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ABSTRACT
As supercomputers grow ever larger, so too do application run times
and data requirements. The operational patterns of modern parallel
I/O systems are far too complex to allow for a direct analysis of
their trace logs. Several visualization methods have therefore been
developed to address this issue. Traditional, direct visualizations
of parallel systems, such as Gantt charts, can be applied to paral-
lel file systems, but do they not capture domain specific properties
nor scale up to modern systems. We propose a portable I/O tracing
system and visualization methods to analyze the traces we have ob-
tained. We demonstrate the effectiveness of this system on existing
parallel storage systems.

Categories and Subject Descriptors
B.4.3 [Input/Output and Data Communication]: Interconnec-
tions (Subsystems)—Parallel I/O; H.5.m [Information Interfaces
and Presentation]: Miscellaneous

General Terms
Performance

Keywords
Parallel I/O, Performance Analysis Tools, Information Visualiza-
tion

1. INTRODUCTION
As the size and complexity of high-performance computing (HPC)

systems continue to increase, several software layers provide sup-
port for applications to manage, coordinate and effectively use HPC
resources. Developers use the tools and capabilities of these layers
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to create efficient and scalable scientific applications. This layered
software capability and deployment approach also provides users
with high-level interfaces that encapsulate the often intricate details
of HPC system software.

The HPC I/O software stack comprises many layers that exhibit
complex interactions. As applications issue I/O requests through
this software stack, the I/O requests are handled by several soft-
ware layers that transform and optimize file I/O for storage on a
specific file system configuration. Obtaining an accurate and high-
fidelity view of an application’s I/O behavior is difficult or even
impossible with current performance analysis tools. While a single
I/O kernel can be distilled and analyzed from some applications,
such as the FLASH-IO [8] and Chombo [6] I/O kernels, one cannot
determine the overhead incurred at each software layer. While per-
formance analysis tools, such as Darshan [4] and IPM [37], provide
a high-level view for application-level I/O requests, the information
provided by these tools is too broad for in-depth analysis.

An extensible set of tools that can provide a detailed representa-
tion of application I/O behavior would provide sufficient informa-
tion to determine these costs. Currently, no end-to-end data col-
lection and analysis tools provide this capability. The goal of the
IOVIS project is to fill this void by providing end-to-end analysis
capabilities for HPC I/O systems. IOVIS consists of data collec-
tion tools that hook into I/O system software and produce com-
prehensive I/O traces. Using these traces, the IOVIS visualization
and analysis tools provide scalable techniques for users to distill
knowledge and insight about application I/O behavior. With these
tools, users can perform in-depth analyses of application I/O re-
quests across the I/O software layers and determine why, where,
and when I/O bottlenecks occur, based on an application I/O use
case.

In this paper, in sections 3 and 4, we present our initial imple-
mentation of the IOVIS tool set. We describe the capabilities pro-
vided by the tools, how the tools integrate with the I/O system soft-
ware components, and the implementation of several visualization
techniques that enable scalable analysis of large traces. In Sec-
tion 2, we present recent research related to the IOVIS project. In
Section 5, we present our results using these tools and techniques.
Section 6 presents our current and future areas of research. Section
7 concludes the paper with a brief summary.
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2. RELATED WORK
There are two significant areas of related work to IOVIS. HPC

software instrumentation and data collection research is related to
the IOVIS tracing and data collection components. The IOVIS
information visualization and analysis research is related to prior
work that has developed data visualization techniques which target
software performance data and metrics.

2.1 Related Data Collection Work
Tools are required to capture data on the behavior and interaction

of I/O software components. HPC software instrumentation and
tracing are active areas of research with a wide breadth of research
topics. In our work, we adopt successful techniques rather than
building new ones, and we focus our efforts on gaps in existing
tools.

Some mainstream tracing solutions would not be a good fit for
our purpose because they require software or hardware configura-
tions not available on the systems we are working with. LANL-
Trace [20], for instance, relies on general-purpose compute-node
kernels and dynamically linked libraries, which are not available on
IBM Blue Gene systems using the CNK operating systems. HPCT-
I/O [12] and IOT [30] are two examples of I/O tracing toolkits de-
veloped specifically for leadership class architectures, respectively
IBM Blue Gene and Cray XT. However, the results published so
far have all been performed at small scale, so it is too early to say
how these toolkits will function at HPC scales. TAU [34] is a flexi-
ble program and performance analysis toolkit that supports parallel
tracing and has a field-proven scaling record, having been used at
full scale on IBM BG/L (LLNL), Cray XT3, SGI Altix (NASA
Columbia), and Linux clusters (NERSC). It is a generic tool frame-
work that can be used for a variety of performance analysis tasks,
I/O tracing included.

