Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2011)
A. Bargteil and M. van de Panne (Editors)

Graph-based Fire Synthesis

Yubo Zhangl, Carlos D. Correaz, and Kwan-Liu Ma'

!'University of California Davis
2Lawrence Livermore National Laboratory

Figure 1: Our synthetic fire results. These simulations are synthesized from exemplar simulations at a low computational cost
using our novel flow-graph . The accompanying video shows that fire animations using our approach appear smooth and with
visually plausible transitions.

Abstract

We present a novel graph-based data-driven technique for cost-effective fire modeling. This technique allows com-
posing long animation sequences using a small number of short simulations. While traditional techniques such
as motion graphs and motion blending work well for character motion synthesis, they cannot be trivially applied
to fluids to produce results with physically consistent properties which are crucial to the visual appearance of
fluids. Motivated by the motion graph technique used in character animations, we introduce a new type of graph
which can be applied to create various fire phenomena. Each graph node consists of a group of compact spatial-
temporal flow pathlines instead of a set of volumetric state fields. Consequently, achieving smooth transitions
between discontinuous graph nodes for modeling turbulent fires becomes feasible and computationally efficient.
The synthesized particle flow results allow direct particle controls which is much more flexible than a full volumet-
ric representation of the simulation output. The accompanying video shows the versatility and potential power of
this new technique for synthesizing realtime complex fire at the quality comparable to production animations.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction typically obtained by solving the Navier-Stokes equations

at a high computational cost. Because of the computational
Simulating a realistic fluid such as fire remains a challenge cost of physically-based simulations, animators often need
mainly due to its computational cost. Lower cost methods to wait a long time to see the simulation results. The situ-
such as sprite_based Composi[ing are available and have ation becomes even worse when multiple fire instances are
been used in games and other interactive applications. In present in the scene.

production-quality animation, however, realistic fluids are

(© The Eurographics Association 2011.

Y. Zhang, C. D. Correa, and K.-L. Ma / Graph-based Fire Synthesis

In order to alleviate the costs associated with solving
these equations, different acceleration techniques were ap-
plied such as using adaptive grids and parallelization. These
techniques are effective but also bring complicated tech-
nical issues in implementation. In this paper, we present
a data-driven method that is relatively easy to implement
for synthesizing fire animations at a much lower computa-
tional cost. Inspired by data-driven animation approaches
such as the motion graph, we pre-compute a motion data
structure from a few short simulations, called the flow graph.
Although motion graph can be applied to volumetric flow
data, it cannot create smooth transitions without introduc-
ing a large amount of samples with complex and costly con-
straints. Unlike the motion graph, every node of the flow
graph comprises flow particle pathlines instead of individ-
ual motion states, which makes it both spatial-temporal com-
pact and computationally efficient. The compactness is opti-
mal because pathlines automatically track the desired phys-
ical properties. It is much more efficient than naively ap-
plying a time-varying hierarchical tree structure on volumes.
In addition, much less samples are needed since it is easier
to find plausible transitions between spatio-temporal path-
lines than entire volume states. We use this pathline-based
structure to synthesize fire animations through a stochastic
walk on the flow graph where constraints can be applied to
limit the traversal on subgraphs. Our method can generate
long and smooth animation sequences in realtime only us-
ing a few short simulations with different parameter config-
urations. The synthesis time is independent of the simula-
tion complexity (i.e. the complexity of model equations and
numerical schemes). Such a particle-based flow design also
gives animators extended controls. While data-driven fluid
animation received far less attention, our work is the first at-
tempt to develop a practical data-driven framework that can
synthesize high-quality 3D fluid flows at interactive rates.

2. Related Work

Solving the Navier-Stokes equations is one of the main
difficulties in physically-based fluid animation, and many
classical numerical methods from the CFD community
have been applied and popularized in the fluid animation
field. For example, Stam [Sta99] presents a framework to
achieve stable numerical simulation based on Eulerian grids
and the smoothed particle hydrodynamics (SPH) method
is adopted in [MCGO03, SP09]. To simulate specific visual
effects, different simulation models as well as rendering
techniques are proposed, such as fire [NFJ02, HG09], ex-
plosions [YOHO00, FOA03], smoke [FSJO1, WP10], liquid
[FFO1], viscoelastic materials [GBO04, CBL*09], controls
[FLO4, MTPS04,PCS04, ANSNO6] and general natural phe-
nomena [NDO1]. In recent years, incorporating small de-
tails into fluid flows has received much attention [HSF07,
KTJGO08, NSCLO08, SB08, MWGZ09, PTSG09] in order to
produce high quality animations with special effects. Most
of these techniques introduce artificially synthesized details

due to the complexity and high computational cost of physi-
cally accurate high-resolution models.

