
Eurographics Conference on Visualization (EuroVis) 2013
B. Preim, P. Rheingans, and H. Theisel
(Guest Editors)

Volume 32 (2013), Number 3

Visualizing Large-scale Parallel Communication Traces Using
a Particle Animation Technique

Carmen Sigovan1, Chris W. Muelder1, and Kwan-Liu Ma1

1University of California, Davis

Abstract

Large-scale scientific simulations require execution on parallel computing systems in order to yield useful results
in a reasonable time frame. But parallel execution adds communication overhead. The impact that this overhead
has on performance may be difficult to gauge, as parallel application behaviors are typically harder to understand
than the sequential types. We introduce an animation-based interactive visualization technique for the analysis of
communication patterns occurring in parallel application execution. Our method has the advantages of illustrating
the dynamic communication patterns in the system as well as a static image of MPI (Message Passing Interface)
utilization history. We also devise a data streaming mechanism that allows for the exploration of very large data
sets. We demonstrate the effectiveness of our approach scaling up to 16 thousand processes using a series of trace
data sets of ScaLAPACK matrix operations functions.

Categories and Subject Descriptors (according to ACM CCS): Multimedia Information Systems [H.5.1]:
Animations—;

1. Introduction
High performance computing (HPC) systems are one of to-
day’s most valuable resources available to the scientific com-
munity. Parallel numerical simulations are the method of
choice for scientists who are unable to conduct their exper-
iments in a laboratory environment or in the field, for ex-
ample supernova studies or global climate predictions. But
parallel computation introduces the need for communication
between processes, and the subsequent overhead has a sig-
nificant impact on the performance of parallel applications.
Furthermore, as the number of processors used in a parallel
computation increases, it becomes more difficult to evaluate
the communication overhead and to determine if data distri-
bution and communication requirements are optimized for
that particular computation.

Most large-scale scientific codes use the standard Mes-
sage Passing Interface (MPI) to transfer data between com-
pute nodes. Their implementations, however, rarely make di-
rect calls to MPI functions and instead utilize intermediary
libraries, such as ScaLAPACK [Sca] linear algebra package.
These intermediary libraries obscure the message passing

activity from the user, making it difficult to understand or
evaluate communication patterns.

Visualization is a commonly used method for analyz-
ing the communication patterns of parallel programs. Many
tools developed for this purpose display individual process
activity using Gantt charts or Kiviat diagrams. While effec-
tive at small to medium scales, such approaches are cumber-
some with data sets containing many thousands of processes
or more. Other proposed methods have bypassed this scala-
bility problem by concentrating on event patterns and disre-
garding per-process representations altogether [MGM09].

We present a visual analysis method for parallel com-
munication traces, by which we aim to address some of
these issues. First, we collect the communication patterns
of some representative numerical calculations by tracing
ScaLAPACK parallel matrix operations at the MPI level us-
ing the MPE (MPI Parallel Environment) library. We then
convert these traces into a database format which is suitable
for out-of-core visualization. We then stream data into an an-
imation that renders individual communication events while
also grouping processes, such that system-wide trends be-
come visible even when rendering large traces with numer-
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ous processes. Being user-controlled, the animation provides
both snapshots of the communication state at any given time
and provides an overview of the entire execution over time.
A history of past events is accumulated as a background tex-
ture, and if the trace is streamed in its entirety, becomes a
static visualization of the entire execution.

The presence of the time dimension is a salient feature of
parallel execution and communication traces. Mapping exe-
cution time to real time is natural and intuitive, which is why
we chose to implement an animation technique for our visu-
alization of MPI. By displaying concurrent function calls as
particles moving on trajectories parallel to each other, we
aim to support the analyst’s mental model of parallelism and
make it easier to detect potential communication slowdowns,
when particles that should be aligned fall out of synch.

We demonstrate our method with case studies of MPI ac-
tivity traces on two separate supercomputers. We have de-
signed this system with the aim of helping parallel library
and application developers easily understand the commu-
nication patterns of their software, identify performance is-
sues, and subsequently optimize their parallel codes.

