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Abstract
Geodesic grids are commonly used to model the surface of a sphere and are widely applied in numerical simu-
lations of geoscience applications. These applications range from biodiversity, to climate change and to ocean
circulation. Direct volume rendering of scalar fields defined on a geodesic grid facilitates scientists in visually
understanding their large scale data. Previous solutions requiring to first transform the geodesic grid into another
grid structure (e.g., hexahedral or tetrahedral grid) for using graphics hardware are not acceptable for large
data, because such approaches incur significant computing and storage overhead. In this paper, we present a new
method for efficient ray casting of geodesic girds by leveraging the power of Graphics Processing Units (GPUs).
A geodesic grid can be directly fetched from storage or streamed from simulations to the rendering stage with-
out the need of any intermediate grid transformation. We have designed and implemented a new analytic scheme
to efficiently perform value interpolation for ray integration and gradient calculations for lighting. This scheme
offers a more cost-effective rendering solution over the existing direct rendering approach. We demonstrate the
effectiveness of our rendering solution using real-world geoscience data.

1 Introduction

Climatological and environmental studies are critical for un-
derstanding and predicting important natural phenomena,
such as glacier shrinking and sea-level rising. Climate re-
search has been internationally recognized as one of the
most crucial missions with the largest investment for com-
putational and mathematical analysis. For example, the U.S.
Department of Energy aims to enable exascale computing
capabilities to model climate at a resolution of roughly 10
meters over the entire Earth [Lev10]. By leveraging the un-
precedented power of supercomputer, scientists can simulate
the highest-resolution climate/Earth system models, leading
to more reliable numerical weather prediction.

1.1 Spherical Geodesic Grids

Geodesic grids, first introduced by Williamson [Wil68] and
Sadourny et al. [SAM68] for meteorological applications in
1968, have been rediscovered widely to model the Earth’s
surface for various applications of climate modeling in the
recent years [RRH∗02, AC07, WWF09, CBX12]. The ad-
vantage of geodesic grids is particularly evident by their
suitability for large-scale numerical simulations [MLP∗02,
MUS07]. The isotropic structure of geodesic grids can com-
pletely avoid the well-known Pole problem and the expen-

sive filtering operations present in conventional latitude-
longitude grids (e.g., curvilinear hexahedral grids for spher-
ical shells). The hexagonal-triangular duality of geodesic
grids allows scientists to design discrete operators and up-
grade scales to higher resolutions in a more flexible manner.
In addition, the data structure of geodesic grids is extremely
well suited for scientists to parallelize numerical solvers and
achieve high efficiency on large distributed memory parallel
computers.

The construction of a geodesic grid typically begins with
an icosahedron inside a sphere, as shown in Figure 1 (a1).
We can then subdivide the icosahedron to generate the re-
fined grid by iteratively applying a bisection operation on the
triangles [RRH∗02], as shown in Figure 1 (a2) and (a3). This
subdivision process can be repeated until the desired resolu-
tion is obtained. Each grid point has 6 nearest neighbors, ex-
cept for the original 12 icosahedral points where each point
only has 5 neighbors. These 12 special points are referred to
as pentagonal points. The triangles define a Delaunay grid,
and we can further join the centroids of neighboring triangles
to construct Voronoi polygons. As shown in Figure 1 (b), the
dashed lines represent the Delaunay triangles, and the solid
lines represent the Voronoi polygons. The Voronoi polygons
are pentagons with respect to the pentagonal points, and are
hexagons with respect to the other points. For a triangular
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Figure 1: (a1-a3): The first iteration of subdivision to con-
struct a geodesic grid. (a1) shows the initial icosahedron
with 12 vertices, 30 edges, and 20 equal spherical triangles.
(a2) shows that each triangle is subdivided through bisec-
tion. (a3) shows the new vertices are popped out onto the
sphere. (b) shows the duality of Voronoi polygon and Delau-
nay triangulation. (c) shows the structure of a 3D spherical
geodesic grid.

grid, each grid cell has some neighbors across the cell walls
(referred to as wall neighbors) whereas others across the
cell vertices (referred to as vertex neighbors). The different
types of neighbors incur unavoidable asymmetries for the
finite-difference operators on triangular grids. Fortunately,
for the grid constructed from Voronoi polygons, each cell’s
neighbors are all wall neighbors, thus allowing the finite-
difference operators to treat all neighboring cells in the same
way and become as symmetrical and isotropic as possible.
Therefore, a geodesic grid defined on a spherical surface is
composed of Voronoi polygons, which contains the informa-
tion of each polygon’s vertices, edges, and center point. The
data values are stored at the center points of polygonal cells.
To model ocean or atmosphere in 3D, the spherical polygon
mesh is scaled and duplicated to construct a set of spherical
layers perpendicular to the Earth’s surface, and each layer
corresponds to a different distance value to the Earth’s sur-
face, as shown in Figure 1 (c).