Straightforward ways to reduce the simulation time in-
clude adaptive mesh grids [LGF04] and GPU acceleration
[Har03]. Treuille et al. [TLPO6] propose a dimension re-
duction technique which projects the solution to a lower
dimensional space. Wicke et al. [WST09] present a new
approach to balancing the speed of model reduction with
the flexibility of grid-based methods. Fourier-based meth-
ods [Sta01,LR09] can also speed up the computation but are
limited to regular domains. Lentine et al. [LZF10] present a
method that solves the pressure-Poisson equation on coarse
grids. However, the computational cost still increases with
the grid resolution and animators need to run simulations
with various physical parameters to get the desired results.

Alternatives to direct simulation are data-driven ap-
proaches. Kwatra et al. [KSE*03] present an image and
video synthesis method using graph-cuts. Bhat et al.
[BSHKO4] synthesize flow phenomena from video. These
approaches produce visually plausible results but the view
is fixed and the resulting flow cannot be further manipu-
lated. Cha et al. [CLC*09] propose a data-driven approach
to re-create fire effects from simulation data. Their focus,
however, is in data processing and sampling. Octrees and
multi-resolution techniques are used for sampling the origi-
nal volume data. Their storage cost is high as needed for high
resolution time-varying volume data. In this paper, we solve
this problem by leveraging fluid simulation data to synthe-
size desired fluid motion, with low computational and stor-
age cost. Synthesizing similar data from sample data is a
general idea (e.g. video textures [SSSEQO0], texture synthe-
sis [LLX*01,MWGZ09], etc.). Motion synthesis has already
been studied for human motions [KGP02, AF02,L.CF05] and
relatively simple object movements [JTCW07,ZZJ*07]. The
key ingredient used in these techniques is the motion graph
[KGPO02], a directed graph that encapsulates different stages
of a motion and the possible transitions between them. But
directly applying this technique to fluid flow only gives lim-
ited benefits with high cost (i.e. huge amount of graph nodes
and edges), partly because fluid flow is turbulent and the de-
grees of freedom for fluid motion are generally higher than
for character motion. To alleviate this problem, we introduce
a novel graph-based fire synthesis approach to create anima-
tions of arbitrary length from existing simulation data at low
storage and computational cost.

3. Overview

Our fire synthesis method consists of two main stages: flow
data construction and interactive flow synthesis. During the
first stage, we take a small number of fire simulations with
desired physical parameters, such as turbulence magnitude
and external forces, and generate a directed graph based on
pathlines. These pathlines are created by tracking particles
as they flow over time and are grouped in nodes according

(© The Eurographics Association 2011.

Y. Zhang, C. D. Correa, and K.-L. Ma / Graph-based Fire Synthesis

Fire Pathline Transition
Simulations Data Cost

User

Flow Synthesized Synthesized
Graphs Path Fire

B =l (T

Configurations

Figure 2: The workflow of our synthesis framework. In a preprocessing stage (blue arrows), we trace pathlines from each
simulation and build a transition cost that measures the similarity between pairs of pathline groups. The flow graph is a subset
of this transition matrix. In an interactive stage (red arrows), we synthesize new animations as random walks on the flow graph.

to their starting time. The graph encodes groups of pathlines
that are temporally coherent or exhibit some flow similarity,
encoded in a cost matrix. During the second stage, we syn-
thesize new fire animations through a random walk on the
flow graph. Each random walk defines a new group of spa-
tially and temporally coherent pathlines. Since each pathline
node contains physical quantities from the simulation, we
can generate a new animation using integration (see Fig. 2).

4. Flow Graph Construction

In the first stage of our technique, we construct the flow
graph, which stores the space of possible particle tracks from
a set of input simulations in a compact manner. As an input,
we assume that a set of simulations are given, and that we
have a mechanism to retrieve particle data and sample phys-
ical quantities such as velocity and temperature. For the sake
of completeness, we include the discussion on how we sim-
ulate fire data to provide input to the synthesis pipeline.