One successful example of generating large-scale I/O traces is
the work of the Sandia Scalable I/O team, which released the traces
of several parallel applications ran at a scale of 2744–6400 pro-
cesses on Red Storm, a Cray XT3-class machine [31]. The traces
were obtained by incorporating a lightweight tracing capability [26]
into the SYSIO library [35], a user-level VFS layer linked into the
applications on that platform.

Using IOVIS, we opt for a direct instrumentation approach to
capture I/O operations. IOVIS traces the MPI-IO operations through
the PMPI profiling interface and uses symbol renaming to capture
POSIX I/O operations. This makes it easy to insert callbacks into
the tracing infrastructure for each MPI-IO operation performed by
the application. For other features within software components, we
manually instrument software to collect data of interest. For exam-
ple, we wrap the network communication calls within the PVFS2
server and client to capture information related to PVFS2 network
communication.

We have performed an initial study into the problem of large-
scale tracing, using in-house expertise in parallel file systems (the
PVFS2 team), MPI (the MPICH team), and performance analysis
(the MPI Parallel Environment (MPE) team), as well as our collab-
oration with the TAU team [34]. We traced MPI-IO calls made to
a PVFS2 [28] volume using the PMPI interface discussed earlier.
The application we used was IOR [13], a parallel application I/O
benchmark. The trace events used for this work were logged by
using MPE.

2.2 Related Visualization Work
Using visualization to optimize the performance of parallel sys-

tems has been explored in several ways by researchers. The com-
munications between parallel processes and data storage servers

have been researched through the analysis of access patterns [29,
39, 40]. Communication between software modules, such as client-
server relationships, has also been analyzed through the use of
graph-based visualizations [41]. These visual approaches are ef-
fective at analyzing network traffic, but do not provide insight into
computation efficiency in a massively parallel computation envi-
ronment.

One common set of visualization tools for MPI data is Jumpshot
[5, 38, 22] and its predecessors (Nupshot [16] and Upshot [11]).
These tools use the MPE library to intercept the MPI calls in a
parallel program. They then visualize this information using Gantt
charts and color coding for MPI calls. ParaGraph [10] is an older
program that visualizes MPI traces collected with the MPICL li-
brary, which also uses Gantt charts, among other metrics such as
overall summaries and communication graphs. Vampir [17] is a
tool that combines Gantt charts and summary views. TAU’s [34]
visualization toolkit includes Gantt charts, a communication ma-
trix view, and a call graph. The IPM [37] data collection framework
also includes some capability for visualizing the resulting data. The
visualizations show aggregate I/O rates and MPI function execution
times in the form of histogram charts. Virtue [33] is the most un-
usual of the related works listed here in that it allows the user to
to monitor the performance of an application while it is running
and potentially tune it or interact with it. Virtue also incorporates
virtual reality techniques, such as support for a CAVE (Cave Au-
tomatic Virtual Environment), to provide a more immersive visual-
ization. For other parallel environments, GVU’s PVaniM tool [36]
and ATEMPT [19, 18] present some detailed views of communica-
tion events in a PVM (Parallel Virtual Machine) system.

Some software visualizations address the scalability issues of
plots such as Gantt charts. Jerding et al. [14], Moreta and Telea
[23], and Cornelissen et al. [7] use plots similar to Gantt charts to
profile program execution traces, along with sub-pixel techniques
to improve scalability. However, they maintain the strict order-
ing of the charts. In our previous work [25], we addressed some
of these issues by removing the vertical constraint of Gantt charts
and incorporating techniques such as high-precision alpha blend-
ing and opacity scaling similar to the work of Johansson et al. [15].
While these approaches aid in visualizing large scale communica-
tion patterns, they do not incorporate the bipartite nature of I/O
communication. Here, we present a combination of these existing
approaches with a bipartite detail representation and a multifocal
temporal plot.

