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Abstract—Parallel applications rely on I/O to load data, store
end results, and protect partial results from being lost to system
failure. Parallel I/O performance thus has a direct and significant
impact on application performance. Because supercomputer I/O
systems are large and complex, one cannot directly analyze
their activity traces. While several visual or automated analysis
tools for large-scale HPC log data exist, analysis research in the
high-performance computing field is geared toward computation
performance rather than I/O performance. Additionally, existing
methods usually do not capture the network characteristics
of HPC I/O systems. We present a visual analysis method
for I/O trace data that takes into account the fact that HPC
I/O systems can be represented as networks. We illustrate
performance metrics in a way that facilitates the identification of
abnormal behavior or performance problems. We demonstrate
our approach on I/O traces collected from existing systems at
different scales.

I. INTRODUCTION

Modern high-performance computing system design typi-
cally separates compute resources from on-line storage re-
sources, for a number of reasons, including improved power
utilization, reliability of compute resources, and ease of stor-
age management. However, this configuration also introduces
the need for additional hardware and software layers to man-
age the transfer of data between the compute cluster and per-
manent storage [1], as shown in Figure 1. These layers provide
tools for parallel application developers to effectively utilize
the available HPC resources, while not requiring them to be
aware of the inner workings of the I/O system. Conversely, the
additional layers also increase the overall complexity of the
system, thus making I/O performance analysis more difficult.
Because the vast majority of parallel applications rely on
the HPC I/O stack for their data management operations,
it is important that we understand the factors that influence
I/O performance. This understanding will allow us to better
detect and correct problems, and possibly to enhance system
performance through the implementation of new solutions.

I/O performance is expected to continue to be a significant
bottleneck as the size and power of HPC systems increase [2].
Understanding the complex interactions between the software
and hardware layers of the HPC I/O stack is a key prerequisite
for I/O performance analysis and improvement. Unfortunately,
the complex, layered nature of I/O systems makes analysis
nearly impossible without the use of specialized tools. The

sheer number of nodes and the events they generate result in
data sets that are far too large for direct analysis methods.
Small tests generate hundreds of thousands of events, with
medium to large tests potentially resulting in millions of events
per second of execution and consuming gigabytes of space
when written to log files. This growth in system and in trace
data scale is the motivation for creating novel visualization
techniques that can provide useful information about the state
and performance of the system at a glance.

Since typical HPC I/O subsystems consist of sets of in-
terconnected components, network performance characteristics
are relevant to the performance of the I/O system. We therefore
designed a procedure for extracting network performance
metrics from I/O trace data and a visualization method by
which we illustrate these metrics as they relate to the activity
of the I/O system. We record trace data from three layers
of the system: the application layer (MPI-IO and POSIX I/O
calls), the I/O nodes (responsible for transmitting I/O requests
to the storage cluster), and the storage nodes (which have
direct access to the storage hardware). The resulting trace
data is a record of all requests and communication events that
have occurred over the course of an application or benchmark
execution. We process this data to extract network performance
metrics, such as latency and throughput, and build a complete
view of the I/O system’s behavior.

To summarize, we have devised a general method for I/O
system performance analysis that would be applicable to I/O
trace data collected from any type of HPC system. We have
also performed a series of case studies of I/O benchmark ker-
nels on the IBM Blue Gene/P to demonstrate the capabilities
of our method.

II. RELATED WORK

Parallel I/O performance has long been a topic of interest
in the research community. Consequently, numerous studies
of I/O performance for large-scale parallel systems have been
conducted. Many such studies differ from ours in that they
utilize overall performance metrics from multiple application
runs at different scales in order to characterize I/O system
performance. Often, when a new type of supercomputer be-
comes available, HPC researchers perform tests to determine
its exact performance and behavior under certain loads [3],
[4]. Other research studies focus on understanding parallel



I/O nodes
640 Quad core 
PowerPC 450 nodes with 
2 Gbytes of RAM each

Commodity network
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Storage nodes
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Architectural diagram of the 557 TFlop IBM Blue Gene/P system at the Argonne Leadership Computing Facility.

Compute nodes
40,960 Quad core 
PowerPC 450 nodes with 
2 Gbytes of RAM each

High-level I/O libraries 
execute on compute nodes, 
mapping application abstractions 
into flat files, and encoding data 
in portable formats.
I/O middleware manages 
collective access to storage.

I/O forwarding software 
runs on compute and I/O 
nodes, bridges networks, 
and provides aggregation of 
independent I/O.

Parallel file system 
code runs on I/O and 
storage nodes, maintains 
logical storage space and 
enables efficient access to 
data.