1.2 Visualization of Geodesic Grid Data

Visualization has proven to be an effective tool to help scien-
tists study their large and complex data. Although a variety
of sophisticated visualization algorithms have been designed
for structured and unstructured grids, comprehensive work
on visualization of geodesic grids is surprisingly less dis-
cussed in the literature, possibly due to the relatively short
history of large-scale applications of this grid type in prac-
tice. With the fast growth of geodesic grid applications, new
techniques and tools are highly desirable to enable effective

analysis and visualization of high-resolution data generated
from large climate simulations.

However, visualization of large geodesic grid data im-
poses some unique challenges. First, the data structure of
geodesic grids is constructed using a recursive refinement
procedure on a spherical surface, which presents very dif-
ferent geometry properties from other existing unstructured
grids. Therefore, it is usually not applicable to use conven-
tional tools to visualize geodesic grid data directly without
any remeshing operations. Second, even though it is possible
to transform geodesic grids into more generally supported
grids, such as tetrahedral grids, for visualization, this ap-
proach often incurs significant computing and storage over-
head, and becomes infeasible to process large data from cur-
rent tera/petascale and future exascale simulations.

We introduce a viable solution to generate high-quality
visualization of geodesic grid data in full extent at interac-
tive rates. This is achieved by minimizing the data movement
and preprocessing before carrying out visualization opera-
tion. Our solution has the potential to support in-situ visu-
alization with simulations on geodesic grids. It will enable
scientists to monitor simulations and possibly capture impor-
tant features during the simulation runs. Moreover, exascale
computers are expected to be mostly heterogeneous systems
with specialized processors, deep memory hierarchies, and
high levels of concurrency [SDM10]. We also need to con-
sider the easy applicability of our solution to such platforms.

To the best of our knowledge, we present the first design
and implementation of interactive ray casting of geodesic
grid volume data with almost no overhead. Our work makes
the following contributions:

• By carefully studying the properties of geodesic grids,
we present a novel scheme to march rays in an efficient
way without reconstructing full connectivity information
in 3D, and thus avoid memory and computing overheads.

• We derive an analytic solution for the interpolation of
scalar values along a ray within a geodesic grid cell, and
achieve high quality rendering with adaptive sampling.

• We represent geodesic grids in GPU memory in a form
that best matches the original storage format and mini-
mize the data transformation overhead.

We evaluate our approach with two data sets of real-world
climate simulations. Our approach can generate high-quality
visualization of full resolution geodesic grid data, and al-
low scientists to navigate in great details at an interactive
or nearly interactive rate. Moreover, our approach directly
takes original data as input, allowing for sharing data struc-
tures with simulations and performing visualization during
simulation time on supercomputers.

2 Related Work

Volume rendering of unstructured grids are commonly based
on either cell-projection or ray-casting. Shirley et al. [ST90]
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introduced one of the first cell-projection algorithms, Pro-
jected Tetrahedra, in 1990. Since it needs visibility order-
ing of the cells, this algorithm can be very expensive for a
large amount of cells. A set of optimization techniques have
been developed to accelerate sorting [Wil92,SBM94,KE01]
or avoid sorting [WKME03b].

Ray-casting is another popular method for rendering un-
structured grids [Gar90]. It can avoid the costly visibility
sorting; however, the mesh connectivity information is usu-
ally needed for mesh traversal. Various approaches have
been presented to accelerate ray-casting of tetrahedral grids
using graphics hardware [WKME03a,WMKE04,MRB∗08],
with a particular focus on the representations of connectivity
information for memory efficiency.

Cell-projection and ray-casting methods have been ex-
tended to render more general polyhedral grids. For exam-
ple, Bennett et al. [BCM∗01] presented a parallel implemen-
tation of cell-projection for meshes with arbitrary polyhe-
dra. Muigg et al. [MHDH07] presented a hybrid scheme for
rendering unstructured grids based on importance classifi-
cation. Muigg et al. [MHDG11] further introduced a new
unstructured-grid representation which can minimize redun-
dant connectivity information and improve grid traversal
performance in graphics hardware.