3. DATA COLLECTION APPROACH
Any system analysis is only as good as the data on which it is

based. To effectively exploit visualization in order to better under-
stand HPC I/O patterns, we must gather the right data, at the right
level of detail. In this section, we describe the general features and
interactions of the HPC I/O software stack and describe how trace
data is collected from this software stack.

3.1 HPC I/O Software Stack
The typical HPC I/O software stack consists of multiple layers

of software that provide a variety of I/O capabilities for specific ap-
plication I/O patterns, system software configurations, and system
architectures. Figure 1 illustrates how these software components
are layered on HPC systems.

Across the majority of HPC systems, applications store data on
high-performance parallel file systems. These file systems include
PVFS2 [28], Lustre [3], and GPFS [32]. These file systems can be
dedicated for use by a single computational resource or shared by
several computational resources. The file system is often deployed
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Application

High-Level I/O Library

I/O Middleware

I/O Forwarding

Parallel File System

I/O Hardware

I/O Middleware 
organizes accesses from 
many processes, especially 
those using collective I/O.

MPI-IO

Parallel File System
maintains logical space and 
provides efficient access to 
data.

PVFS, pNFS, PanFS, 
GPFS, Lustre

I/O Forwarding
bridges between application 
tasks and storage system 
to provide aggregation for 
uncoordinated I/O.

IOFSL, IBM ciod, Cray DVS

High-Level I/O Library
maps application 
abstractions onto storage 
abstractions and provides 
data portability.

HDF5, Parallel netCDF, 
ADIOS

Figure 1: Configuration options for HEC system I/O.

as a dedicated HPC resource using RAID or SAN storage devices.
A file system server processes application I/O requests through the
file system client interface. The computation resource may run file
system clients on all of its nodes or on a subset of the nodes in
conjunction with I/O aggregation and forwarding tools. Examples
of I/O forwarding tools include IOFSL [1, 27], IBM’s ciod, and
Cray’s Data Virtualization Service.

At the application level, there are several application I/O inter-
faces. File system I/O interfaces, such as the POSIX and PVFS2
APIs, provide direct access to the file system or virtual file sys-
tem. MPI-IO provides a parallel I/O interface built on top of the
file system’s APIs. MPI-IO coordinates and optimizes parallel I/O
patterns. High-level and scientific data libraries provide mecha-
nisms to generate self-describing and portable data sets. Examples
of high-level I/O libraries include NetCDF, PNetCDF, HDF5, and
ADIOS.

The overall goal for these software layers is to provide the best
possible I/O performance for common HPC application I/O pat-
terns. Achieving this goal is often a difficult task for application
developers because the cost of the high-level I/O operations in the
lower layers of the I/O software stack is unknown. Since these lay-
ers encapsulate interactions with lower-level software layers, the
overhead associated with each layer is indiscernible. Additional
information and insight about how these layers interact and what
the cost of high-level operations is in subsequent layers will help
isolate bottlenecks within the I/O software and identify areas of
improvement for software developers. The goal of the IOVIS data
collection tools is to acquire the costs of I/O operations and track
the interactions of the HPC I/O software stack layers.

3.2 IOVIS Data Collection
To capture the end-to-end behavior of I/O requests using IOVIS,

we integrated several instrumentation layers into the application,
PVFS2 file system client, and PVFS2 file system server compo-
nents. These data collection layers track the beginning and com-
pletion of file system I/O events and collect information about each
event, such as event type and event data sizes. A PVFS2 storage
cluster with tracing enabled is set up for instrumented applications
to store data on. As the instrumented application runs, trace files are
generated for each application process, each PVFS2 client process,
and each PVFS2 server process. Once all application, file system
client, and file system server trace data is collected, postprocessing
tools are used to merge the event logs into a single file per compo-
nent and convert the event logs into a trace format compatible with
the visualization tool.

Each data collection layer collects information for the events ini-
tiated at that layer and adds data to track the operation execution

through additional software layers. At the application layer, an ap-
plication event collection library tracks and reports I/O events initi-
ated by an application. Currently, this library supports application-
level tracing of MPI-IO events using the PMPI interface. The appli-
cation data collection library wraps MPI-IO calls with TAU instru-
mentation to track the start time, end time, file handle, data payload
sizes, and a request identifier for each application I/O operation.
Each process in the application generates separate collections of
I/O event requests.