2. Related Work
Parallel execution trace analysis has nescessitated the de-
velopment of numerous analytic tools. Some of these tools
use numerical methods to detect performance issues within
trace data. For instance KOJAK [MW, WM00, WM03] (Kit
for Objective Judgement and Knowledge-based Detection
of Performance Bottlenecks), and its successor, Scalasca
[GWW∗10] perform automated analysis on parallel execu-
tion traces and can detect performance problems, such as
detrimental wait states, even in very large traces. But nu-
merical analysis is not always enough. Visualization is often
employed to analyze parallel execution traces when the data
is too large or complex for pure numerical analysis meth-
ods to suffice. Additionally, visual representations are often
easier to understand than the results of numerical analyses.

Many performance visualizations [ZLGS99, SM06,
NAW∗96] use techniques that show either the timings and
durations of parallel events or application executions, or rep-
resent system resource utilization. This includes well-known
representations such as Gantt charts, histograms and Kiviat
diagrams. Other visualizations [SML∗12, LLB∗12] focus
on the communication topology, and hence use network
representations such as node-link diagrams or matrices.
Since communication has a direct impact on performance
in parallel environments, many visualization toolkits for
parallel traces combine both types of displays. And since
the data is inherently temporal, many toolkits utilize some
form of animation to convey activity over time.

ParaGraph [Hea93, HE91], features a multitude of both
performance/utilization and communication displays. Para-
Graph also incorporates an animation display, in which the
system is represented by a graph, with the nodes correspond-
ing to processors and indicating their status, and edges de-
picting communication between processors.

Jumpshot [ZLGS99] (and its predecessors, Upshot
[HL91] and Nupshot [KL94]) are MPI communication anal-
ysis visualizations based primairly on Gantt charts, where
each row shows which MPI function calls are being executed
by each process, while arrows between the chart’s segments
indicate the processes involved in each communication. The
Jumpshot toolkits are also responsible for creating the MPE
tracing libraries and some scalable binary trace formats, such
as CLOG2 and SLOG2 [CGL08].

VAMPIR (Visualization and Analysis of MPI Resources)
[NAW∗96] is an integrated tracing and analysis suite that
combines overviews of aggregate system activity or pro-
cessor utilization with more in-detail Gantt chart based
execution representations and communication pattern dis-
plays. VAMPIR’s visualization application is also capable
of displaying snapshots of system state at any given time,
state changes (stepping) and animations of program activity
throughout an entire run.

TAU (Tuning and Analysis Utilities) [SM06] is a compre-
hensive set of analysis tools for parallel programs, with both
tracing and visualization capabilities. TAU’s tracing tools
can convert data into many different formats used by other
existing tools, while its visualization utilities include a Gantt
chart, communication matrix, and call graph views.

Virtue [SRWS99] is unique among the cited parallel per-
formance visualization tools in that it can monitor execu-
tion in real time and supports use in a CAVE Automatic
Virtual Environment, as well as collaborative visualization
through annotations. Virtue is graphically elaborate, featur-
ing 3D displays such as a wide-area geographic view, a time
tunnel display, and an interactive call graph with a special-
ized lens tools for exploration. Another 3D approach to visu-
alizing parallel communication data is the work of Schnorr
et al. [SHN], which shows the topology and communication
of geographically distributed Grid applications.

While Gantt charts and node-link diagrams are natural
representations for this kind of data, they run into severe
scalability issues as the number of processes or parallel func-
tion calls increases, because the number of elements to dis-
play can easily exceed the number of available pixels on the
screen. The works of Muelder et al. [MGM09,MSM∗11] ad-
dress this problem by arranging events to form larger pat-
terns and using overplot techniques such as high-precision
alpha blending and opacity scaling techniques similar to
those proposed by Johansson et al [JLJC05].

In our approach, we aim for an intermediate point between
depicting activity per individual process and showing pat-
terns while ignoring process IDs. Our visualization displays
every event in a trace data set individually over time. We
also link events to the process which generated them. By
aggregating individual processes into process groups when
necessary, we maintain an overview of system activity while
remaining in the bounds of allotted screen space.
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2.1. The Case for Animation
Some studies have suggested that animation is not well-
suited to certain tasks or that in some cases it can even be
detrimental. Tversky et al. [TMB02] question the validity of
several studies that had flawed experiment methodology. A
study by Robertson et. al [RFF∗08] indicates that animation
is particularly ill-suited to trend visualization and has found
that participants interpreted trend data with higher accuracy
when they were shown static depictions of the data rather
than animations. But there are other tasks for which anima-
tion has been shown to be useful.