Drive management 
software or firmware executes 
on storage controllers, 
organizes individual drives, 
detects drive failures, and 
reconstructs lost data.

Fig. 1. I/O system configuration of the IBM Blue Gene/P supercomputer. The compute nodes and I/O nodes are part of the same network, and the storage
nodes are connected to this network by a separate Ethernet network.

I/O system performance as it relates to a particular class of
applications, such as parallel visualization applications [5],
[6], or large-scale scientific simulations [7]. Still other studies
focus on analyzing the I/O performance of a particular parallel
program [8]. In our work, we have endeavored to develop
a portable I/O tracing system and visualization methods that
are general enough to be useful for analyzing any I/O trace,
while still being specifically designed for exploring parallel
I/O performance data.

Two main areas of related research closely pertain to our
project: data collection techniques from parallel systems and
visualization techniques for parallel and network data.

A. Data Collection

HPC software instrumentation and tracing are active areas
of research with a wide breadth of research topics. In our work,
we adopt successful techniques rather than building new ones,
and we focus our efforts on gaps in existing tools.

Some mainstream tracing solutions would not be a good
fit for our purpose because they require software or hardware
configurations not available on the systems we are working
with. LANL-Trace [9], for instance, relies on general-purpose
compute-node kernels and dynamically linked libraries, which
are not available on IBM Blue Gene systems using the
lightweight CNK kernel. HPCT-I/O [10] and IOT [7] are
two examples of I/O tracing toolkits developed specifically
for leadership-class architectures, respectively IBM Blue Gene
and Cray XT. However, the results published so far have all
been performed at small scale, so one cannot yet say how these
toolkits will function at HPC scales. Recently, the scalability of
Scalasca was improved up to 300,000 cores [11]. TAU [12]
is a flexible program and performance analysis toolkit that
supports parallel tracing and has a field-proven scaling record,
having been used at full scale on IBM Blue Gene, Cray XT,

and others. It is a generic tool framework that can be used for
various performance analysis tasks, I/O tracing included.

One successful example of generating large-scale I/O traces
is the work of the Sandia Scalable I/O team, who released the
traces of several parallel applications at a scale of 2744–6400
processes on Red Storm, a Cray XT3-class machine [13]. The
traces were obtained by incorporating a lightweight tracing
capability [14] into the SYSIO library [15], a user-level VFS
layer linked into the applications on that platform.

More recently, researchers have proposed automated tracing
and instrumentation tools for parallel I/O [16]. Such ap-
proaches combine code analysis with tracing instrumentation
in order to automatically extract I/O performance data from
parallel applications.

B. Data Analysis and Visualization

When confronted with relatively large amounts of parallel
event data, the use of automated analysis (machine learning) or
visualization methods becomes a necessity if we are to extract
useful information out of such data sets. This necessity has
driven the development of several analysis tools for parallel
data. For instance, KOJAK (Kit for Objective Judgement
and Knowledge-based Detection of Performance Bottlenecks)
[17]–[19] and Scalasca [20] both perform automated analysis
on parallel execution traces and detect performance issues.

Visual methods are effective when the analyst prefers more
direct access to the data, but they can also be coupled with
automatic pattern analysis in order to produce powerful results
[21]. However, many well-known visual analysis tools for par-
allel trace data focus on distilling information from MPI traces.
Older tools, such as Paraver [22] and ParaGraph [23] focus on
analyzing data collected on PVM systems. They use various
graph displays, histograms and Gantt or bar charts to present
load balancing and performance data. Projections [24] is a



data analysis and presentation suite specific to the Charm++
parallel programming environment. It also employs a number
of different visualizations to depict processor utilization and
parallel even durations. Jumpshot [25] and its predecessors
(Nupshot and Upshot [26], [27]) use the MPE library [28]
to trace MPI calls in parallel applications and display the
collected information in Gantt charts, using color to represent
types of MPI calls and arrows to indicate communication
between processes. Vampir [29] combines Gantt charts with
aggregate views of system activity. Jumpshot and Vampir have
both been successfully employed in the analysis of parallel
I/O data as well. The TAU (Tuning and Analysis Utilities)
[12] suite is a complete set of analysis tools for parallel
performance data, including both tracing and visualization
capabilities. TAU’s visualization tools include Gantt charts,
call graph views and communication matrices. Virtue [30]
is a unique parallel trace data visualization tool in that it
employs virtual reality techniques to create an immersive and
collaborative environment in which developers can interact
with their parallel application in real time and can potentially
adjust its behavior as it runs.