In order to collect I/O events at the file system client layer, the
PVFS2 client was instrumented to report communication events
between the application and the PVFS2 data servers. On plat-
forms using PVFS2, the PVFS2 client facilitates communication
between the application and the PVFS2 server. In order to track
these client and server communications, the PVFS2 client was in-
strumented with TAU. Each client process tracks its communica-
tion with PVFS2 servers. When tracking these events, the client
reuses the application I/O request identifier and captures the origin
of the request for reporting I/O events. This allows PVFS2 client
I/O requests to be tracked back to a specific application process.
Additionally, a unique client identifier is tracked for every PVFS2
client operation. This client identifier is added to each PVFS2 op-
eration sent to a server so that servers can track the origin of I/O
requests.

The remaining components in the data collection layer are in-
strumented PVFS2 servers. This instrumentation tracks I/O events
received from PVFS2 clients and data storage management events
initiated by a PVFS2 server. PVFS2 servers are responsible for
managing data on data storage nodes and interacting with PVFS2
clients to complete I/O requests. Therefore, the instrumentation
layer must track I/O operations from the PVFS2 servers to the lo-
cal storage and the communication between the PVFS2 server and
PVFS2 clients. The server uses an additional TAU instrumentation
layer to track network communication and storage management op-
erations. The client and application identifiers for each request are
tracked with each event so that the origin of the operation can be
tracked back to the client and application processes.

We have deployed the IOVIS data collection tools on several sys-
tems. Our initial experiments were performed on Jazz, a Linux
cluster located at Argonne, at a scale of around 120 application
processes and 60 PVFS2 servers. The results were promising, and
since then we have deployed the tracing infrastructure on several
systems at the Argonne Leadership Computing Facility (ALCF).
On the ALCF systems, we use the 40-rack Intrepid Blue Gene/P
platform for generating application traces and the 100-node Eureka
Linux cluster for generating PVFS2 server traces. Each BG/P rack
contains 1024 compute nodes and 16 I/O nodes. Each compute
node has a four-core 850 MHz IBM PowerPC 450 processor and 2
GB of RAM. The BG/P rack is divided into blocks (called psets)
consisting of 64 compute nodes and one I/O node. Each Eureka
node has two quad-core Intel Xeon processors, 32 GB of RAM,
and 230 GB of local scratch storage. Eureka and Intrepid share a
10 Gbps communication network.

When tracing applications in the ALCF environment, we set up a
temporary PVFS2 storage cluster on Eureka and mounted this file
system on the allocated Intrepid I/O nodes. We deployed a Zep-
toOS [2] operating system image for the Intrepid I/O nodes that
initializes the I/O tracing environment. With this deployment, we
have successfully traced applications to 16,384 processes on In-
trepid and up to 32 PVFS2 I/O servers on Eureka. The applica-
tions we have evaluated in this environment include the mpi-tile-
io benchmark [24], the IOR benchmark [13], the FLASH I/O ker-
nel [8], and the Chombo I/O kernel. For the mpi-tile-io and IOR
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evaluations, applications issued MPI-IO requests directly. For the
FLASH I/O evaluations, we generated traces using the HDF5 [9]
and Parallel NetCDF I/O [21] (PNetCDF) libraries. We generated
HDF5 data using the Chombo I/O kernel. The HDF5 and PNetCDF
higher-level I/O libraries issue MPI-IO requests internally, and we
used our application I/O tracing library to track the I/O requests
generated by these libraries.

4. VISUALIZATION APPROACH
As in our previous work [25], we start with a timeline view of

the aggregate activity over all servers. From the timeline, a range
of time can be selected to be shown in a second-level view. In this
view, the I/O operations are plotted by the log of duration versus
time, which visually clusters similar activity. From this view, a sin-
gle point in time or a range of time can be selected for the detailed
view, which shows the bipartite relationship between computation
nodes and I/O servers, as well as a fisheye view of the selected
point(s) in time.

4.1 Timeline
The timeline view depicts a stacked graph of the overall I/O ac-

tivity over time. Each stacked area of the graph is associated with
a type of operation, and its height represents the fraction of opera-
tions of that type in execution at a certain time. The timeline view is
also used as an interface for selecting smaller time ranges to view in
more detail. The selected range is indicated by the semi-transparent
box shown in Figure 2. Colors are defined in Figure 3.

Figure 2: Timeline of I/O activity. The timeline provides an
overview of the activity of the entire system. From the timeline,
ranges of data can be selected to view in more detail.