One of the most prevalent uses of animated visualiza-
tions is to describe the functioning of algorithms. A study
by Kehoe et. al. [KST01] shows that animation helped stu-
dents better understand algorithms and made this difficult
task more approachable. We believe that animation meth-
ods can be successfully employed to illustrate changes in
a system over time. For example, the code_swarm visual-
ization [OM09] was well-received due to its appealing vi-
sual design and its capability of illustrating the evolution
of the complex interactions between developers working on
large software projects. Code_swarm also visualizes time-
varying activity, with actors operating in parallel. However,
the somewhat unpredictable particle trajectories exhibited by
code_swarm were not well-suited to our analysis tasks. A
further particle animation method was proposed by Choud-
hury and Rosen [CR11]. They particles to visualize the flow
of data through cache and main memory as programs exe-
cute. This method differs from ours in that it is meant for
use on a single machine and is not designed to scale up and
show communication between multiple processes.

When applied to parallel system performance analysis or
parallel software visualizations, animation is often applied
to existing visualizations, such as Gantt charts or commu-
nication matrices, to show changes in the system during
execution. VAMPIR [NAW∗96] and ParaGraph’s [Hea93]
time stepping animations function in this way. Kraemer and
Stasko proposed an animation-based visualization method-
ology for the analysis of parallel algorithms and software
[KS94, SK93]. They devised a system for user-defined vi-
sualization of parallel programs which included support
for application-specific visualizations and for redefining the
temporal ordering of events. In order to support this tem-
poral reordering option, they also developed a dual times-
tamping methodology for tracing events in the parallel sys-
tem [TSS95]. PVaniM also employed some animated tra-
ditional views, such as a Gantt chart and a communication
view in the form of a temporally evolving node-link diagram.
While these methods were successful at the time, their rep-
resentations of individual processes no longer seem appro-
priate for today’s parallel system scales, and development
of PVaniM appears to have ceased. We have designed our
visualization method with the intention of scaling up to to-
day’s HPC systems, where applications are likely to utilize
thousands or tens of thousands of nodes. We also chose not
to animate previously static performance or communication

views, but instead developed our technique with the goal of
showing the evolution of communication patterns in a paral-
lel application execution.

Complex motion is detrimental to animation techniques,
as it tends to confuse the viewer [RFF∗08]. However, we
employ 1D, predictable motion along the vertical axis for the
particles in our visualization, making the animation easy to
follow. Our method is not designed to show trends or rates of
change, but to support the tasks of comprehending the com-
plex communication required by large parallel applications
and identifying slowdowns due to communication overhead.

3. Methodology
Our work incorporates two major components: collection
and processing of data and visualization of the resulting
trace. This section presents the design aspects behind each
of these components.

3.1. Data Collection and Processing
This study is based on data collected from two of the world’s
largest supercomputers: Franklin and Kraken [Fra, Kra].

Many scientific computations utilize the ScaLAPACK li-
brary. Thus, the case studies we have performed are execu-
tions of various ScaLAPACK matrix operations, where the
underlying MPI calls were traced using the MPE library.
MPE records each instance of MPI functions being called,
along with start and end times of the function call and the
process that initiated it. The resulting trace file is written in
the Jumpshot CLOG2 format. CLOG2 files store start and
stop times of MPI events as separate entries, which we match
up when we convert the data to our database format. We use
a database because it enables us to stream events more easily
than the CLOG2 format and because it allows random access
and searching for data values.

Here we define some of the terms by which we refer to
our data in the following sections.
• A trace is the data output by MPE at the end of a paral-

lel application run. It records all MPI function calls along
with their timing and process ID.

• An event is an instance of an MPI function call. The
event’s type is the actual MPI function called (such as
MPI_Send or MPI_Broadcast).

• A process is an initiator of MPI function calls. Processes
are identified in the trace data by their unique MPI ranks.

• Time in our data is the actual execution time of the par-
allel application being traced, although slowed down to a
more reasonable speed for animation.