Because per-process activity representations such as Gantt
charts tend to experience scalability issues, some visualization
designs emphasize parallel event patterns and regard event to
process association as secondary [31], [32]. This approach
allows for a more scalable representation of large parallel
traces. IOVis is a direct precursor to our work because it
targets HPC I/O traces in particular and because it contains
a matrix representation of communication patterns within the
I/O system.

As we have seen, several analysis methods for parallel
systems exist. Generally, analyzing parallel trace data requires
either machine learning methods, which automatically detect
areas of interest, or visual methods. Automated analysis is
sometimes used in conjunction with visualization, resulting
in powerful analysis tools. However, more analysis tools are
dedicated to the study of interprocess communication (MPI
traces) than to parallel I/O. Some tools originally designed for
MPI performance analysis have been adapted for the study of
I/O data as well [33], [34]. There are, however, relatively few
tools have been dedicated to I/O system analysis, and it is
exactly this gap that we are trying to fill.

III. DATA COLLECTION

The typical HPC I/O software stack consists of multiple
layers of software that provide a variety of I/O capabilities
for specific application I/O patterns, system software config-
urations, and system architectures, as was shown earlier in
Figure 1.

Across the majority of HPC systems, applications store data
on high-performance parallel file systems. These file systems
include PVFS2 [35], Lustre [36], and GPFS [37]. A file
system server processes application I/O requests through the
file system client interface. The computation resource may
run file system clients on all its nodes or on a subset of
the nodes in conjunction with I/O aggregation and forwarding

tools. Examples of I/O forwarding tools include IOFSL [38],
[39], ZOID [40], IBM’s CIOD, and Cray’s Data Virtualization
Service.

At the application level, there exist application I/O inter-
faces. File system I/O interfaces, such as POSIX, provide
direct access to the file system or I/O forwarding layer.
MPI-IO provides a parallel I/O interface built on top of
the file system’s APIs; it coordinates and optimizes parallel
I/O patterns. High-level and scientific data libraries provide
mechanisms to generate self-describing and portable data sets.

The overall goal for these software layers is to provide the
best possible I/O performance for common HPC application
I/O patterns. Achieving this goal is often a difficult task for
application developers because the cost of the high-level I/O
operations in the lower layers of the I/O software stack is
unknown. Additional information and insight about how these
layers interact and what the cost of high-level operations is
in subsequent layers will help isolate bottlenecks within the
I/O software and identify areas of improvement for software
developers.

To capture the end-to-end behavior of I/O requests, we
integrated several instrumentation layers into the application,
PVFS2 file system client and server, and (optionally) I/O
forwarding. These data collection layers track the beginning
and completion of file system I/O events and collect informa-
tion about each event, such as event type and payload size.
Each data collection layer collects information for the events
initiated at that layer and adds identifiers to events to track the
operation execution through underlying software layers.

At the application layer, we instrumented MPI-IO and
POSIX calls, capturing information such as the start and end
time, file identifier, and data payload size. We instrumented
the IOFSL I/O forwarding infrastructure to capture request
caching, merging, and other transformations performed while
requests are forwarded from the compute nodes to the I/O
nodes. Note that IBM’s CIOD forwarding replays every for-
warded call one-by-one transparently, and thus we need no
additional instrumentation. Hence, we skip the I/O forwarding
layer from the graphs shown later in the paper. We instru-
mented PVFS2 client to report the communication between
the users of the file system and the storage servers. PVFS2
daemons running on the storage servers are instrumented
to track network communication and storage management
operations.

We have deployed the tracing infrastructure on the systems
at the Argonne Leadership Computing Facility (ALCF). We
use the 40-rack Intrepid Blue Gene/P platform for generating
application traces and the 100-node Eureka Linux cluster for
generating PVFS2 server traces. Each BG/P rack contains
1024 compute nodes and 16 I/O nodes. Each compute node
has a quad-core 850 MHz IBM PowerPC 450 processor and
2 GB of RAM. Each Eureka node has two quad-core Intel
Xeon processors, 32 GB of RAM, and 230 GB of local scratch
storage. Eureka and Intrepid share a 10 Gbps communication
network. In addition to Intrepid, for smaller experiments we
can use Surveyor, a single-rack BG/P test and development



system with identical internal architecture.
When tracing applications in the ALCF environment, we set

up a temporary PVFS2 storage cluster on Eureka and mounted
this file system on the allocated Intrepid I/O nodes. With this
deployment, we have successfully traced applications utilizing
up to 16,384 processes on Intrepid and up to 32 PVFS2 I/O
servers on Eureka. The applications we have evaluated in this
environment include the mpi-tile-io benchmark [41], the IOR
benchmark [42], the FLASH I/O kernel [43], and the Chombo
I/O kernel [46].