Great efforts have been made to generate high-quality vol-
ume rendering of unstructured grids. Max et al. [MHC90]
showed that with barycentric interpolation for signal recon-
struction inside a tetrahedron, integration using sampling
at the cell faces can generate the exact rendering results.
Röttger et al. [RKE00] applied this idea to Projected Tetra-
hedra, and developed the pre-integrated volume rendering
method to render isosurfaces using 3D texture hardware.
Röttger et al. [RE02] further enhanced the pre-integration
technique using 2D texture hardware and increased the per-
formance of volume rendering. Moreland et al. [MA04]
presented partial pre-integration to approximate the vol-
ume rendering integral with computational feasibility for
tetrahedral grids. Lum et al. [LWM04] improved the pre-
integration technique by speeding up lookup table genera-
tion and minimizing lighting artifacts. However, Marchesin
et al. [MdV09] showed that pre-integration is less suitable
for volume rendering of AMR data with hexahedral cells.
They derived an analytical function for signal reconstruc-
tion inside a hexahedron, and used the gradient of the func-
tion for shading. Apart from rectilinear grids, Finkbeiner et
al. [FEVM10] demonstrated interactive volume rendering on
the body centered cubic lattice using box splines.

3 Ray-casting Framework

Although visualization of general tetrahedral grids and poly-
hedral grids are well covered in the literature, there is a lack
of comprehensive visualization work on geodesic grids. A
simple approach to visualizing geodesic grids is to first de-
compose a cell into a set of tetrahedrons, and then to ren-
der the tetrahedral grids using conventional tools as the ones

discussed in Section 2. However, this simple approach often
incurs significant computing and storage overhead for large
data. While it is also possible to treat geodesic grids as poly-
hedral grids, this scheme either requires visibility ordering
of all cells or constructing 3D connectivity information for
mesh traversal, and requires considerable overhead as well.
Alternatively, our approach directly takes geodesic grids as
input, performs mesh traversal without constructing full 3D
connectivity information, and thus can significantly reduce
memory footprint and improve computing efficiency. Simi-
lar to Marchesin et al. [MdV09], we also develop an analytic
solution to compute ray integral within grid cells and gener-
ate high-quality rendering of geodesic grid data.

3.1 Grid Representation

A viable grid representation is essential for efficient mesh
traversal. A typical representation organizes mesh connec-
tivity information with a focus on memory efficiency, which
is the key for the overall ray-casting performance. For a gen-
eral geodesic grid data set, because each layer has the same
Voronoi polygonal mesh structure as the outer spherical sur-
face, scientists only save the 2D connectivity information of
the outer surface in data. Intuitively, we can simply construct
the 3D cells of hexagonal or pentagonal frustum by con-
necting the corresponding vertices on every two neighboring
spherical layers. However, this approach needs considerable
computing and memory consumption.

Our design is based on two important properties of
geodesic grids. First, a geodesic grid has the duality of
Voronoi-Delaunay, and data values are stored at the cen-
ter points of hexagonal or pentagonal cells, as discussed in
Section 1.1. To compute the data value at any other spa-
tial location, first we need to identify the triangular frustum
that contains the location, and use interpolation to compute
the needed value according to the values stored at the frus-
tum vertices. We observe that although triangular grid con-
nectivity information is not directly provided, the Voronoi-
Delaunay duality allows us to construct and identify trian-
gular frusta from the Voronoi polygonal grids without ex-
plicitly reconstructing the full triangular grids. Second, a
geodesic grid is also radially symmetric. This means if the
side edges of an arbitrary frustum cell are extended along
the direction of radius, they all converge on the sphere cen-
ter. Given this property, we can implicitly construct an inter-
mediate 3D frustum cell during mesh traversal according to
the 2D mesh structure of the outer surface and the distance
values of layers.

Given these two properties, we represent a 2D Voronoi
polygonal grid into six tables. In our representation, a polyg-
onal cell is named a cell, a vertex of a cell is named a corner,
the center of a cell is called a center, and a wall of a cell is
called an edge.