4.1. Fire Simulation

‘We have implemented a GPU-based 3D fluid simulator using
NVIDIA CUDA [NVIO7]. The solver is based on [Sta99],
which solves the Navier-Stokes equations

Vo = ¢ ey

— +(u-V)u
5, Hu-Vv)
where u is the velocity, p is the pressure, f is external force
including buoyancy and ¢ is zero except the reaction area.
We designed a simple combustion model that converts fuel
into heat and soot

—%Vp+f @)

afF+(u~V)F = —rF 3)
ot

g—f+(u-V)S = kgrF @)
T T—T,

4
—+(-V)T = KAT—C() +krrF (5)

ot Tmax — TO

(© The Eurographics Association 2011.

where F is the fuel, S is the soot, T is the temperature, Ty
is the ambient temperature, r is the reaction rate, ¢ is the
cooling rate and «x is the thermal conductivity. Here the tem-
perature cooling model is the same as [FOAO3]. Vorticity
confinement [FSJO1] is applied to compensate the numer-
ical dissipation. The simulation must include an emitting
region for fuel injection. Parameters such as reaction rate,
cooling rate, buoyancy, turbulence magnitude as well as ex-
ternal force fields are configurable. These parameters are are
used to simulate the desired fire states required to synthesize
similar effects. For each selected configuration, we simulate
minimum time length just enough to capture the desired flow
features. We use fixed time step At = 0.5% where Ax is the
uniform grid spacing and U is the characteristic velocity. The
simulation usually takes an hour on a 256 grid.

4.2. Pathline Data Sampling

The next step is the extraction of flow information that can
be reused for subsequent synthesis. A straightforward way
to reuse simulation data is to produce a series of volumetric
fields and blend them selectively to create new volumetric
fields. Instead, we sample and store the physical data along
pathlines of fluid particles. This approach is more effective
than reusing volumetric fields for the following reasons:

e Since flames are usually turbulent, finding smooth transi-
tions between two non-consecutive time steps in volumet-
ric fields is hard and computationally expensive. However,
due to the flow coherence of particles, pathlines often ex-
hibit similarity with other pathlines in different time steps.

e The storage of pathline data is more compact because
pathlines track only the visible flow features automatically
due to their Lagrangian nature. It produces the optimal re-
sult with less cost than time-varying tree-based structures.

e Using particles generated from pathlines provides better
physically-meaningful manipulation than using volumes
directly, where the structure of flow is no longer explicit.

The pathline data store velocity, soot density and temper-
ature at equally distributed sample points along the lines.

Y. Zhang, C. D. Correa, and K.-L. Ma / Graph-based Fire Synthesis

During simulation, we seed a group of particles at the flame
source at each time step for pathline tracing. The particles
are uniformly distributed and the interval is half the grid res-
olution Ax. Given any start point X(and start time 7, its cor-
responding pathline is defined as

t
p(X0,10,7) = X0 + / u(p(x),7)dt ©)

where ¢ is the time, and u(x,?) is the velocity at a given
location and time. The pathlines are integrated through the
fourth-order Runge-Kutta (RK4) method [But87].

4.3. Flow Graph Computation

Motivated by [SSSE00, KGP02,JTCW07,ZZJ*07], we have
designed a new type of graph for synthesizing combustion
phenomena in the time domain, the flow graph. A flow graph
is a directed graph G = (V,E) which has N = |V| nodes.
Unlike the motion graph, whose nodes define single mo-
tion states, each node in a flow graph represents the en-
tire flow pathlines which started at the same time step. Let
V = {{P(0), Ug(t), Ri(t), Te(1) 1,0 < k < N}, where P(r)
represents the pathline group started at the kth time step, and
Ui (t), Ri(t) and Ti(r) are the corresponding velocity, den-
sity and temperature, respectively. Therefore, we can define
Py, as the set of pathlines with starting time at the k-th time
step, i.e. fy = kAt,

Pk(t):{p(x,[k,l).,VXEQ} @)

where Q = {xi}?ﬁ | is the set of uniformly seeded source par-
ticles inside the fuel injection region of the simulation. The
velocity, density and temperature groups are defined anal-
ogously. Here 7 is defined in the local time space [0,#max]
which corresponds to [fy, #x + fmax] in the global time space.
fmax 1 chosen such that all the fire particles dissipate before
tmax. Figure 3 illustrates the idea of how the pathlines are
organized on the graph. We can see that each node defines a
collection of flow lines that are spatially coherent, since they
comprise all the point sources in the domain, and temporally
coherent, since they encode the entire lifetime of a particle.