IV. VISUALIZATION METHODOLOGY

From our previous experiments with the I/O trace data [32],
we discovered that visualizing the duration of communication
events did not reveal particularly useful information regarding
the state of the system. At the I/O node and storage node
levels in particular, the Send and Receive events we record
tend to have roughly the same duration, with slight variations
linked to the amount of data being transferred. These results
are to be expected of a well-tuned system and are therefore not
valuable. We therefore decided to use metrics such as latency
and transferred data size in our I/O network visualization.
This decision has required us to essentially “read between the
lines” of our trace data to visualize the I/O network rather than
individual events. We use the times between certain events and
their associated buffer sizes to construct our metrics, rather
than relying on event duration alone.

Our approach involves adapting a hierarchical graph visual-
ization method [44] for the analysis of large-scale parallel I/O
data. Typical high-performance I/O systems have a hierarchy
of compute nodes, I/O nodes and storage nodes, which are
connected by one or multiple networks. Our tracing system
records the data transfers occurring through the I/O system
over the course of a parallel application’s execution. Thus, we
felt that this graph visualization method would be effective
for our purposes. We modified the hierarchy representation
to display the layers as concentric rings, with edges running
between them depicting communication. Thanks to our hierar-
chical layout, our edge routing does not require bundling, thus
saving computation time. In our case, we needed to visualize
three separate layers of the I/O systems. If data collection
methods allow for tracing more than three layers, our design
can be easily extended to accommodate the extra layers.

First, we construct the network hierarchy by scanning
through the I/O trace and and building lists of all the compute
nodes, I/O nodes, and storage nodes discovered in the data. We
then lay out the nodes in three concentric rings, one for each
layer. The ordering of the rings is as follows: the outer ring
contains the compute nodes, sorted by MPI rank. The middle
ring consists of all the client nodes, sorted by the ordering
in which the compute nodes communicate with them. The
innermost circle houses the server nodes, ordered by their node
ID. We have chosen to lay out the nodes in this way because in
our traces, there are always significantly more compute nodes
than I/O nodes and more I/O nodes than storage nodes. Thus,

we allocate more space to represent nodes in the denser layers.
An overview of the design can be seen in Figure 3.

Physical location information is unavailable in our data,
so we chose to order the compute nodes by rank. We made
this design choice because, in our smaller initial tests, the
set of compute nodes was divided into contiguous subsets of
equal size based on the I/O node they communicated with.
To a certain degree, this also holds true at higher scales.
Thus, this ordering and subsequent placement of the I/O nodes
representations helped minimize the number of edge crossings
at this level, resulting in cleaner images.

To construct the edges, we query the data for all the I/O
events that occurred during a given period of time. This period
may be the entire duration of recorded execution or simply
a fraction of time in the trace data. If the resulting events
indicate that communication occurred between two nodes, then
there is an edge between these nodes. For example, if we
find a ClientSend event at the I/O node level, we look for a
corresponding ServerReceive event at the storage node level
determine whether there is communication between the I/O
node and the storage node. We then bin the observed latency
values on each edge to construct a histogram that will be the
basis for our edge coloring. Figure 4 shows an observed I/O
communication graph.

In order to avoid overflowing local machine memory by
loading entire data sets at once, we stream and aggregate
chunks of time to construct the graph, bounded by a time
range selected by the user. So, we provide an interface for the
user to select a period of time via a timeline histogram. We
use a temporal selection interface consisting of a histogram
of latency values found in the currently loaded data set.
This interaction method is similar to the temporal navigation
approach of [31] and [32]. The histogram displays an overview
of average, maximum, and minimum latency values. We draw
a solid line to depict the average values. This line then fades to
100% transparency toward the top of the histogram to indicate
maximum and toward the bottom to indicate minimum values.
Figure 2 shows an example latency histogram constructed from
an I/O trace data set.

Fig. 2. Histogram timeline of an I/O trace. The x axis represents time in the
execution and the y axis shows the corresponding latency values. A solid line
depicts average latency, fading out toward the top and bottom of the histogram
to indicate maximum and minimum values. The selected temporal region
is denoted by the semitransparent gray rectangle. This particular histogram
shows significant fluctuations in latency values, which is indicative of queuing
effects. Requests queue up while waiting for the I/O system to respond,
causing increased latency; as the system processes requests, the latency goes
down, producing the zig-zag histogram we see here.
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Fig. 3. Diagram of the graph display design.
The three concentric rings contain delimita-
tions for compute nodes, I/O nodes, and I/O
servers. The rings are ordered from outward
to inward by the number of nodes typically
utilized at that particular layer in the system,
in descending order. This ordering ensures that
the layers with the most nodes will be allocated
more space, as they will correspond to the
rings with higher diameters. The BlueGene/P
I/O system architecture consists of two types of
network: a tree network between the compute
nodes and I/O nodes, and an all-to-all network
between the I/O nodes and the storage nodes.