3.2. Visualization Approach
When the goal is to represent the data at a high level of detail
in the limited screen space available, one method is to ren-
der each event as a point. However, even mid-sized traces
often contain far too many events to simultaneously display
on-screen without causing clutter and losing the ability to
show patterns and meaningful information. We advocate an
animation approach because it allows us to render data sets
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in their entirety, while reducing clutter. We achieve this by
displaying only currently active data at any given time.

3.2.1. Interface
Our system has a simple and intuitive interface which con-
sists of an animation window, a timeline window, and a
color legend for the MPI event types selected to study. Since
there are a finite number of event types (MPI function calls),
we have created a color mapping that attempts to assign
unique hues while minimizing repetition. While the entire
MPI framework consists of over 100 different functions, we
found that most traces use a much smaller subset of these.
Studies have shown that the upper limit on the number of
colors readily distinguishable is around 25 [GA10], so we
also employ a strategy to assign similar colors to operations
which are similar in nature or which can be easily associated,
such as the MPI_Comm set of functions or the blocking and
non-blocking variants of MPI Send and Receive.

Figure 1: Color mapping of the MPI function calls found in
the traces. Some traces only contain a subset of these.

The time line display is a stacked graph that indicates
how many events of each type start at a given time and
serves as a navigation interface for the animation. This dis-
play is very similar to the navigation timelines of [MGM09]
and [MSM∗11]. A vertical bar indicates the current tempo-
ral position in the data set, which can be set by dragging the
bar across the time line. The main window also provides an
interface for the user to control the speed of the animation,
which is described in detail in Section 3.2.2.

The animation window, shown in Figure 2, displays the
events in a data set over time as an “animated scatterplot”.
At the bottom of this display is a sequence of segments of al-
ternating shades of grey. Each segment corresponds to a set
of processes, thus the particles generated above each seg-
ment correspond to events recorded on the segment’s pro-
cesses. Processes are aggregated into these segments due to
their potentially high numbers and to give local context to

Figure 2: A snapshot of the animation window. The particles
are events in execution at a selected point in time. Processes
8-16 are mostly executing calls to MPI_Bcast, while the rest
of the processes are waiting on long MPI_Recv operations.

the particles. Processes within each segment are allocated
equal space on the x-axis, in order, and particles are gener-
ated with randomized x-positions within the space allotted
to their process ID. This ensures that particles will be sorted
by their associated process ID, but alleviates overlap and
aliasing issues. With very large numbers of processes, the
space per process will be very small, unavoidably leading
to large particle overlap. But this occurs primarily when the
system is operating in unison, which the resulting plot still
conveys. The number of processes per segment is calculated
based on the total width available to the animation window
and on a specified segment minimum length. The label un-
der each segment indicates the ID of the first process in the
set and since these IDs are in sequential order, it is very easy
to deduce how many processes correspond to each segment.
In our particular traces, the processes are naturally divided
into groups, according to the process block size defined for
each run. We use the term “process grid" to describe the MPI
virtual topology used by the matrix operations under study,
which is the Cartesian (grid) topology. Since Franklin has 8
cores per node, we found it best to use grids sized by powers
of 2, and define the groups accordingly. Similarly, Kraken
has 12 cores per node, so we used groups of multiples of 6.

The background of the animation window employs a grid,
with the horizontal lines delimiting event durations on a log-
arithmic scale and the vertical lines serving to separate the
segments, which makes clarifies which segment a particle
belongs to. The horizontal lines are placed on a logarith-
mic scale and each line has a corresponding label displaying
its associated duration in milliseconds. We use a logarith-
mic scale since the duration of events can span many orders
of magnitude, and previous work [MGM09, MSM∗11] has
shown it to work well for this class of parallel trace data, as
the vast majority of these events are relatively small com-
pared to the rarer long duration events. The lines are spaced
such that the smallest distance between them is enough to
allow for a label to be displayed with no overlap with its
neighbors and the larger distances from top to bottom illus-
trate the logarithmic duration scale. The result of this is that
the large number of short events are allotted a large amount
of space, and the longer events persist at the top of the plot.

