compute 

nodes, it first passes via a socket to the IP address of one of 

the login nodes. Physically, it actually travels from the 

compute node to the I/O node assigned to that compute 

node, and from the I/O node to the login node, but the 

connection between compute node and associated I/O node 

is transparent to the programmer. Finally, a daemon 

running on the login node forwards the data stream to the 

remote display via a separate socket connection. The 

connectivity is diagrammed in Figure 3. 

Prefetching of time-steps can hide the I/O time when the 

total number of cores available is sufficient. A multi-pipe 

application structure, as in Figure 4, is one way to 

accomplish this. Each of the four pipelines in this example 

functions independently to process four time steps in 

parallel. This is not the only way to prefetch data; however, 

it maps well to the BG/P architecture and to our goals of 

studying real-time, end-to-end visualization performance 

that mitigates I/O cost without ignoring it altogether from 

the equation. Results from this method will appear in a 

future paper. 

 

4. Performance Data 

 

In November 2007, real-time streaming of the volume 

rendering application from BG/L was demonstrated, 

generating and streaming a series of 200 time-steps 

repeatedly from Argonne in Chicago, Illinois, to the 

Supercomputing conference exhibit floor in Reno, Nevada. 

A single time-step is 103 MB; during the one-hour demo, 

approximately 500 GB of data were processed in real time. 

 

 
 

Figure 3: Connecting a compute node to a remote 

display is a multi-step process. 

 

 
 

Figure 4: Processing several time steps simultaneously 
can extend the degree of parallelism. 



The optimal setting for this data size was 512 cores.  

Figure 5 shows updated tests of the same dataset on 

BG/P, out to 4K processes. The plot shows a peak 

performance still at 512 cores of approximately 2 frames 

per second. Performance decreases slightly to 1.75 frames / 

s through 2048 cores, and drops below 1 frame / s at 4096 

cores. This is expected because the total file size divided by 

a large number of cores results in inefficient I/O and poor 

compositing behavior. In fact, at 4096 cores, 72% of the 

frame time is spent in I/O; compositing accounts for an 

additional 25% while the rendering portion is only 3%. In 

order to optimize performance, one may either allocate 

fewer cores or visualize a larger dataset. 

In the next test, the full 864
3
 dataset is scaled from 2 

cores up to 4096 cores, and the result appears in Figure 6. 

Strong scaling, while still not ideal, improves using this 2.5 

GB per time-step data. The full BG/P rack of 4096 cores 

produces a frame time of approximately 3.5 seconds. I/O 

performance still dominates: at 4096 cores the breakdown 

of time is tio = 77%, trender =  10% rendering, and tcomposite = 

13%. However, because the file size is larger, I/O is more 

efficient at this scale and 4096 cores provides the best 

overall frame rate. 

Figures 5 and 6 appear quite similar in shape up to 2048 

cores. For example, the slope of the curve from 256 cores 

to 512 is steeper than from 128 to 256 cores and 512 cores 

outperforms 1024 cores in both figures as well. We are 

currently investigating cache usage as well as I/O and 

communication patterns in order to explain the similarities 

in scalability for two different data sizes. 

BG/P is capable of executing one, two, or four processes 

per node. In IBM terminology, these are called smp mode, 

dual mode, vn mode, respectively. In smp mode, one core 

performs computation while the other cores idle, with the 

exception of low-level OS tasks. The total memory 

footprint of 2GB per node is shared among the four cores in 

smp mode.  

Our tests show approximately 20 - 30% slower 

performance in dual and vn modes compared to smp mode. 

The largest increase is in tio, because the number of I/O 

nodes assigned to a job is a fraction of the number of 

compute nodes, not compute cores. On the BG/P, this 

number is 64 compute nodes to 1 I/O node. Using more 

compute nodes allocates more I/O nodes available for tio. 

Therefore, in these tests smp mode is used through 1024 

cores; dual mode is used for 2048 cores (since the total 

number of nodes is 1024) and only 4096 cores employ vn 

mode. 

Figure 7 compares the contribution to tframe of each of tio, 

trender, and tcomposite for the same 864
3
 dataset. At smaller 

numbers of processes, rendering time dominates the frame 

time, but I/O cost dominates at 1024 processes and beyond. 

 
 
Figure 6: Total frame rate of BG/P on the full 864

3
 dataset 

is plotted on a logarithmic scale. 

 
 

Figure 5: Total frame rate of BG/P on the 300
3
 

downsampled dataset is plotted on a logarithmic  scale. 

 

 

Figure 7: Relative contribution to tframe of each of tio, 

trender,  and tcomposite  is shown. 