Fig. 4. I/O activity graph, depicting latency values on each link. This I/O trace contains 8192 compute
processes, 32 I/O nodes, and 8 storage nodes. The two types of network configuration (tree network
and “all-to-all” Ethernet) are clearly visible between the layers. On each edge, the locations of colored
points indicate the latency values measured on that network link. In each layer of edges, the colored
points closer to the edge of the circle (toward the outside) represent high values, while those closer to
the circle center indicate the lowest latency values found in the data. Color represents the number of
occurrences of a particular value and will be explained in more detail in the upcoming paragraphs.

A. Color Mapping

In addition to revealing the presence of communication
between nodes, each edge is itself a 1-D heatmap of values
characterizing this communication. In this section, we describe
the procedure by which we compute the values for each edge
and how we represent these values using edge coloring.

Latency is the amount of time it takes from the start of a
request or send event until its processing starts or until the
corresponding receive event ends. Depending on the layers at
which events originate, latency is computed as follows:

• Between compute nodes and I/O (client) nodes: the
difference between the start time of the first client event
and the start time of the MPI-IO request; the “first client
event” is the first I/O node event in chronological order
which corresponds to the application I/O request. This is
the I/O node’s response to the compute node’s request.

• Between I/O nodes and storage nodes: the difference
between the end time of the ServerReceive event and the
start time of the corresponding ClientSend event

• Time to write data to permanent storage: the difference
between the end time of a server Write event and the
start time of the same event. This metric is not currently
present in our visualization, but adding it would be a
straightforward extension.

We compute latency values for each edge over the selected
period of time. To do so, we need to match events across
layers. We do this by tracking the rank of the MPI process
which initiated the I/O request and the ID of the request,
which is unique per request per MPI rank. The coloring of
the edges, shown in Figure 5, corresponds to a 1-dimensional
heat map of latency values. Latency is depicted by the position
of the coloring on the edge. On each edge, the outermost point
represents the highest latency value found in the data set, while
the innermost point corresponds to the globally lowest latency
values. We have chosen this ordering because it supports the
perceptual association of larger values with the extra space
available at the outer rim of a circle.

Because latency is heavily influenced by the amount of
data being transferred through a particular link, we have also



included the capability of visualizing communication sizes
in our tool. Unfortunately, not all of our data sets contain
buffer size information at the compute process level. When
this information is present, it is helpful in explaining why
certain processes experience higher or lower latency levels
than do other processes, or it indicates a performance problem
when data sizes are disproportionately small in relation to the
observed latency. In the graph visualization, buffer sizes are
represented in the same manner as latency values are. Coloring
at the outer edge of the circle represents the largest buffer
size, while the center of the circle (edge destination point)
corresponds to the minimum buffer size.

Fig. 5. Illustrating the color mapping: A section of the network activity
graph between the compute nodes and I/O nodes from a FLASH trace on
HDF5 with 2048 compute processes. The abundance of green and yellow
coloration indicates that most links contain approximately the same number
of latency value occurrences. The colored bands are distributed in a circular
fashion, meaning that most communication across the layers occurred with
approximately the same latency. The longer blue lines correspond to a small
subset of compute nodes that experienced a wide range of latency values.

The color points on the edges illustrate the number of times
a certain latency value was encountered in the selected time
period. We use separate color maps for the two levels of edges,
because using a single color map would result in different
values mapping to the same color across the layers and would
be confusing. Grey means that no values were detected in the
range. At the application–I/O node level, blue represents a
low incidence of values, green represents the mid-range, and
yellow denotes the latency values that were encountered the
most. At the I/O node–storage node network level, the color
progression is violet → red → orange. As there can be an
extreme range between single outliers and values with many
occurrences, color interpolation is performed on a logarithmic
scale, so that low level details are visible as well as large scale
trends. We designed both these color gradients such that they
have increasing luminance from top (for low values) to bottom
(high values). Our intention was to avoid the confusion caused
by color maps with random luminance variability [45].