4.2 Point-based Midlevel View
The most direct representation of the server activity is to render

each operation with respect to time. Gantt charts do this, but they
restrict the y-axis to represent the processes. In [25], we proposed
an alternative representation. While we retain the use of the x-axis
as time, we use the y-axis to represent other properties, in particu-
lar, the duration of the operation, especially on a logarithmic scale,
since the durations vary over several orders of magnitude. The ad-
vantage of using duration on the y-axis is that abnormally large op-
erations are prominently seen at the top of the plot. Since this and
other y-axis mappings allow the operations to overlap, we modu-
late the opacity of the calls, which makes the overall intensity of the
visualization represent the density of operations. Figure 4 shows an
example of this. The color is mapped to the operation type as in the
timeline.

The duration of the operations is already being encoded in the
height, so it is redundant to also show duration on the x-axis. In-
stead, we use simple points to plot the duration of the operations
versus either the start or end times. Similar to the line representa-
tion, dependency information is not easily visible. However, verti-
cal and logarithmic trends clearly delimit events starting or ending
simultaneously. When plotting start times versus duration, the ver-
tical trends show simultaneous start times, and the log curves to the

Figure 3: Color legend. The colors used in the timeline, scatter,
and fisheye plots.

Figure 4: Point-based plot of I/O activity. The large point was
added for illustrative purposes. The event it represents started
at tstart and ended at tend . The fact that this event was in exe-
cution at time tcurrent is indicated by the point’s location within
the area between the logarithmic curve and asymptote corre-
sponding to tcurrent .

left show simultaneous end times. When plotting end time versus
duration, it is the other way around, with the log curves to the right.

One effect of a plot such as this, with time on both axes, is that a
single point in time is no longer a single coordinate on the plot. At
any given time, there are some number of active operations, where
an operation is active if its start time is less than the current time
and its end time is after the current time, that is:

tstart < tcurrent and tcurrent < tend

where tstart and tend are the start and end times of the operation and
tcurrent is the current time. We define tstart as the x-axis in the plot,
so the left inequality becomes simply

xstart < xcurrent

which is the area left of a vertical line at xcurrent . But what about
tend , since it is not in the plot? It can simply be defined as

tend = tstart + tduration

where tduration is the duration of the operation, which is mapped
onto the y-axis. However, the y-axis is on a logarithmic scale, so

yduration = logk tduration or tduration = kyduration

The original inequality thus becomes

xcurrent < xstart + kyduration or xstart > xcurrent − kyduration

which is the area to the right of a logarithmic curve asymptotically
ending at xcurrent . A grid of these logarithmic curves is plotted
in the background of Figure 4 to give a reference frame for the
end times of operations. The intersection of the regions given by
the inequalities defines an area in the plot that corresponds to a
given point in time where every point within the region is an active
operation. Similarly, this representation can be extended to select
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a range of time by replacing tcurrent and xcurrent with the beginning
and end of the selected time range. We use this representation to
allow the user to select a time or region of time to view in more
detail.

4.3 Opacity Scaling
When the operations are plotted with our approach, many over-

lap, particularly when they start or end simultaneously. A simple
way to resolve this overlap is to make the calls semitransparent and
use alpha blending to combine them. However, this quickly runs
into limitations as the number of calls increases. First, the stan-
dard 8-bit alpha buffer only allows for a maximum overplotting
of 256. Second, in order to show large numbers of overlapping
events, the opacity has to be set so low that outliers are nearly in-
visible. To keep both the opacity of outliers high and the combined
opacity of dense overlap from overflowing the alpha buffer, we uti-
lize the opacity scaling technique of [15]. In our implementation
of this technique, we first render to a high-precision density buffer
D, which keeps track of the total amount of overplot, and then to a
high precision color buffer C, which blends the input color informa-
tion with opacity inversely proportional to the density information
to result in an average color that is fully opaque. We then combine
these buffers with a mapping function to render the final pixels P
to the screen. We use a logarithmic mapping function,

Px,y =Cx,y ×

(
omin +(1−omin)×

log
(
Dx,y

)
log(Dmax)

)
where omin is a user-defined minimum opacity level and Dmax is

the maximum level of overplotting that occurred. By calculating
the final opacity in this manner, we guarantee that any outliers will
have at least opacity omin, that no overplotting exceeds the max-
imum opacity, and, in the case of the logarithmic map, that the
system will be able to handle many orders of magnitude of over-
plotting.