To enable synthesis, we must first connect the nodes in
the graph with edges. Ideally, edges should connect pathlines
that result in a plausible transition, so that a random walk on
the graph results in a plausible animation. Note that we only
allow transitions to happen at the beginning of a pathline set
(i.e. particle emitting time) otherwise the physically-correct
flow structure can be simply destroyed due to the Lagrangian
nature of flow particles. To do that, we define two types of
edges:

Temporal edges connect two consecutive nodes in time
and are useful to reconstruct parts of the original fire anima-
tions,

(i,j)EE < i=kand j=k+1,0<k<N (8)

. .
o PN0H) o ® ° o o o o ©
°
N
o P08 o @00 || o ® Gonl|o o -
Posu 1) o Fxdw
P20 . °
. o o ° e o .
o P00 o ©® o © L4 ° ° e

PO [P0
./,/'\.)
._./0\. P .—"'
— .

O—O—0O—0

Figure 3: How nodes are extracted. Top row: Four time steps
and the corresponding advected particles from source parti-
cles (left column of nodes). Middle row: We group the path-
lines Py(t) that start at the same time and encode them in
individual nodes (bottom row). This ensures that the transi-
tions in the flow graph are coherent.

Transition edges connect non-consecutive nodes that ex-
hibit some degree of similarity and allow us to synthesize
new path flows from several input animations. To measure
the similarity between two nodes i and j, we define a cost
function ¢;}, as:

fmax 2 2 2
o=y [lo-v i ol Bl e
©)

where

1
Ui —Ujll, = %m %;’)’“(XJM) —“(vaj»’)‘z (10)

is the sum of differences between the two path velocities,
and is similarly defined for HRi —R; }2 and ||T, — T_,~| 2 Q|
is the number of particles seeded in Q, o and 3 are weighting
parameters controlled by the user to give more importance
to the density and temperature differences, respectively. In
general, o and P are set such that the differences of velocity,
density and temperature are in the same order of magnitude.
We compute the similarity cost from Equation 9 using the
whole lifetime of particles because the visible regions of fire
rely on a user-defined color map which are unknown at this
stage.

We add a transition edge when the cost function is smaller
than a given threshold €, i.e. when two nodes are similar
enough so that a transition between the two is plausible, i.e.,

(i,j)) EE <= c¢jj <eg (11)

One of the issues with this method is that it may lead to
a large number of cluttered transitions, which results in a
dense flow graph. Moreover, these transitions may not be
distributed evenly throughout the simulation time, which is

(© The Eurographics Association 2011.

Y. Zhang, C. D. Correa, and K.-L. Ma / Graph-based Fire Synthesis

undesirable for creating plausible fluid animations. To ob-
tain an even distribution of transitions, we order the nodes
chronologically and subdivide the cost matrix C = (c;;) into
blocks of size B x B. Those node pairs corresponding to the
local minima of the cost function within each block are then
selected as candidate transition edges. Then we filter these
edges by an appropriate tolerance value a < € < b through
(11), where a and b are the minimum and maximum costs
of these edges. In this case, the number of transitions is lim-
ited by M?* where M = N /B and the length of dead ends are
usually less than ¢B where ¢ is a small integer if € is not
close to a. We also filter the edges whose nodes are close be-
cause it may generate undesired results. The purpose of the
filtering is to reduce the complexity of a graph and guide the
tolerance selection. The average transition cost of resulting
edges depends on the input data which can be carefully de-
signed and simulated in order to provide enough transitions.
Figure 4 shows some simple graphs generated with differ-
ent block sizes. Based on the time scale, we use B = 32 and
€ = (2a+b)/3 in our implementation.

Figure 4: Example flow graphs generated with different
block sizes B = 8,16,32. Yellow marks are the final transi-
tion edges and blue marks are the filtered edges. The gray
scale background shows the transition cost where darker
area indicates lower costs.

The graph is computed in parallel during simulation with
multiple CPU threads because the CPU is relatively free dur-
ing GPU-based simulations. Flow graphs are generated for
each simulation with different configurations, each of which
contain variations on the simulation parameters that result in
a richer input set. In a latter state, we use this flow graph to
synthesize new animations using random walks.

5. Interactive Fire Synthesis

The synthesis process is as follows: First, we generate novel
pathlines using random walks on the flow graph. Then, we
integrate these pathlines over time to produce a new fire an-
imation, which is finally rendered with production-quality
rendering or interactive rendering using the GPU.

5.1. Traversing Flow Graphs under Constraints

During this stage, we produce a random flow, which is a path
of the flow graph starting at node k = 0 of a prescribed length
L. Let us define a partial path {V|,V5,...,V;}. Assume d(V;)

(© The Eurographics Association 2011.