B. Nodes and Edge Routing

We simplify our edge routing procedure by initially ordering
the node representations at each layer in an advantageous
manner. The nodes from each layer are represented by ring
segments or by circle sectors in the case of the I/O servers. On
the ring corresponding to the application layer, processes are
sorted ascendantly according to their MPI rank. We attempt to
place client nodes on their ring according to which processes

they receive requests from. In our case, the compute nodes and
the I/O nodes are connected by the Blue Gene/P tree network,
so any compute node may send requests only to one I/O node,
whereas I/O nodes may receive requests from a number of
compute nodes. Thus, our ordering of process IDs and I/O
nodes in the hierarchy minimizes the number of edge crossings
at this level. Edge crossings are unavoidable, however, when
visualizing larger data sets containing thousands of compute
nodes, such as the one depicted in Figure 4. The innermost
circle represents the storage nodes, arranged in the order
in which the nodes were detected in the data. Since the
network between the I/O and the storage nodes has all-to-all
connections, there is no particular ordering that we can apply
on the storage nodes’ layer.

Once the edge lists are generated, we render the graph,
using linear interpolation of angles around the circle to give
edges their curvature and to route them such that they do
not cross the intermediate circles belonging to other layers
unless they have reached their target node. For an edge with
a start point (startR, startθ ) and an end point (endR, endθ ) in
polar coordinates, intermediate point positions are calculated
as follows:

interθ = startθ +(endθ − startθ)× interpFrac
interR = startR+(endR− startR)× interpFrac

where interpFrac is the fraction of the distance along the curve
between 0 and 1. We define the number of interpolation steps
by at least the number of histogram entries, but also such that
the edges appear as curves and no interpolation artifacts are
visible. We also route edges on the shortest path around the
circle by disallowing the difference between the end and start
angles to exceed π or to be less than −π . We adjust the angles
as follows:

endθ =

{
endθ −2π, if (endθ − startθ)≥ π

endθ +2π, if (endθ − startθ)< π

V. RESULTS

To evaluate our method, we have collected a number of
benchmark traces on the IBM Blue Gene/P systems Intrepid
and Surveyor, which are housed at the Argonne National
Laboratory, and visualized the latency recorded in the I/O
network. In this section, we present the results of our case
studies. Figure 6 shows an overview of the latency patterns
we most commonly saw in our study.

One problem that we discovered early on is the presence
of negative latency values. These values occur as a result
of slight clock desynchronization among the physical nodes
running the application and I/O subsystem software. The
negative values alerted us to the desynchronization problem,
but desynchronization errors that maintain positive values
are an even worse case. When tracing execution across nu-
merous processors and over networks, one cannot keep the
nodes’ clocks fully synchronized without introducing frequent
Barrier-type operations or high-priority messages to resynchro-
nize them. Introducing Barriers is undesirable because it would



(a) Circular alignment of colored segments indicates that
latency values are approximately constant, indicating a well-
tuned and balanced I/O.

(b) A striped pattern occurs when the data is striped across
various data storage servers, resulting in bands of nearby ranks
accessing different I/O nodes. Depending on the network con-
figuration, this kind of access pattern might not be beneficial.

(c) A noisy pattern results from a high variance in latency, as
colored segments do not follow any particular alignment. This
pattern is characteristic of initialization stages, but could indicate
performance problems or imbalance if seen for an extended
period of time during application execution.

(d) An outlier behavior occurs when a small number of com-
pute nodes have higher latency than the rest, which is shown
as a small number of colored segments at the very edge of the
circle. This pattern could indicate severe imbalance, hardware
failure, or special-purpose compute nodes that write much larger
volumes of data.

Fig. 6. Common patterns in our latency visualization.

perturb the observed environment and negatively impact the
performance of the applications we are analyzing. Instead,
we were able to adjust for clock skew where we had MPI
file operations in the traces that are known to be blocking
operations, such as File Open. This operation acts as a Barrier,
so it should release at approximately the same time on all the
compute nodes. When we found discrepancies between the
end times of File Open operations, we adjusted the timings of
all application-level I/O events such that these discrepancies
were eliminated. This step greatly reduced the frequency of
negative latency values between the compute processes and

I/O nodes, thus we can confidently say that we alleviated
this problem for the positive values as well. However, we
still lack a reliable method for eliminating desynchronization
across layers without introducing significant error in the data.
We treat the negative values as simply the minimum observed
latency and are thus still able to infer interesting and useful
information regarding the relative latency among nodes and
between different layers of the I/O system.

A. Chombo

The Chombo I/O benchmark is derived from Chombo, a
parallel toolkit for adaptive solutions of partial differential
equations [46]. Chombo is an interesting application because
its I/O patterns are difficult for parallel file systems or I/O mid-
dleware to optimize. We performed our tests on Surveyor, with
the examples shown here utilizing 1024 compute processes, 4
I/O nodes, and 2 storage nodes, and testing on both the in.r222
and in.r444 example input files provided with the benchmark.
The difference between these two input cases is that in.r444
writes a larger output file, approximately 18 Gbytes.