• center table: Each entry of the table contains the longi-
tude and latitude values of a cell center.

c© 2013 The Author(s)
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Figure 2: (a): The cell_corner, corner_edge, corner_cell,
and edge_corner tables used to represent a 2D Voronoi
polygonal grid of climate simulations. (b): The representa-
tion of dual triangular mesh of (a). We note that the names
of tables and table entries are modified for an illustration
purpose in (b), and they are not changed in the real imple-
mentation. Thus, from (a) to (b), the content of the four tables
keeps intact, which implies that no explicit grid transforma-
tion is required.

• corner table: Each entry of the table contains the longi-
tude and latitude values of a corner.
• cell_corner table: Each entry of the table contains six in-

dices of cell corners in the corner table with respect to a
cell. If two indices share a same value, this entry indicates
a pentagonal cell.
• corner_cell table: Each entry of the table contains three

indices of the cells in the cell_corner table with respect
to a corner, and these three cells share the corner.
• edge_corner table: Each entry of the table contains two

indices of the corners in the corner_cell table with respect
to an edge, and these two corners share the edge.
• corner_edge table: Each entry of the table contains three

indices of the edges in the edge_corner table with respect
to a corner, and these three edges share the corner.

Figure 2 (a) illustrates the tables of several cells. This
simple representation matches the storage pattern of raw
geodesic grid data [RRH∗02, PKS∗11], and thus facilitates
fetching and organizing a geodesic grid into GPU memory
with minimal computing, memory and implementation over-
head. With this representation, we can implicitly obtain the
dual Delaunay triangulation to meet the data interpolation
requirement and perform ray traversal in an efficient and ef-
fective manner. First, as shown in Figure 2 (b), we note that
each triangle is uniquely identified by a hexagonal cell cor-
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Figure 3: Grid traversal. (a) Side View. The yellow, green,
and red frusta are constructed on the fly with marching the
ray through the grid. The intersection of the ray and a tem-
porary frustum is used to identify the next neighboring tri-
angle on the spherical surface. (b) Perspective View. The red
dashed curve is the projection of the ray on the spherical
surface. The triangles4i and4 j are identified based on the
surface connectivity information, and are used to construct
the corresponding frustum at the different layers.

ner, which means the ith hexagonal cell corner uniquely cor-
responds to the ith triangle. Second, each triangle’s vertices
are uniquely identified by the centers of three neighboring
hexagonal cells, and these three cells share the corner iden-
tifying the triangle. For example, the three indices in cor-
ner_cell[i] entry can be treated as three vertex indices of the
ith triangle. Third, querying corner_edge[i] gives the three
edge indices of the ith triangle. Then from these three edge
indices, we can quickly identify the neighboring triangles by
querying the edge_corner table.

3.2 Grid Traversal

Algorithm 1 illustrates the overall framework of traversing
the grid and performing ray integration frustum by frustum.
As shown in Figure 3 (a), given a ray r, we first find its first
intersection point, p1, with the grid. We use the conventional
image-based technique [WKME03a] to find the first inter-
sected triangle4i on the spherical surface. The correspond-
ing implementation will be described in Section 3.6. Then
by taking advantage of the radially symmetric property, we
can easily construct a 3D triangular frustum on the fly, as the
yellow frustum c1 shown in Figure 3 (a). Next we compute
the intersection point using the function RayIntersectFace
that is a trivial ray-triangle intersection test. We assume that
the intersection point is p2, where the ray leaves the frustum
c1, on the bottom face of c1. In this case, the ray will en-
ter into the green frustum c2 in the next layer, and c2 is still
constructed on the fly based on the triangle 4i. We com-
pute the next intersection point p3, and assume p3 is on a
side face f1 of c2. We note that a side face of any frustum
uniquely corresponds to an edge of the triangle that is used
to construct this frustum. We assume that in this case, f1
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corresponds to the edge e j of the triangle 4i, as shown in
Figure 3 (b). Then, by querying the edge_corner table, we
can quickly find the neighboring triangle 4 j on the spheri-
cal surface, and construct the next frustum c3, as the red one
shown in Figure 3. Algorithm 2 provides the detailed process
for finding the next neighboring triangle.

We repeat this traversal process until the ray leaves the
domain. We note that this process only uses the 2D connec-
tivity information on the outer spherical surface, and only
construct the 3D triangular frustum intersected with a ray
on the fly. Each ray corresponds to a projected curve on the
spherical surface, as the red dashed curve shown in Figure 3
(b). A temporary frustum is essentially used to find the in-
tersection edges of surface triangles with the projected ray
on the spherical surface, thus enabling grid traversal without
explicit 3D connectivity information.