Flow Graphs
Config 1

@—»@» > > > ->
Config 2

OOV OO

Synthesized Flow

R 0JOL0L0L0 R

Figure 5: An example of graph-based flow synthesis. Flow
graphs are generated for each simulation with different
configurations. Each node represents a group of pathlines
started at the same time. Edges that connect discontinuous
nodes represent feasible transitions. In the synthesized flow,
thick arrows represent transitions.

is the out degree of vertex i. If d(V;) = 1, then we follow the
only edge (i,) € E out of V;, which means the edge is ei-
ther a temporal edge or a transition edge close to a dead end.
If d(V;) > 1, the next vertex in the path V; is chosen ran-
domly. In general, one can define purely random traversals
by choosing edges with a uniform probability p(i, j) = m,
where (i, j) € E. Even though random walks result in plau-
sible transitions, we propose two methods to constrain this

traversal and offer a better control to the animator.

Traversal with temporal bias. In this traversal, the user
controls the likelihood of following a temporal edge instead
of being purely random. This traversal provides more con-
trol when the animator desires a more structured fire. We
introduce a free parameter 0 < y < 1, which represents the
probability of following a temporal edge. The probability of
following an edge (i, j) € E is now:

1—
d(T)Il (i,J) EEi+1#
pli,j) =1y (L,j))€EE)i+1=]j (12)
0 otherwise

A lower value of v leads to frequent transitions while a
higher value of ¥ produces fires with more stable states. Note
that y= ﬁ results in the purely random case. Fig. 6 shows

a few animations for three settings. On top, Y = ﬁ. In the
middle, Y= 0.875 and B = 1. At the bottom, y = 0.875 and
B = 32. Note that the results with temporal bias and a larger
block size B tend to produce smoother transitions.

Traversal with target states. In this traversal, we allow
the user to steer the synthesis towards a target physical state,
defined as a subset W C V. The edge probabilities are com-
puted depending on how far the current visited node is from
the target state. Let us assume that the current visited node is

Y. Zhang, C. D. Correa, and K.-L. Ma / Graph-based Fire Synthesis

Figure 6: Frames from a synthesized animation using different traversal strategies. Top: Random transitions and B = 32,
Middle: Biased transitions, y = 0.875,B = 1. Bottom: Biased transitions with larger block size, y = 0.875,B = 32. Even though
transitions are visually plausible, temporal bias and a larger block size B produce smoother transitions.

Case States Simulation Grid Output Steps Unsaved Vol. Data Pathlines/Node Pathline Data Avg. Proc. Time/Step Syn. Time/Step
Campfire 3 128 X 64 x 64 868 27GB 3217 5GB 407ms 35ms
Firewall 2 400 x 200 x 100 356 114GB 39375 40GB 2470ms 144ms
Fire Blade 1 200 x 200 x 150 300 36GB 32360 13GB 1691ms 121ms

Fire Plume 3 200 x 400 x 200 300 288GB 70686 85GB 3516ms 271ms

Table 1: Detailed statistical results of our experiments.

V;. When we are out of reach of the target state, i.e., V; ¢ W
and V; ¢ W,V(i, j) € E, then we perform random traversal
as defined above. When we are at the boundary or the inte-
rior of the target state, i.e., there is at least one edge (i, j)
such that V; € W, then the probability of an edge is defined
uniformly as p(i, j) = % if V; € W, or 0, otherwise, where
k is the number of neighbors of V; in set W. Note that once
a target state is reached, the traversal will remain there until
a new target state is defined. It is easy to achieve transitions
between different states where the average number of steps
before transition depends on the block size of the cost matrix
which is described in Section 4.3.

5.2. Flow Integration and Deformation

For each visited node in the synthesized flow, we generate a
group of particles following the node’s pathline, each with
physical attributes such as velocity and temperature. The ve-
locity information is used to integrate the displacement of
the particles at each time step

At
Xer1 = Xp+ /0 [(t) + ex (1)]dt (13)

where x; is the position of certain particle, u is the veloc-
ity sampled from the pathline data and u.y is the velocity

Algorithm 1 Graph-based Fire Synthesis
Load configuration
Load flow graphs
Allocate particle buffers
Start streaming pathline data
while synthesizing = true
Read user state constraint of flow graph
Let node be next random node under constraint
Emit particles associated with node
Update positions of existing particles
Sample particle attributes from pathline data
Remove particles which exceed lifetime
Send current particles to the preview renderer
end

introduced by (optional) external forces, useful for fire de-
formation. Scalars such as density and temperature are used
for rendering. In general, traversing the flow graph and in-
tegration happen in parallel, as summarized in Algorithm 1.