At this scale, our visualization had two interesting effects,
in addition to showing how the I/O system is performing
and the data write patterns of the application. First, it clearly
displays the tree network between the application nodes and
the I/O nodes. We can see how the processes are divided in
accessing the I/O nodes. Second, it illustrates how the I/O
system processes the incoming data buffers, breaking them
up into smaller pieces that are more effectively written to the
storage clusters. This is apparent both in the lower latency
values present between the I/O nodes and the storage nodes
and in their distribution of write buffer sizes.

In the r222 example, shown in Figure 7, latency values
between the application and I/O node layers are clustered into
three groups, as shown by the three blue concentric rings in
the visualization. The different latency values on the rings
correspond to different time periods in the execution. Between
the I/O nodes and storage nodes we notice mostly mid-range
latency values, but with a wide distribution, as indicated by the
relatively long length of the colored segments. The benchmark
writes data using several buffer sizes, which correlates with the
distribution of latency values.

By reducing the range of the temporal selection, we can
see a change in access patterns between early (Figure 9)
and late (Figure 10) in the application. The second half of
the execution exhibits a wider distribution of values and the
highest latency values recorded in this data set. The maximum
latency, denoted by the blue coloring at the outermost edge of
the circle, was observed at the end. This is likely a result of the
cleanup operations at the end of execution. Also observed is an
alternating pattern of higher and lower latency values across
the compute nodes - with some nodes showing no activity at
all (no edges) - which indicates that some network links may
have been saturated with requests and thus resulted in longer
wait times for requests to be processed.

In the r444 case displayed in Figures 8 and 12, we no-
tice a much wider distribution of latency values, since the



Fig. 7. Chombo r222 I/O latency over the entire execution. There exists a
wide latency distribution and an alternating pattern of high latency among
some of the compute processes. These patterns correspond to the data
write patterns observed in Figure 11.

Fig. 8. Chombo r444 I/O latency over the entire execution. There is a very
wide distribution of relative latency values among the compute processes.
The data write patterns for this example, shown in Figure 12, indicate an
increased number of write requests, which in turn causes queuing at the I/O
system level and results in processes having to wait longer for their requests
to be filled.

Fig. 9. Chombo r222 I/O latency—first half of the execution; all processes
appear to experience approximately the same latency with respect to I/O
node access. The larger data buffers are likely being written to storage
in this period of time, as the latency values are higher on average than
throughout the rest of the execution.

Fig. 10. Chombo r222 I/O latency—second half of the execution, showing
a wider distribution of, but generally lower latency values. A number of
processes are outliers with regard to the latency they experienced. These
processes are responsible for writing the larger data buffers and hence have
higher latency values.



Fig. 11. Chombo r222 write buffer sizes throughout execution, showing a
wide distribution of large and small data write requests. Colored segments
indicate high to low buffer sizes, from the outside toward the inside of the
circle. The scale is identical to the one in Figure 12. At the I/O node–
storage node communication level, the buffers are divided up for storage,
filling almost the entire range of sizes.

Fig. 12. Chombo r444 write buffer sizes throughout execution. This
instance of the application mostly writes the same buffer sizes as the r222
case. Surprisingly, there is an instance of a very large buffer written by
process 0 (highlighted by the red circle). If this buffer could be broken up
into smaller pieces, it would likely improve the overall performance of the
application.

visualization has several concentric rings of blue coloring
and a generally noisy pattern. This is a likely result of the
increased amount of data being written, and consequently, of
the increased number of I/O access requests.

In Figure 11, we can see that some consistent buffer sizes
are being written, indicated by the concentric rings, but many
of the larger data sizes appear to be randomly distributed
among the compute processes. The r444 case has a much
more concentrated pattern of buffer sizes, indicating that it
was better suited to utilize the available I/O resources. The
single very large request issued by process 0 in this case is
a performance bottleneck. If this data buffer could be divided
into smaller write requests, we would likely see a performance
improvement.

B. FLASH-IO

FLASH-IO is the I/O kernel of FLASH, a multiphysics
multiscale simulation code for general astrophysical hydro-
dynamics problems [43]. This kernel measures the I/O per-
formance of the FLASH code by creating the primary data
structures used in the simulation and then writing out example
plot files. FLASH-IO writes data in three separate files: a
checkpoint file, a plot file with centered data, and a plot file
with corner data. Our main FLASH-IO example is a trace
collected on 4096 compute processes, using 16 I/O nodes and
4 storage nodes to handle I/O requests. The data model used
in this test is PNetCDF, which uses collectives to optimize I/O
access. We also show the significant impact that the PNETCDF

Fig. 13. Latency patterns in FLASH-IO with HDF5 on 2048 processes, 8 I/O
nodes and 2 storage nodes. This configuration exhibits a much noisier latency
pattern than its PNetCDF counterpart, a result of not utilizing collectives.
However, this also alleviates the load on the I/O nodes, as evidenced by the
smaller difference between the largest and smallest latency values.