Figure 5: Bipartite matrix of MPI ranks and I/O servers. Cell
color indicates number of operations and ranges from blue for
low numbers to yellow for the highest numbers; purple coloring
indicates mid-range values. The repeated patterns indicate that
the processes are accessing servers according to some sort of
modulo operation. Also, some servers can be seen to be under
noticeably more load than others, while some servers are idle.

4.4 Matrix View
While the point-based plot provides a good view of a large num-

ber of concurrent operations, it does not convey information such
as the individual server loads or the interconnection between the
processes and the I/O servers. Gantt charts also do not show the

interconnection network. Therefore, we have added a view to show
the connections between the computation nodes and the data stor-
age servers. Since the communication pattern is often constantly
changing over the course of the job, we use this view to show the
communication at instants in time or over selected durations. As
we are not considering the inter-process communication here, the
end-to-end communication pattern is a bipartite network, and tra-
ditional bipartite network representations can be applied. Figure 5
shows the communication network as a matrix, where the columns
are the computation processes and the rows are the data storage
servers. The color at the intersection of each row and column in-
dicates the level of activity between those two entities. In the fig-
ure, we can see that two of the servers are being accessed by the
majority of the compute nodes, indicating possible communication
bottlenecks.

4.5 Fisheye Time Plot
Gantt charts may have some scalability issues, but are still quite

intuitive. Since there are significantly fewer data storage servers
than compute nodes, we can utilize Gantt charts of the servers with-
out running out of screen space. However, there is also an issue
of temporal scalability. The I/O operation durations can differ by
many orders of magnitude. Showing both short and long operations
in the same plot can be difficult. We therefore use fisheye zooming
techniques in order to expand small operations near the focal point
and shrink the much larger operations. We found that the sigmoid
function was a nice fit for the zooming function, as the asymptotic
properties guarantee a fixed boundary no matter how varied the in-
puts. So for a single focal point, we map time t to

x(t, ta) = σ(t, ta) =
1

1+u−v∗(t−ta)

where u and v are user-adjustable constants and ta is the focal point.
But our system allows the user to select a range of time, not just one
focal point. To accommodate this, we decided to try a multifocal
mapping function consisting of a sum of sigmoids. That is, we
mapped time t to

x(t, ta, tb) = σ(t, ta)+σ(t, tb) =
1

1+u−v∗(t−ta)
+

1
1+u−v∗(t−tb)

Figure 6: Gantt chart with two fisheye zooms. A time range was
selected, and this view uses sigmoid functions around the start
and end times to expand the surrounding area.

However, we discovered that when tb and ta got too far apart, the
asymptotic nature of the sigmoid function caused data between the
two end points to vanish into a horizon between the focal points.
To offset this problem, we introduced a piecewise linear parameter
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Figure 7: IOR benchmark. The IOR benchmark with one collective file on Jazz. There is a fairly consistent level of activity over the
whole duration. However, the system takes a while to ramp up to the peak level operations and slowly falls off. This seems like a very
serial trend where servers are preferentially used in order, resulting in some load imbalance. At left: early in the execution, only the
first half of the servers are being used doing write operations, as the system is ramping up; the second half of the servers are idle.
At middle: midway through the execution, the same pattern has moved to the second half of the servers, while the first half of the
servers has finished the write operations and started on reads. At right: the last servers are finishing up the read operations while
the first servers are idle.

p(t, ta, tb) into the mapping function,

p(t, ta, tb) =


0 if t ≤ ta
t−ta
tb−ta if ta < t < tb
1 if t ≥ tb

The overall mapping function is

x(t, ta, tb) = (1−w)∗ (σ(t, ta)+σ(t, tb))+w∗ p(t, ta, tb)

where w is another user-defined constant between 0 and 1. This
allows the user to scale from completely zoomed (w = 0) to com-
pletely flat (w = 1). An example of this multifocal mapping is
shown in Figure 6.