5.3. Rendering

Although the synthetic results can be sent to a high quality
renderer with global illumination and multiple scattering ef-

(© The Eurographics Association 2011.

Y. Zhang, C. D. Correa, and K.-L. Ma / Graph-based Fire Synthesis

fects, we adopt a simple slice-based renderer for interactive
preview purpose using the G3D graphics engine [McG10].
The synthesized fluid particles and their attributes are first
projected onto a set of slicing planes which are orthogonal to
the camera direction. These slicing planes are then blended
to the screen in back-to-front order. A 1D color texture is
used as transfer function to convert flow attributes to colors
and opacities. In our examples, we use 128 slicing planes
of size 640 x 480 which can achieve interactive frame rates
when the number of particles is in the scale of 10°. Results
show that the rendering quality is sufficient for previewing.

5.4. Results and Discussion

We performed a number of tests including a small campfire,
a thin fire wall, an animated fire blade and a high resolu-
tion fire plume. The campfire consists of three configurations
with different levels of wind strength. The fire wall and fire
plume transit from a low turbulence state to a high turbu-
lence state. The animated fire blade demonstrates the use of
extended particle control where the fire source is attached
on an dynamic mesh. All the tests are performed on a PC
with an Intel Core2 3.0GHz CPU (4 cores) and an NVIDIA
Quadro 6000 GPU. Table 1 summarizes these results.

We compared the cost of simulation vs. synthesis for dif-
ferent problem scales. Results show that the cost of simula-
tion grows nonlinearly with the problem scale while the cost
of synthesis grows linearly. Figure 7 is a comparison of the
cost between simulation and synthesis. Our method reduces
the length of time-consuming simulation towards the gen-
eration of visually similar results. Because of our low-cost
synthesis method, performance increases greatly.

Rendering results are shown in Figure 1 and the accompa-
nying video. The quality of the results depends on the spa-
tial and temporal resolution of the simulation data, assuming
that particles are sampled at the Nyquist rate. Note that the
synthetic fires are not exactly the same as the original sim-
ulations due to the random traversals, but the transitions ap-
pear smooth and visually plausible. Smooth transitions can
be achieved without special treatment through our traversal
methods. When the synthesizer reaches a transition edge,
it enters the transition state. The next particle group to be
emitted will follow a different set of pathlines from the orig-
inal simulation. All the existing particles still follow their
paths and the synthesizer will not leave the transition state
until these existing particles are dissipated. This space-time
transition mechanism makes the flow smoother than chang-
ing the entire motion state at a single time step (i.e. using
the motion graph), since it is relatively easier to find similar
pathline groups instead of entire similar motion states in lim-
ited simulation steps. However, the quality of transitions still
depend on the original data. In some cases where the input
samples are sparse (i.e. with less similar/overlapping path-
lines), although our method can find best transitions with
higher costs, small flickering artifacts may be produced. It is

(© The Eurographics Association 2011.

100,000
10,000 /./
1,000

100 —

10

== Synthesis

Time (ms/step)

——Simulation

750K 1500K 2250K 3000K 3750K
No. Grid Cells

Figure 7: Comparison of the time cost between simulation
and synthesis on different problem scales. The data are mea-
sured from a campfire synthesis test with various resolutions.

possible to reduce such effects by applying smooth pathline
blending techniques.

6. Conclusion and Future Work

Our graph-based synthesis technique provides a cost-
effective way to generate fire animations of arbitrary length
from examples, at a lower storage and computational cost.
The synthesized particle results offer better interactivity than
volumes for operations like external deformations. The per-
formance gained by our method comes from the reduced
simulation time which is used for generating similar flow
behaviors. It is possible to apply the technique towards fire
effects in animations and games. Due to the nature of data-
driven methods, one of the limitations of our method is that
we cannot do physically accurate fluid-fluid/fluid-solid in-
teraction without additional simulations during the synthesis
process. We do not allow motion blending in our system to
prevent breaking important flow structures such as vortices,
although it can be achieved by interpolating between differ-
ent pathlines for laminar flows. Our method also requires
that fire emanates from a source region and dissipates in a
limited time. Our method can be extended to other dissipa-
tive gaseous effects such as smoke and dust. We will study
hybrid methods that combine simulation and synthesis to
achieve higher flexibility and improved quality.