Algorithm 1 Ray-casting geodesic grids
1: for each pixel on the projected visible surface parallel

do
2: Spawn a ray r from the camera
3: Obtain the current triangle index4 hit by r
4: Initialize the current layer index l as the outer layer

index 0
5: Initialize r’s exit face f on c as a dummy value −1
6: λmin =∞, λmax =−1
7: while r is within the domain of the grid do
8: Construct a frustum c according to4 and l
9: for each face j of c do

10: // loop through all face of the frustum
11: λ = RayIntersectFace(r,c, j, l)
12: if λmin > λ then
13: λmin = λ

14: end if
15: if λmax < λ then
16: λmax = λ, f = j
17: end if
18: end for
19: VolumeIntegration(λmin,λmax,c)
20: NextTriangle(c, f , l,4)
21: end while
22: end for

3.3 Interpolation

The geodesic grid in our study is composed of polygonal
cells, and the scalar values are cell centered. The signal re-
construction for such grids can be handled using conven-
tional piecewise-constant sampling techniques. However, if
smoothed results are preferred, the scalar value at any spa-
tial location inside a cell can be interpolated with the vertex-
centered data [MHDG11]. In our study, given the Voronoi-
Delaunay duality, we have the dual Delaunay triangulation
where the scalar values are defined on the dual grid vertices.

Algorithm 2 NextTriangle( f rustum,exitFaceID,curLayerID,
curTriangleID)

1: maxLayerID = the maximum number of layers in the
grid

2: if exitFaceID is the bottom face of f rustum then
3: if curLayerID≥ maxLayerID then
4: // hit the deepest layer
5: terminate the traversal of the current ray
6: else
7: curLayerID+=1
8: end if
9: else if exitFaceID is the top face of f rustum then

10: if curLayerID≤ 0 then
11: // hit the outer layer
12: terminate the traversal of the current ray
13: else
14: curLayerID-=1
15: end if
16: else
17: // Ray hits a side face
18: Find the edge index edgeID according to exitFaceID

in f rustum
19: if curTriangleID 6= edge_corner[edgeID][0] then
20: curTriangleID = edge_corner[edgeID][0]
21: else
22: curTriangleID = edge_corner[edgeID][1]
23: end if
24: end if

Therefore, the scalar and gradient values can be computed
within triangular frustum cells.

We use barycentric interpolation for computing scalar val-
ues within a frustum as shown in Figure 4. Let the point
s = (x,y,z) be the sample point whose scalar value needs to
be interpolated. In the frustum containing s, we denote the
vertices of top spherical triangle by A, B, C, and the ver-
tices of bottom spherical triangle by D, E, F. Given the ra-
dially symmetric property of geodesic grids, we generate an
interpolation ray shooting from the sphere center o through
s. This interpolation ray intersects with the top and bottom
triangles at the points r1 and r2, respectively.

In the first step, we use barycentric interpolation to com-
pute the scalar value at r1 on the top triangle 4ABC. It is
trivial to compute the barycentric coordinates (1−u−v,u,v)
of r1 in terms of the top triangle vertices. The radially sym-
metric property implies that the barycentric coordinates of
r2 on the bottom triangles4DEF has exactly the same val-
ues as that of r1. Therefore, the location and scalar values of
r1 and r2 can be expressed by the location and scalar values
of the triangle vertices using barycentric coordinates.

In the next step, we linear interpolate the scalar value of
the sampling point s along the line segment r1r2. We can
express the scalar value sv of s in terms of (x,y,z) as:
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Figure 4: Barycentric interpolation of the scalar value
within a triangular frustum. We first interpolate the scalar
values at the points r1 and r2 on the top and bottom trian-
gles, respectively, and then use linear interpolation to com-
pute the scalar value at the point s on the line segment r1r2.
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Figure 5: The plot of a reconstructed scalar value using our
analytic function. (a) The analytic function is shown in blue,
and has one local minimum. The cell along a ray is split into
two intervals colored in light orange and green. The analytic
function is monotonic within each interval, and its piecewise
linear approximation is shown in black. (b) A transfer func-
tion is shown in red, and introduces an additional local ex-
tremum point. The cell is further split into three monotonic
intervals accordingly.

sv=
a4x2 +a5y2 +a6z2 + y(a7 +a8z)+ x(a9 +a10y+a11z)

a1x−a2y+a3z
(1)

where ai, i∈ {1, ...,11} are the coefficients depending on the
coordinates of the six vertices of current frustum and their
scalar values. In addition, if we denote the eye position by e
and the viewing ray direction by d, then the point s can be
expressed as:

s = e+d∗λ (2)

Substitute (x,y,z) in Equation 1 using Equation 2:

sv = (b3 +b2λ+b1λ
2)/(b5 +b4λ) (3)

where bi, i ∈ {1, ...,5} are the coefficients that depend on
the coordinates and the scalar values of the neighborhood
vertices. This concludes our analytic interpolation scheme.