 
 

Figure 8: Efficiency of tio, trender, and tframe is plotted as a 

function of the number of processors. 

 



This result underlines the need to further optimize parallel 

I/O operation on BG/P. Compositing time is still a 

relatively small fraction of the total time, reaching a 

maximum of 14% and usually less than 10%. However, 

Figure 7 clearly shows its relative contribution steadily 

increasing, and surpassing rendering time by 4096 cores. 

Hence, compositing time cannot be ignored indefinitely, 

especially if one expects to scale to tens of thousands of 

processes. Note that because Figure 7 displays relative 

percentages, features in one curve may be the result of 

another. For example, the dip in compositing contribution 

at 1024 cores is caused by an increase in I/O cost, not by a 

decrease in compositing itself. 

Even when the parallel file system is optimized on BG/P, 

some configurations may be more efficient than others. For 

example, all of the curves in Figures 5-8 show an increase 

in both I/O and rendering performance at 512 cores. These 

may be functions of the underlying storage, computation, 

and communication architecture – things that we cannot 

change. However, a better understanding of the hardware 

may enable improved performance of visualization 

applications. 

The ratio of speedup to the scaled increase in core count 

defines efficiency. Figure 8 shows efficiency of tio, trender, 

and tframe. Compositing efficiency is not shown separately 

because compositing is a communication-bound operation. 

In an ideal setting, efficiency would remain near 100%: 

using n times as many processes should result in 

approximately n times the frame rate. Figure 8 tells quite a 

different story, and exposes the realities of both 

architecture and algorithm. 

The upper curve, rendering efficiency, drops quickly but 

then remains at 30 – 60% throughout the experiment. Load 

imbalance between processes causes the drop from 100% to 

60% between 2 and 16 cores. This is due to the static load 

distribution scheme that divides the dataset into uniform 

subvolumes irrespective of the actual rendering work to be 

done in each subvolume. For example, in this scheme it is 

possible for some subvolumes to have no data. Beyond 

that, the other poor performing locations are at 256, 1024, 

and 2048 cores. We hypothesize that cache coherence is 

worse at these configurations because of combinations of 

data size and cache size and we will be testing this further. 

The lower curve, I/O efficiency, decreases rapidly early on, 

and then slowly degrades further. Overall, I/O does not 

scale well yet on BG/P; at 4096 cores it is 6% compared to 

2 cores. We expect this to improve in the near future. The 

middle curve is the efficiency of the total time, tframe, and is 

principally an average of upper and lower curves. 

The complete performance data for the 864
3
 dataset and 

1600
2
 image appears in Table 1. These data include all 

three phases of the pipeline: I/O, rendering, and 

compositing. Sometimes, the I/O cost can be amortized 

over many frames, effectively hiding it. This is the case, for 

example, when multiple views of a single file or time step 

are visualized. We hope to similarly hide the I/O cost 

through prefetching multiple time steps of time-varying 

data in the future. Table 2 shows theoretical frame time 

assuming I/O cost can be completely hidden in this way. 

 

5. Conclusions 

 

We implemented a parallel ray-casting direct volume 

rendering algorithm on the IBM Blue Gene/P and tested 

performance over a large number of cores. In order to 

assess the viability of this architecture for large scale 

visualization, we intentionally chose to measure end-to-end 

frame time that includes not only classical visualization 

components such as rendering and compositing, but I/O 

time as well.  

Our tests show that the Blue Gene architecture can be an 

appropriate platform for high-quality software visualization 

of large data. Its salient features with respect to this 

application are large numbers of tightly connected cores, a 

flexible programming model (MPI), a high-bandwidth 

connection to the parallel I/O system (MPI-IO and PVFS), 

and the ability to connect via sockets to remote displays. 

Software rendering cannot produce better performance than 

graphics clusters for small to medium-sized problems; but 

if current trends in data size [Mou04, JR07] continue, 

software volume rendering on massively parallel 

supercomputers may become a viable method in the future.  

We believe that this approach will prove useful for data 

sizes of several gigavoxels in conjunction with image sizes 

Table 1: Performance data for 864
3
 dataset, 1600

2
 

image 

 

# 

Procs 

tframe 

(s) 

tio % 

of 
tframe 

trender 

% of 
tframe 

tcomposite 

% of 
tframe 

tframe % 

effcncy. 