Acknowledgement

This work has been sponsored in part by the U.S. Department of En-
ergy through the SciDAC program with Agreement No. DE-FC02-
06ER25777, and by the U.S. National Science Foundation through
grants OCI-0749217, CCF-0811422, CCF-0850566, OCI-0749227,
and OCI-0950008. We are also grateful for NVIDIA’s equipment
donation.

References

[AF02] ARIKAN O., FORSYTH D. A.: Interactive motion gener-
ation from examples. ACM Trans. Graph. 21 (2002), 483-490.
2

Y. Zhang, C. D. Correa, and K.-L. Ma / Graph-based Fire Synthesis

[ANSNO6] ANGELIDIS A., NEYRET F., SINGH K.,
NOWROUZEZAHRAI D.: A controllable, fast and stable
basis for vortex based smoke simulation. In Proc. of SCA 06
(2006), pp. 25-32. 2

[BSHK04] BHAT K. S., SEITZ S. M., HODGINS J. K., KHOSLA
P. K.: Flow-based video synthesis and editing. ACM Trans.
Graph. 23 (2004), 360-363. 2

[But87] BUTCHER J. C.: The numerical analysis of ordinary
differential equations: Runge-Kutta and general linear methods.
Wiley-Interscience, New York, NY, USA, 1987. 4

[CBL*09] CHANG Y., BAO K., L1U Y., ZHU J., WU E.: A
particle-based method for viscoelastic fluids animation. In Proc.
of VRST ’09 (2009), pp. 111-117. 2

[CLC*09] CHA M., LEEJ., CHOI B., LEE H., HAN S.: A data-
driven visual simulation of fire phenomena. In Proc. of SIG-
GRAPH ’09: Posters (2009), pp. 1-1. 2

[FFO1] FOSTER N., FEDKIW R.: Practical animation of liquids.
In Proc. of SIGGRAPH 01 (2001), pp. 23-30. 2

[FLO4] FATTAL R., LISCHINSKI D.: Target-driven smoke anima-
tion. ACM Trans. Graph. 23 (2004), 441-448. 2

[FOA03] FELDMAN B. E., O’BRIEN J. F., ARIKAN O.: Ani-
mating suspended particle explosions. ACM Trans. Graph. 22
(2003), 708-715. 2,3

[FSJO1] FEDKIW R., STAM J., JENSEN H. W.: Visual simulation
of smoke. In Proc. of SSIGGRAPH 01 (2001), pp. 15-22. 2,3

[GBO04] GOKTEKIN T. G., BARGTEIL A. W., O’BRIEN J. F.:
A method for animating viscoelastic fluids. ACM Trans. Graph.
23 (2004), 463-468. 2

[Har03] HARRIS M. J.: Real-time cloud simulation and render-
ing. PhD thesis, University of North Carolina at Chapel Hill,
2003. Director-Lastra, Anselmo. 2

[HG09] HORVATH C., GEIGER W.: Directable, high-resolution
simulation of fire on the gpu. ACM Trans. Graph. 28 (2009),
41:1-41:8. 2

[HSFO7] HONG J.-M., SHINAR T., FEDKIW R.: Wrinkled
flames and cellular patterns. ACM Trans. Graph. 26 (2007). 2

[JTCWO07] JAMES D. L., TWIGG C.D., COVE A., WANG R. Y.:
Mesh ensemble motion graphs: Data-driven mesh animation with
constraints. ACM Trans. Graph. 26 (2007). 2, 4

[KGP02] KOVAR L., GLEICHER M., PIGHIN F.: Motion graphs.
ACM Trans. Graph. 21 (2002), 473-482. 2,4

[KSE*03] KWATRA V., SCHODL A., EssA I., TURK G., Bo-
BICK A.: Graphcut textures: image and video synthesis using
graph cuts. ACM Trans. Graph. 22 (July 2003), 277-286. 2

[KTIGO8] KiMm T., THUREY N., JAMES D., GROSS M.: Wavelet
turbulence for fluid simulation. ACM Trans. Graph. 27 (2008),
50:1-50:6. 2

[LCFO5] LAr Y.-C., CHENNEY S., FAN S.: Group motion
graphs. In Proc. of SCA "05 (2005), pp. 281-290. 2

[LGF04] Losasso F., GiBou F., FEDKIW R.: Simulating water
and smoke with an octree data structure. ACM Trans. Graph. 23
(2004), 457-462. 2