At any given time, a particle’s y-position on the grid corre-
sponds to the amount of time that particular event has been in
execution (i.e. the event’s age). The top horizontal line acts
as a ceiling for duration within the data set, that is, it cor-
responds to the maximum event duration found in the data.
Since we use a logarithmic scale for duration, if we desig-
nate dmax to be the maximum event duration found in the
data, then an event particle’s position yp at the current data-
time tc is, in pixels

yp = ymax · ln(tc − tstart)/ln(dmax)
where ymax is the distance in pixels between the bottom and
top bold lines and tstart is the start time of the event.

3.2.2. Animation
So far, we have only described the static appearance of the
animation window. But in the course of a data set explo-
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ration, the contents of this window are rarely static. Here,
we present the design behind the animation dynamics and
explain the functionality behind the timing control variables
available for editing on the main control window.

To generate animation, we use a sliding time window on
the data set, which moves at a constant speed along the time
axis. The data time step variable defines the width of the
time window, while the animation interval controls the real
time intervals at which the sliding window changes position.
Both variables may be adjusted by the user.

In the animation window, particles travel upwards such
that their position on the y axis always corresponds to the
amount of time their associated events have been in-flight.
When a particle reaches the height corresponding to its
event’s duration, the particle stops and fades away, as illus-
trated in Figure 3. All particles start at the level of the process
segments (on the bottom) and, since the y axis is logarith-
mic, their speed decreases significantly as the event executes.
This means that the longest events will be on-screen for the
longest time, which will draw the observer’s attention.We
place this emphasis on longer communication events be-
cause they are more likely to be indicative of performance
issues. Conversely, short events will reach their maximum
height very quickly. Or, if the data time step is higher than
their event duration, they would be skipped altogether. To
counteract this problem, particles fade for a constant time of
two seconds. This makes even very short events noticeable,
which would otherwise vanish immediately.

When the animation is paused, the user may hover over
particles to receive information about the MPI function call,
its exact start and end times and the process (rank) execut-
ing it. This feature, also shown in Figure 3, is useful in dis-
tinguishing particles with similar colors or for determining
which process is responsible for abnormally large events.

Figure 3: A section of the animation window showing both
running and ended events. The transparency of a fading par-
ticle indicates the time passed since the end of the event.

When a particle’s fading time expires, it will not com-
pletely disappear from the display. Instead, completely
faded particles are rendered with very low opacity to off-
screen density and color textures, which are then applied
to the background of the animation window. Because large

amounts of over-plot are likely to happen in this background
buffer, the opacity is tone mapped on a logarithmic scale,
which both keeps single particles visible and prevents ar-
eas with high over-plot from becoming too opaque and thus
obscuring currently running event particles. A background
pixel Px,y is assigned color and opacity based on the formula

Px,y =Cx,y ×
(
Omin +(1−Omin) · lnDx,y/lnDmax

)
where (x,y) denote the pixel position, D is the density tex-
ture, Dmax is the maximum overplot (density) that occurred,
C is the color texture, and Omin is a constant, user-defined
minimum opacity value.

With this method, we create a visual history of all the
events up to the current point in the animation in an unobtru-
sive manner. At any point, the user can also manually clear
the background buffer or the currently fading particles, al-
lowing for the reset of the history if it gets too cluttered. One
disadvantage of keeping track of history in this way is that it
only tracks the history of what is animated; if the user moves
to a new time position via the time line, events skipped in this
manner will not appear in the history. A final history image
from the end of a trace animation is shown in Figure 4.

Figure 4: The history background image at the end of the
matrix invert operation. The striations are due to the float
precision limitation present in the traces. There are notice-
able differences in the duration patterns of MPI Broadcast
function calls across the processes.

4. Results
Most scientific applications require partitioning of their
problem space in order to effectively run in parallel. But
scientists usually prefer to think of the problem in terms of
linear algebra operations, rather than manually partitioning
and manipulating individual data blocks. ScaLAPACK is a
widely used parallel linear algebra package, as it utilizes li-
braries that parallelize and abstract away these basic oper-
ations, allowing the developers to focus on their own algo-
rithms. We chose to analyze a set of ScaLAPACK distributed
matrix operations for our case studies primarily because it
is a building block for many scientific simulations. Due to
the way ScaLAPACK abstracts matrix operations, when we
analyzed complex traces with multiple operations, the visu-
alization clearly shows separate stages, each performing an
individual matrix operation. Thus, to simplify our process
and aid understanding of communication patterns, we here
analyze traces of individual parallel matrix operations.