3.4 Sampling and Integration

A conventional way to compute ray integration is by sam-
pling over a viewing ray with certain step sizes. Usually

a homogeneous sampling can miss small structures within
a high frequency scalar field. An alternative solution is to
build a pre-integration table to capture possible small fea-
tures. However, given the number of scalar values and the
degrees of our analytic function in Equation 3, it is infeasi-
ble to build a pre-integration table to cover the entire interval
of large data. Similar to Marchesin et al. [MdV09], we de-
velop a scheme for the integration of a reconstructed scalar
value. For our geodesic grid rendering, the scalar function
might have several local extremums depending on the spe-
cific value of bi. Let’s take one extremum for instance, as
shown in Figure 5 (a). We can split a ray within a frustum
by the ray entry point, local minimum point, and the ray
exit point, to obtain a set of monotonic intervals. For each
interval, we use piecewise linear approximation for integra-
tion [MdV09]. In this way we can cover the entire interval
of scalar value and capture all small structures. In addition,
more extreme points may be presented over a ray if we take
the transfer function into consideration, as shown in Figure 5
(b). In this case, we still can capture fine features by further
splitting a ray at the additional extreme points, and apply the
same scheme to generate high-quality volume rendering.

3.5 Gradient Estimation

We can possibly compute the gradient at a sampling point
by taking the partial derivative of Equation 1 in terms of x,
y and z, and obtain the gradient expression ( ∂sv

∂x ,
∂sv
∂y ,

∂sv
∂z ).

However, we note that if the gradient estimation only relies
on the six vertices of a frustum, the gradient values are not
necessarily continuous at the frustum boundaries.

To smooth the gradients across frusta, a common strategy
is to use the information of the neighboring frusta [CHM11].
We use a similar strategy in our study. Because each vertex is
shared by twelve frusta (except for the outer most and inner
most surface points and pentagonal points), any given vertex
must have twelve different gradient values with respect to
the frusta incident to this vertex. First, the twelve gradients
are evaluated independently using our derived analytic gra-
dient estimation within each neighboring frustum. Second,
the average of these twelve gradients is assigned to the given
vertex. After obtaining the averaged gradients for all vertices
of a frustum, we then use them to interpolate the gradient at
any sampling point along the ray within the frustum. In this
way we can significantly improve the shading effect and en-
hance the perception of shape and depth.

3.6 Implementation

We have implemented our ray-casting method on the GPU
using OpenGL and CUDA. Given any view angle, we first
render the visible surface. Thanks to our data representa-
tion being well suited to the duality of Voronoi-Delaunay,
we can render the triangular visible surface using GLSL di-
rectly from the original Voronoi polygonal grid, as described
in Section 3.2. In the fragment shader, we encode cell indices

c© 2013 The Author(s)
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Low res. GCRM High res. GCRM
resolution 220km 28km
# cells 10242 655362
# corners 20480 1310720
# edges 30720 1966080
# layers 61 99

Table 1: The GCRM data sets for performance testing in our
study. Both data sets contain multiple variables including
vorticity, temperature, heat flux, rain water tendency, etc.

variable 1 CPU core 1 GPU 2 GPUs
heat flux 37.199s 0.494s 0.272s

temperature 45.591s 0.783s 0.468s
rain water tendency 56.247s 0.755s 0.384s

vorticity 59.397s 0.689s 0.460s

Table 2: Performance (in second) comparison for render-
ing one frame. The grid has 655362 cells and 99 layers. The
image resolution is 512×512. We choose to render four dif-
ferent variables.

into the fragment color values. With this image-based tech-
nique, we can easily identify the outer triangle from which
each viewing ray enters into the grid.

We then map each ray to a CUDA thread to perform grid
traversal in parallel. The tables of grid representation are or-
ganized in CUDA global memory in the same way as the
one shown in Figure 2. Each ray starts from the entry tri-
angle whose index is obtained from the fragment of visible
surface. We construct the frusta on the fly according to the
triangle indices and the current layer index. In each frustum,
we analytically compute scalar values, estimate the gradient,
and perform ray integration. In addition, we also compute
the ray exit point to construct the next frustum for the ray to
enter, until the ray leaves the domain.