5. RESULTS
The traces generated for this paper were collected from dedi-

cated resources where possible. This minimizes interference from
nontraced applications or user activity that would distort the trace
data. The dedicated environment allows us to deploy, modify and
test our trace-enabled I/O software stack. When generating traces
on cluster-based platforms, dedicated compute nodes are allocated
for the application and for the instrumented I/O software. On the
IBM Blue Gene/P system, we allocated dedicated I/O software re-
sources on an external cluster that is similar to the production file

system servers used by the ALCF. The extra compute nodes we al-
locate for the I/O software are accessible only by our application.
The networks connecting the compute nodes with the I/O nodes are
shared, systemwide resources and are subject to interference from
other user activity.

We conducted our initial experiments on Jazz, a Linux cluster
at Argonne National Laboratory. These initial experiments were
meant to validate our data collection process and help us test the
capabilities of the visualization toolkit. We obtained an initial re-
sult from running an IOR test with a collective file shared between
processes. In this test (Figure 7), the overall activity level (shown
in the timeline view) was very gradual, taking a while to ramp up
to the peak level of activity, then gradually falling until it finished.
When we look at the trace in the more detailed views, the reason
becomes clearer. The scatterplot mid-level views show us that the
duration of events throughout the run was mostly constant, with
communication and network requests taking significantly longer
than file access operations (orange and green). This may suggest
network latency problems. In the detail-views, we can see that file
access patterns are very serialized, with servers being accessed in
order, one by one.

We also explored the potential use of the visualization appli-
cation for comparative analysis of different parallel codes or I/O
frameworks, as shown in Figure 8. The cases shown are two dif-
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ferent runs of the FLASH I/O benchmark using the HDF5 and
PNetCDF data access interfaces, both run on Intrepid’s architec-
ture and both using collectives. We can clearly see that the access
patterns differ between these two interfaces. In the PNetCDF run,
the peak of activity (maximum number of events in a time step) oc-
curred in the beginning, with a pair of smaller peaks at the end of
execution and many bursts of activity between.

(a) FLASH HDF5 histogram (b) FLASH PNetCDF histogram

(c) FLASH HDF5 scatterplot (d) FLASH PNetCDF scatterplot

(e) Color legend

Figure 8: Comparison views illustrating the difference in I/O
patterns between HDF5 and PNetCDF with the client layer
also added to the visualization. The benchmark used for both
tests was FLASH, with 2048 processes, 8 I/O clients, and 2 I/O
servers. The configuration of processes to compute nodes was
one to one.

The HDF5 run has a similar pattern of peaks, but the time be-
tween the peaks is empty. By looking at the scatterplot views, we
can see that all the peak levels of activity correspond to periods
of constant activity, where events of a given type consistently take
the same amount of time, which causes the striation patterns. Con-
versely, the valleys between peak levels of activity in the timeline
correspond to gaps in the regular activity where particular events
are taking longer than usual. It is notable that each gap is preceded
by a write event that takes a long time (in the case of the large gap in
the HDF5 run, the event is longer by several orders of magnitude).
We posit that these gaps are caused by low level interruptions such
as kernel tasks or disk seek times. Interestingly, the HDF5 run has
one very long gap while the PNetCDF run has many, much smaller
gaps, potentially indicating a difference in how the two formats
buffer data when writing it to disk. Such comparative studies may
be used to determine which framework is more appropriate for cer-
tain parallel codes from the point of view of I/O events and their
execution times.

6. FUTURE WORK
While our approach captures end-to-end relationships well, it

does not completely track the flow of data through the network.
In order to identify intermediate network-based bottlenecks, more
in-depth tracing of intermediate steps and an alternative represen-
tation would be necessary. Some of the traces generated by these

methods can get large. While our current visualization implementa-
tion loads the entire data set at once, out-of-core techniques would
be necessary for handling larger tests, which would allow for scal-
ing to even larger systems. We have begun collecting data from
I/O forwarding layers, as well as network traffic data from the Cray
architecture. So far, we have primarily looked at I/O benchmarks,
which may or may not be representative of common activity. Ide-
ally, it would be better to instrument real simulation codes, or at
least portions of them.

7. CONCLUSIONS
The problem of high-performance I/O optimization is compli-

cated, but important. As the gap between processing power and
I/O storage rates widens, the efficient use of the storage available
will have more and more impact on the performance of the system
as a whole. Here, we have presented an approach for the capture
and visual analysis of I/O traces, and have applied this approach
to the systems at Argonne National Laboratory. Our visualization
approach has been effective in exploring and understanding the col-
lected traces and has shown several instances where the system
could be optimized, which could lead to more efficient configu-
rations.
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