We collected data on the Franklin and Kraken supercom-
puters. As it is the smaller of the two systems, the operations
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(a) Straight line (b) Noisy (c) Slanted line (d) Logarithmic (e) Disparate

Figure 5: Common patterns revealed by our visualization. The four bottom segments labeled PGx encode four process groups.
These patterns may occur both during the animation and in the background image.

we ran on Franklin had smaller matrix sizes, to yield rea-
sonable execution times and yet still observe communication
patterns. For the Kraken tests, we scaled the input data size
to the number of processes, resulting in larger trace files and
longer communication events with more temporal gaps.

In Figure 5 we present illustrations of some of the particle
alignment patterns we observed in our case studies. A hori-
zontal line (Fig. 5(a)) means that the events all started at the
same time (animation), or that they all had the same duration
(history image). This pattern indicates full synchronization
across processes which implies a balanced systems. A noisy
pattern (Fig. 5(b)) appears when there are differences in the
start times (animation) or durations (history) of events across
processes. It indicates potential performance problems, as it
is usually caused by de-synchronization, load imbalance or
wait conditions. The slanted line (Fig. 5(c)) is a degenerate
case between the noisy and logarithmic patterns. It occurs
when events start later or take longer to complete as process
ID increases or decreases and can only be seen in the lower
section of the animation window, where event particles travel
at high speed. If the slope is low, the slanted line does not in-
dicate major performance problems, but could be attributed
to fluctuations in the network. An example of a slanted line
with low slope formed by MPI_Bcast events (yellow) can
be seen in Figure 6 between processes 0 and 8 and below
the first horizontal grid line. The logarithmic pattern (Fig.
5(d)) means that there is a linear delay in event start times
or a linear progression of event durations as process ID in-
creases. It may indicate serialization in the propagation of
data, which is detrimental to performance. It may also re-
late to the network topology, with processes further from the
data source taking longer to receive messages. Finally, the
disparate pattern (Fig. 5(e)) appears when a group of pro-
cesses exhibit significantly different communication activity
from the rest. This may be due to them performing different
computational tasks than the other processes and does not
necessarily indicate a performance problem.

Examples from the Franklin Matrix Inversion execution
trace have been presented in Section 3. This operation ex-
hibits an interesting behavior in that as it runs, 8 of the 64
processes appear to be working on computation and exe-
cute very short communication operations, while the others
are waiting on a long MPI_Recv operation. This group of 8
shifts to the left throughout execution, starting with ranks 0
to 8 and ending with 56-63. The first transition is illustrated
in Figure 6.

(a) First group of 8. (b) Shifting over.

Figure 6: The shifting “group of 8” pattern. In 6(a), the first
8 processes are performing short MPI_Bcast and MPI_Recv
operations, while the other processes appear to be idle. In
6(b), the pattern shifts, with the next 8 processes working
and the first waiting on long MPI_Recv operations.

This pattern indicates that the ScaLAPACK matrix inver-
sion algorithm divides the matrix into blocks and assigns
each block to a group of processors. Excepting the very first
one, each processor group must wait for the previous results
to become available before it can start processing its block.

The Cholesky Decomposition operation on Franklin does
not exhibit the same group patterns as Matrix Inversion. For
the most part, communication activity is regular across all
the processes, as can be seen from the time line in Figure 7.
One interesting feature present in this trace is the appear-

Figure 7: Time line for the Cholesky Decomposition opera-
tion on Franklin. Total duration is approximately 0.24 sec-
onds. After the initialization stage, which is dominated by a
spike in the number of calls to MPI_Bcast, communication
activity drops to a relatively low level and remains constant
for the duration of the execution. The slight increase in activ-
ity in the middle indicates that this is a two-stage operation.

ance of logarithmic curve patterns in the positions of the
particles as they travel upwards, which can be observed in
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Figure 8. These patterns are prevalent among the first half of
the processes, during the second half of the execution. Due
to their regularity, they are unlikely to be caused by clock
skews across the computation nodes. Since the particles are
ordered by process ID and their position on the y axis is on
a logarithmic scale, this means that, within a process group
of 8 processes, events start with a linear delay as process
ID increases. These events all have approximately the same
duration, indicating possible network delays or the necessity
for processor Pi to wait for information from processor Pi−1
in order to carry on its computation. The latter explanation
is likely, because the ScaLAPACK Cholesky decomposition
function uses a right-looking algorithm [CDO∗96] which re-
quires updating all columns to the right of the currently com-
puted column i which are modified by it to be updated when
column i is updated.