Fig. 14. FLASH-IO latency patterns during initialization. This stage does
not require the writing of large data buffers, as we can infer from the low
latency values observed.

Fig. 15. FLASH-IO latency patterns during the writing of both plot files.
Latency values primarily form two concentric circles, indicating that two
distinct buffer sizes are written at this stage, but that the system is otherwise
well-balanced.

optimization has over the HDF5 data model (Figure 13)
In the first phase, the benchmark is initialized and writes

a checkpoint file. This accounts for the low latency values
observed in Figure 14 - this is not an operation that requires
the storing of large amounts of data; the load on the I/O nodes
and on the storage nodes appears to be balanced.

In the later phases of FLASH-IO (Figure 15), the two plot
files are created and written into. The clear banding of the
latency values indicates that the files are written using mainly
two buffer sizes. There are, however, outliers with very high
latency (which may be difficult to see in the scaled-down
image). This additional latency is likely caused by queuing of
requests at the I/O node level. Each I/O node receives nearly
simultaneous requests from 256 compute processes; if it is
unable to process all these requests at once, it must leave some
of the processes waiting for a brief period of time. But since
the main latency rings are even and encompass all the compute
processes, we can conclude that the system is appropriately
load-balanced and that all the processes have equal priority
for the I/O nodes to process their data write requests.

VI. CONCLUSIONS AND DISCUSSION

Efficient file I/O is critical to the performance of large-
scale scientific applications and is expected to remain so,
given the continuously decreasing bytes/flops ratio. The scale
of contemporary HPC systems, coupled with their complex,
multilayer hardware and software architecture, means that the
performance measurement and analysis of HPC I/O systems
are bound to be formidable tasks. Even at the relatively modest
scale of a few thousand processes, jobs can generate millions

of I/O events that take gigabytes of log space, with the
resulting trace files beyond the human capability to sift through
manually.

This work presented a novel radial visualization technique
that lends itself well to the analysis of complex, multilayer
event traces. The technique was applied to the I/O traces of
multiple application I/O kernels obtained on a Blue Gene/P
system at a scale of several thousand processes, collected
from three instrumented I/O layers: application processes, I/O
nodes, and storage nodes. Radial graphs visualize the connec-
tions between these layers in a compact, easily comprehensible
(not to mention attractive) fashion. The connections can be
colored to show additional information about the I/O events,
such as the latency or data payload size, providing an overview
of both the raw values and their frequencies.

This approach can be used to analyze and compare existing
I/O paradigms, revealing potential inefficiencies and bottle-
necks. Our experiments with traces from production systems
have revealed many interesting patterns; in addition to con-
firming an overall good tuning of the systems tested, we have
identified several cases that could result in inefficiencies and
thus warrant further analysis. Techniques such as those pre-
sented here can reveal problems in applications and limitations
in I/O systems that are not otherwise immediately apparent.
We believe that our technique can be beneficial for applications
and system software developers, as well as for HPC system
administrators, in the performance analysis, verification, and
tuning of large-scale applications, I/O middleware, and HPC
I/O systems—both existing and future.



VII. FUTURE WORK

In order to be a truly useful day-to-day tool for practitioners,
our technique would need to be part of a more comprehensive
tool set comprising multiple visualization techniques, ad-
vanced filtering and analysis, interactive drill-down techniques
for in-depth studies, and so forth. While that surpasses the
scope of our current effort, we hope for further collaboration
with developers of such comprehensive sets tool sets in order
to integrate our approach with their existing systems.

Our method has proven to be effective at current scales;
but it still has limitations. As we anticipate exascale systems
comprising up to a million compute nodes and capable of
executing a billion of compute threads in parallel, it will be
necessary to perform pattern analysis and encode multiple
nodes’ communication into one edge.

The technique could be made more comprehensive by
extending it to visualize additional layers, such as a high-level
I/O library, I/O forwarding layer, or storage hardware. In the
near future, we intend to implement additional metrics into our
visualization, such as bandwidth per link or data throughput.

While our case studies were performed on IBM Blue Gene/P
systems, our method is not limited to them, and it would be
interesting to use our approach to compare and contrast our
results to the I/O patterns of other HPC architectures.
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