2 453.83 11.3 88.6 0.1 100.0 

4 243.22 13.7 86.2 0.1 93.3 

8 125.94 14.7 85.1 0.2 90.1 

16 103.20 18.9 80.9 0.3 55.0 

32 56.13 30.1 69.5 0.4 50.5 

64 28.21 30.1 69.2 0.8 50.3 

128 21.03 43.5 55.5 1.0 33.7 

256 12.96 41.4 57.0 1.6 27.4 

512 4.30 37.4 57.7 4.7 41.2 

1024 5.01 54.3 41.3 4.4 17.7 

2048 4.80 68.3 26.0 5.6 9.2 

4096 3.41 77.4 9.4 13.2 6.5 

Table 2: Theoretical visualization performance 

assuming I/O costs are entirely hidden 

 

# 

Procs 

trender  

(s) 

tcomposite 

(s) 

vis. time = 

trender + 
tcomposite (s) 

vis. 

efficiency 

2 401.94 0.4 402.34 100.00 

4 209.56 0.32 209.88 95.85 

8 107.15 0.3 107.45 93.61 

16 83.47 0.27 83.74 60.06 

32 39.01 0.24 39.25 64.07 

64 19.51 0.22 19.73 63.73 

128 11.67 0.21 11.88 52.92 

256 7.39 0.21 7.60 41.36 

512 2.48 0.2 2.68 58.64 

1024 2.07 0.22 2.29 34.32 

2048 1.25 0.27 1.52 25.85 

4096 0.32 0.45 0.77 25.51 



of several megapixels. The method is also promising for in 

situ visualization [TYR*06], or in general when a very 

large dataset resides on the system already. As data sizes 

increase, transporting data between machines becomes 

nontrivial. 

The relative cost of the three phases of the algorithm 

changes with the number of processes, although ultimately 

the application is I/O bound. Trade-offs exists between 

applying the correct number of cores to optimize I/O,  

rendering, and compositing, because these components of 

the total time trend in opposite directions and have various 

“sweet spots.” It is unlikely that this method alone can 

effectively produce highly interactive performance, for 

example, 30 frames per second. More likely, its niche will 

be for very large data sets that cannot be accommodated by 

graphics clusters and can produce frame times on the order 

of a few seconds for such data. 

Nonetheless, there is room for improvement. The parallel 

I/O system on BG/P will improve considerably over time – 

we know that it is not performing near capacity and work is 

ongoing in that regard. More sophisticated load-balancing 

techniques can improve the rendering efficiency, together 

with closer attention to cache and dual floating point 

pipeline usage. Compositing needs to be written with the 

communication backbone of the BG/P in mind. 

When fully completed, BG/P will offer over one hundred 

thousand cores. This capacity can be leveraged by 

visualizing several frames through a multi-pipeline layout. 

Additional cores can also improve the quality of the 

rendering, for example to enable lighting and shading 

calculations. In the performance results, lighting was 

disabled; but Figure 1 shows that very high quality images 

can result through the addition of lighting. 

 

6. Future Work 

 

Our next tests will focus on scaling data size to gigavoxels 

and image size to megapixels and on improving image 

quality through lighting and shading. With 4 cores per 

node, BG/P offers the opportunity to experiment with 

multi-threading within an MPI process. This hybrid 

programming model may enable more efficient scaling, 

especially since the four cores share 2 GB of memory.  This 

new level of parallelism can be exploited by modifying the  

rendering algorithm. We also are experimenting with tree-

based compositing as a replacement for direct send. This 

may include binary swap [MPHK94] as a way to balance 

the number of messages with the size of a message and to 

keep more processes busy during the late stages of 

compositing. 

We also plan to study how this research can be extended 

to encompass adaptive mesh refined (AMR) time-varying 

datasets [Ma99, WHH*01]. Varying levels of spatial 

resolution encoded in AMR data provide a compromise 

between the rigidity of completely structured data and the 

randomness of entirely unstructured data.  

Another goal is to collate the performance data into a 

coherent model for predicting future performance. An open 

question is: what input criteria, such as processor speed, 

data size, number of processes, network bandwidth, 

memory bandwidth, and aggregate I/O throughput should 

be included in such a model. The result should be a 

relatively simple-to-use module that can analyze a parallel 

volume rendering problem and suggest an optimal 

configuration and predict its performance. 

One of our long-term goals is to study how a 

supercomputer architecture can be used to support 

interactive rendering. The research so far has not included 

any elements of interactivity and performance data reveals 

that reaching interactive rates is difficult because of the 

tradeoffs between tio, trender, and tcomposite. The next steps 

toward interactive rates may include LOD rendering as well 

as local view interpolation at the display machine(s). The 

ideal configuration may be the supercomputer and the 

graphics machine(s) sharing responsibilities in a client-

server architecture.  
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