Figure 8: Linear delay patterns present in the Cholesky De-
composion trace. Similar patterns can be observed in the
Matrix Inversion operation, in Figure 2.

We collected traces of parallel Eigenproblem solving
operations on both the Franklin and Kraken systems. On
Franklin, this operation is relatively long, running for 0.54
seconds on 64 processes with a matrix of size 2000x2000. Its
time line (Figure 9) shows that the ScaLAPACK Eigensolver
function (“pdsyevd“) executes in stages and that the total
number of MPI function calls tends to decrease with each
stage. Upon watching the animation, we discover that the

Figure 9: Time line of the ScalaPACK parallel Eigenprob-
lem solving operation running on the Franklin system.

stages show similar characteristics to the stages of the Ma-
trix Inversion operation, with a group of 8 processes exhibit-
ing a different communication pattern from the rest at each
stage; this group also shifts to the right on every stage. How-
ever, in the case of the Eigensolver, the rest of the processes
are not idle, but still involved in communication. There is
a less significant difference between the event durations of
the processes in the group and the rest, as seen in Figure
10. We also found the reason for the decrease in number of
MPI calls throughout execution. When the pattern shifts to
the next group of 8 processes, a number of processes from
the previous groups begin a very long MPI_Bcast operation,

Figure 10: The first “group of 8” in the Eigenproblem solv-
ing operation. Only currently running or recently ended
(fading) events are shown here. The background history was
cleared prior to taking this snapshot.

which lasts until the very end of the run, shown in Figure 11.
These processes have now become idle: they do not execute
any more MPI function calls for the rest of the execution.
This may mean that they have completed their allotted work,
in which case their prolonged idling would not be a cause
for major concern. In fact, these processes do become active
for the clean-up phase at the end of the run, indicating that
they were likely not locked in a contention for resources.
However, this could potentially be an area for performance
improvement, as idle processors may be put back in use, thus
increasing the efficiency of the computation.

Figure 11: The end of the Eigenproblem solving opera-
tion on Franklin, with the pattern of very long MPI_Bcast
calls visible. The background history image shows slightly
noisy patterns in event durations across the processes.
Most notable are the synchronization operations (calls to
MPI_Waitall), which appear to have occurred at each stage
within the 8-process groups.

For tracing Eigensolver operations on Kraken, we in-
creased the matrix size to 6,000x6,000 on 36 processes, with
a process grid of 6x6. The resulting time lines are shown in
Figures 12(a) and 12(b). This configuration provides a better
balance of input data size to number of processes, and we
can see this in our visualization: there are larger temporal
gaps between bursts of communication, indicating that the
system spends time performing actual calculations, which
we cannot capture using the MPE tracing system. However,
larger data sizes also cause the communication events to be-
come longer, with their durations increasing steadily over the
course of the execution. These tests also had a much longer
overall execution time than the smaller test on Franklin.
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(a) syev running on Kraken

(b) syevd on Kraken

Figure 12: Both functions execute in five stages, with a log-
arithmic decrease in the number of MPI calls during each
phase. This logarithmic falloff indicates that, as processes
finish their computation for a particular stage, they send
their data to the next processes and no longer communicate
until the next phase starts. Each phase is shorter than the
previous one because there is less data to perform computa-
tions on, as is the nature of divide and conquer algorithms.
syevd also appears to have a large temporal gap between the
end of computation and communication and the final clean-
up and conclusion of the run. Because Kraken is a system
available for use, this is likely caused by other running ap-
plications interfering with inter-node communication.

We collected traces from two ScaLAPACK Eigensolver
functions (“pdsyevd“ and “pdsyev“) and compared their be-
haviors both between each other and against the execution of
“pdsyevd“ on Franklin. “pdsyevd“ is an eigensolver based
on a QR algorithm [GKK10], while “pdsyev“ is a parallel
implementation of a divide and conquer algorithm [BS].