[LLX*01] LiaNG L., Liu C., XU Y.-Q., Guo B., SHUM H.-
Y.: Real-time texture synthesis by patch-based sampling. ACM
Trans. Graph. 20 (2001), 127-150. 2

[LRO9] LONG B., REINHARD E.: Real-time fluid simulation us-
ing discrete sine/cosine transforms. In Proc. of 13D 09 (2009),
pp. 99-106. 2

[LZF10] LENTINE M., ZHENG W., FEDKIW R.: A novel algo-
rithm for incompressible flow using only a coarse grid projection.
ACM Trans. Graph. 29 (July 2010), 114:1-114:9. 2

[MCGO03] MULLER M., CHARYPAR D., GROSS M.: Particle-
based fluid simulation for interactive applications. In Proc. of
SCA 03 (2003), pp. 154-159. 2

[McG10] MCGUIRE M.: G3D Innovation Engine, 2010.
http://g3d.sourceforge.net/. 7

[MTPS04] MCNAMARA A., TREUILLE A., POPOVIC Z., STAM
J.: Fluid control using the adjoint method. ACM Trans. Graph.
23 (2004), 449-456. 2

[MWGZ09] MAC., WEIL.-Y., Guo B., ZHOU K.: Motion field
texture synthesis. ACM Trans. Graph. 28 (2009), 110:1-110:8. 2

[NDO1] NiISHITA T., DOBASHI Y.: Modeling and rendering of
various natural phenomena consisting of particles. In Proc. of
CGI "01 (2001), pp. 149-156. 2

[NFJO2] NGUYEN D. Q., FEDKIW R., JENSEN H. W.: Physi-
cally based modeling and animation of fire. ACM Trans. Graph.
21 (2002), 721-728. 2

[NSCLO8] NARAIN R., SEWALL J., CARLSON M., LIN M. C.:
Fast animation of turbulence using energy transport and procedu-
ral synthesis. ACM Trans. Graph. 27,5 (2008), 1-8. 2

[NVIO7] NVIDIA C.: Compute Unified Device Architecture Pro-
gramming Guide, 2007. 3

[PCS04] PIGHIN F., COHEN J. M., SHAH M.: Modeling and
editing flows using advected radial basis functions. In Proc. of
SCA 04 (2004), pp. 223-232. 2

[PTSG09] PFAFF T., THUEREY N., SELLE A., GROSS M.: Syn-
thetic turbulence using artificial boundary layers. ACM Trans.
Graph. 28,5 (2009), 1-10. 2

[SBO8] SCHECHTER H., BRIDSON R.: Evolving sub-grid turbu-
lence for smoke animation. In Proc. of SCA "08 (2008), pp. 1-7.
2

[SP0O9] SOLENTHALER B., PAJAROLA R.: Predictive-corrective
incompressible sph. ACM Trans. Graph. 28 (2009), 1-6. 2

[SSSEO0] ScHODL A., SZELISKI R., SALESIN D. H., EssA I.:
Video textures. In Proc. of SIGGRAPH ’00 (2000), pp. 489-498.
2,4

[Sta99] STAM J.: Stable fluids. In Proc. of SIGGRAPH 99
(1999), pp. 121-128. 2, 3

[StaO1] STAM J.: A simple fluid solver based on the fft. J. Graph.
Tools 6,2 (2001), 43-52. 2

[TLPO6] TREUILLE A., LEWIS A., POPOVIC Z.: Model reduc-
tion for real-time fluids. ACM Trans. Graph. 25 (2006), 826-834.
2

[WP10] WEISSMANN S., PINKALL U.: Filament-based smoke
with vortex shedding and variational reconnection. ACM Trans.
Graph. 29 (July 2010), 115:1-115:12. 2

[WST09] WICKE M., STANTON M., TREUILLE A.: Modular
bases for fluid dynamics. ACM Trans. Graph. 28 (2009), 1-8. 2

[YOHO00] YNGVE G. D., O’BRIEN J. F., HODGINS J. K.: An-
imating explosions. In Proc. of SIGGRAPH "00 (2000), pp. 29—
36. 2

[ZZJ*07] ZHANG L., ZHANG Y., JIANG Z., L1 L., CHEN W.,
PENG Q.: Precomputing data-driven tree animation. Comput.
Animat. Virtual Worlds 18, 4-5 (2007), 371-382. 2, 4

(© The Eurographics Association 2011.