Our implementation is attractive in that the kernel of our
parallel volume rendering CUDA source code can be shared,
built and executed on both CPUs and GPUs, thus reducing
implementation overhead. Specifically, we exploit the sim-
ilarity between C/C++ code and CUDA code, and put the
volume rendering core in a header file shared by both CPU
and GPU implementations. This enables us to run our code
on both GPU-enabled machines and the platform, such as su-
percomputers, without GPU supports. Thus, our implemen-
tation is highly compatible to heterogeneous systems.

4 Results and Discussion

We evaluate our approach from several aspects, including the
performance and the effectiveness of our analytic interpola-
tion and gradient estimation. We also compare our approach
with the conventional tetrahedron based rendering results.

(a) (b)

Figure 6: Ray-casting of a synthetic spherical scalar field
defined on a real geodesic grid with 10242 cells and 61 lay-
ers. (a) shows the result using our analytic approach with
lighting enabled, and (b) shows the ground truth image. The
image difference between (a) and (b) is negligible.

Figure 7: Ray-casting with lighting effects using our ana-
lytic ray integration and gradient estimation on the high res-
olution data set. The left images shows the vorticity variable
and the close-up view of a selected region. The right image
shows the combination of grid illustration, volume render-
ing of vorticity (yellow tubes) and temperature (north cap).
Our approach can succinctly reveal great details from large
data with enhanced depth and shape cues.

4.1 Rendering Performance

The experimental study has been conducted on a Intel Core
2 Quad CPU at 2.4 GHz with 24 GB memory and dual
NVIDIA Geforce 580 GTX GPUs with 1.5 GB memory per
GPU. We have implemented our approach on both CPUs
and GPUs (Section 3.6). The performance evaluation is con-
ducted on two global cloud resolving model (GCRM) data
sets with low and high resolutions. The detailed information
of the two GCRM data sets is listed in Table 1.

Table 2 shows the performance difference between CPU,
single GPU and dual GPUs rendering on the high resolution
geodesic grid. For the CPU rendering, we only use one sin-
gle CPU core and perform rendering in a sequential fashion.
When using dual GPUs, we duplicate the grid data on each
GPU, and partition workload in image space. We can see
that our single GPU accelerated volume rendering achieves
approximately a 100× speedup from the CPU rendering, and
the dual GPUs rendering achieves roughly a 2× speedup
from the single GPU rendering.
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Figure 8: Rendering quality comparison of our approach (left) with the conventional tetrahedron based method (center) and
the mean value interpolation method (right) in a close-up views. We render the vorticity variable in the high resolution grid.
The ratio of sample step size to the globe radius is set as 10−4 to make sure there are enough sampling points within each cell.
The boundary artifacts at the high frequency regions are perceivable from the rendering of tetrahedral mesh due to less vertex
information for interpolation. Meanwhile, even if the rendering quality of mean value interpolation method is slightly better
than the tetrahedron method, certain jaggy effect can still be perceived. This is due to the fact that mean value interpolation has
proved to be smooth in the interior of a cell except at the vertices [HF06]. Therefore, in terms of image quality, our approach
outperforms both methods.

4.2 Rendering Quality

To verify the effectiveness of our analytic scheme for ray
integration and gradient estimation, we first use a synthetic
spherical scalar field generated on a real geodesic grid. Fig-
ure 6 (a) shows the result using our approach. We also gen-
erate a ground truth image in a way that at a sampling point
along a ray the scalar value is precisely determined as the
Euclidean distance between the sphere center and the point,
and the gradient is precisely determined by the vector from
the sphere center to the point, as shown in Figure 6 (b).
We note that our approach can generate high-quality ren-
dering and provide nearly indistinguishable results from the
ground truth. The difference only becomes perceivable when
the grid resolution is extremely low, which is normally im-
practical for simulations.

Figure 7 demonstrates the quality of ray integration and
lighting effects using our analytic scheme on the real cli-
mate data set. We note that our approach can achieve high-
quality rendering with smooth shading. In particular, the fine
turbulent features embedded in the high resolution data are
succinctly revealed with the enhanced depth and shape cues
provided by our gradient estimation method.