From our tests, the two functions do not appear to dif-
fer significantly in behavior from the point of view of their
communication patterns. They both exhibit a similar pattern
to our test on Franklin, where certain processes become idle
and wait on a very long MPI_Bcast operation as the activ-
ity shifts through the process groups. We can clearly con-
clude that this is a feature of the ScaLAPACK eigensolvers’
implementation and this supports our hypothesis that these
processes have in fact completed their computational tasks.
However, unlike our Franklin test, event durations seem to
increase slightly over the course of execution. This shows
that as computation of matrix blocks finishes, processes need
to be aware of the current partial solution, so more data must
be transferred through the system.

Matrix Multiplication is the most basic and widely used
of the operations we have studied. It was also the basis for
our larger-scale tests: we will present two examples which
were run on 4,096 and 16,384 respectively, each performing
a multiplication operation on “skinny” matrices of 10,000 ×
1,000 elements. We show the time lines for these executions
in Figure 13. At first glance, we notice that this operation
is dominated by setup time at these scales. For instance, the
16k-process run had a total duration of 7.86 seconds, out of
which the first 7.0 seconds were spent executing a few, very

long MPI_Comm functions, i.e. setting up the communica-
tion groups. In comparison to the time spent in setup and
communication, the computation time appears to be negligi-
ble. With such long setup times, it is clear that matrix size
needs to be quite large, such that a significant amount of the
execution time is spent performing useful computation and
thus justifies resource utilization.

In both examples, logarithmic curve trends in particle y-
positions become apparent. MPI events tend to start later as
process ID increases, but they also tend to have the same
duration by function call. There is an abundance of com-
munication events, indicating that communication overhead
is significant at these scales. Images from these animations
can be found on the next page (Figures 14, 15, 16).

(a) 4,096 processes

(b) 16,384 processes

Figure 13: Time lines of the matrix multiplication operation.
The communication spikes are where the computation starts.

This case study shows that the ScalaPACK matrix multi-
plication functions appear to be optimized at smaller scales,
but the number of processes involved in such a computation
must be carefully calibrated to matrix size, or vice-versa, in
order to avoid wasting computational resources.

5. Conclusions and Future Work
We have demonstrated how effective data streaming and an-
imation designs can facilitate the visualization of large data
sets. In the case of parallel execution traces, these methods
simplify the process of ensuring that events are shown in
their relative order and that events executing in parallel are
shown as such. With the tendency of parallel systems and
applications to grow in size and complexity, such methods
are becoming a valuable tool for analyzing the data these
systems generate.

Another fact that became apparent is that MPI function
calls tend to have a very wide distribution of durations, for
which a logarithmic scale is only partially appropriate. A
better solution might be to treat long events differently from
very short events in terms of visualization. Furthermore,
rendering every individual event runs into limitations, even
when events are not all on-screen at the same time. In our
16 thousand process example, we already ran into over-plot
issues even though there were only as many particles as pro-
cesses on screen at any given time. Thus, we plan to imple-
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Figure 14: Matrix multiplication on 4,096 processes, at the end of the communication groups’ setup phase. There is an inter-
esting pattern visible here: processes appear to take turns executing MPI_Send, MPI_Recv and MPI_Reduce operations. In
particular, the MPI_Recv operations take longer to execute the higher the process ID. Globally, the operation appears to have
been initiated by process #0 and each process had to wait for the previous one to receive its data.

Figure 15: The same trace as Figure 14 during a communication spike. The log curve of MPI_Recv operations continues to
shift toward the right until the end of the execution. Unlike the smaller runs where events of the same types had roughly the
same durations, event durations are more spread out and irregular here. This could be due to load imbalances or, to a lack of
sufficient data for the number of processes used, or to the increased communication overhead present at these larger scales.

Figure 16: For the 16,384 process trace, we reduced the size of the particles to minimize the over-plotting of active events.
Large-scale logarithmic trends in particle positions are present, indicating delays in event start time across processes.

ment zooming or filtering features in the current visualiza-
tion. It may also be necessary to move away from per-event
visualizations and towards aggregation methods.

Finally, although we have used communication data col-
lected from ScaLAPACK computations, our tool is capable
of producing animations from any MPI trace data and thus
our study does not lose generality. Further studies can also

instrument and trace the computational activities of other li-
braries or actual simulations to evaluate their performance.
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