We also provide both qualitative and quantitative compar-
isons of our approach with two state-of-the-art approaches.
The first approach implicitly tetrahedralizes each frustum
on the fly and uses the ray-casting method on tetrahedral
mesh [WKME03a] to render the transformed data. The sec-
ond approach employs mean value interpolation [MHDH07,
MHDG11] to compute scalar values at sampling points
within a frustum. Figure 8 demonstrates the rendering qual-
ity comparison of our ray-casting approach with these two
methods in a close-up view. We observe that our approach
can generate high-quality rendering superior to both meth-
ods, especially at the regions with high frequency.

Figure 9: Performance measures and comparison with the
conventional tetrahedron based method and the mean value
interpolation method. The performance data is obtained by
rendering images of Figure 8 with different sampling rate
that is defined as the ratio of sample step size to the globe
radius. Our approach outperforms both methods.

Our ray-casting also has a lower complexity in terms of
the total cell number and sampling point number, and can
achieve a higher frame rate than the conventional meth-
ods, as denoted by the performance comparison in Figure 9.
Our approach achieves an average of 98.6% performance
gain over the tetrahedron based method. This is mainly be-
cause the tetrahedron based method needs visibility sorting
of three tetrahedrons within a frustum. Our approach also
achieves an average of 172% improvement over the mean
value interpolation method. This is mainly because it re-
quires an inverse trigonometric function and several vector
operations to compute the angles over eight triangular faces
of a frustum for mean value coordinates [MHDH07].

Figure 10 shows a set of high-quality and high-resolution
rendering of full-resolution data by our approach, which al-
lows scientists to capture the fine details from their large cli-
mate data on geodesic grids.

c© 2013 The Author(s)
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Figure 10: The left most two images show the volume rendering of the whole global atmospheric vorticity variable using dif-
ferent visualization parameters. The top two rows of images incrementally show the close-up views of a particular region of
interest. From left to right, we show the mesh grid, the surface rendering, the volume rendering with different transfer func-
tions, and the images with lighting disabled and enabled. The bottom row shows a close-up view from a different geolocation,
superimposed with geophysical information.

5 Conclusion and Future work

We have presented a direct volume rendering approach for
geodesic grid data. Without loss of generality, we apply the
approach to hexagonal grids, which can be directly fetched
and rendered without any intermediate grid transformation.
As a result, we can significantly reduce computing and mem-
ory cost. For the higher resolution grid in our current study,
our approach directly takes the grid of the outer most surface
with 1.3 million grid points as input. However, if we explic-
itly convert the geodesic grid to the tetrahedral or polygonal
grids over 99 layers, it results in an input of 128.7 million
grid corners and thus makes the memory and preprocessing
cost unaffordable for large data. The data structure in our
approach has the same complexity as the original simulation
grids, and is potentially scalable with the increasing scale of
simulations. Furthermore, our current design well matches
the simulation data storage patterns, which facilities a direct
integration with simulation codes and offers possibly viable
in-situ visualization solutions for large climate simulations.

We have also derived a new analytic scheme for interpola-
tion, gradient calculation, and ray integration. The accuracy
of our analytic scalar and gradient interpolation is compa-
rable to those using central difference numerical computa-
tions in simulations. The rendered results feature better im-
age quality, less memory overhead, and higher performance
compared with conventional methods.

There are several promising directions for future work.
First, we would like to improve the gradient calculation us-
ing higher order analytic functions. We approach this with

caution as such improvements may incur more memory ac-
cess and computing cycles. It is an interesting topic on how
to make a trade off between image quality and computation
complexity for large data. Secondly, we want to optimize
the performance of multiple GPUs ray-casting scheme, and
address the bottleneck of data transfer between GPU mem-
ory and main memory. Our current grid is generated after
7 recursive subdivisions of an icosahedron, such that each
mesh cell covers an Earth surface area of 27 km in diameter.
Currently, our collaborators are generating higher-resolution
grids using finer subdivision. For example, in the near future,
a grid will have a resolution of 4 km in diameter and 256 lay-
ers. Given this scale, the size of each variable will reach to
4.5 terabytes. No single machine can presently handle such a
large scale data set with ease. We will seek a multi-resolution
solution on PC clusters and in-situ solution on HPC super-
computers to effectively process the large data sets. This will
enable scientists to study their climate data at full extent and
responsively deliver more accurate global weather or climate
forecasts. This paper presents important foundation work for
carrying out these further research tasks.
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