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Abstract—Scatterplots remain a powerful tool to visualize multi-dimensional data. However, accurately understanding the shape of
multi-dimensional points from 2D projections remains challenging due to overlap. Consequently, there are a lot of variations on the
scatterplot as a visual metaphor for this limitation. An important aspect often overlooked in scatterplots is the issue of sensitivity or
local trend, which may help in identifying the type of relationship between two variables. However, it is not well-known how or what
factors influence the perception of trends from 2D scatterplots. To shed light on this aspect, we conducted an experiment where we
asked people to directly draw the perceived trends on a 2D scatterplot. We found that augmenting scatterplots with local sensitivity
helps to fill the gaps in visual perception while retaining the simplicity and readability of a 2D scatterplot. We call this augmentation
the generalized sensitivity scatterplot (GSS). In a GSS, sensitivity coefficients are visually depicted as flow-lines, which gives a sense
of continuity and orientation of the data that provide cues about the way data points are scattered in a higher dimensional space. We
introduce a series of glyphs and operations that facilitate the analysis of multi-dimensional data sets using GSS, and validate with a
number of well-known data sets for both regression and classification tasks.

Index Terms—Sensitivity Analysis, Data Transformations, Model Fitting, Multidimensional Data Visualization
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1 INTRODUCTION

I NCORPORATING uncertainty and sensitivity analysis in vi-
sual analytics tools is essential to improve the decision-

making process. On one hand, it provides the analysts a means
to assign confidence levels to the insight gained through the
analysis. On the other hand, it gives tool makers a methodol-
ogy for measuring and comparing the robustness of data and
visual transformations.

Sensitivity analysis (SA) refers to the analysis of small
perturbations in the parameter space and their impact on
the outputs. When we study pairwise correlations, sensitivity
analysis tells us the rate of change of one variable Y with
respect to another variable X. Scientists make use of such
sensitivity studies to determine which input variables are more
important or contribute more towards explaining the behavior
of an output variable. Subsequently, these studies help reduce
the parameter space to subspaces that are easier to analyze
and visualize, and guide sampling strategies to obtain better
samples.

From a visualization standpoint, sensitivity analysis is aug-
mented with two, often mutually exclusive, graphical repre-
sentations: sensitivity summaries, which succinctly represent
the outcome of a sensitivity study, and sensitivity plots, which
usually provide detailed information, such as parallel coordi-
nates or scatterplots with sensitivity information. Examples of
sensitivity summaries include sensitivity matrices [14], where
each cell in the matrix encodes the magnitude and direction
of pairwise sensitivities between outputs and inputs; tornado
diagrams [17] and box plots and their variants [33], [35].
Sensitivity plots, on the other hand, encode detailed infor-
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mation about derivatives and other statistical properties such
as variances. In addition to visualization, interaction plays an
important role for the analysis of sensitivity, as exemplified by
interactive PCA [29] and ScatterDice [16]. However, relying
on interactivity to explore data becomes impractical as the
number of dimensions increases.

For this purpose, we propose to extend visualizations, such
as scatterplots, with sensitivity information in a manner that
does not preclude users from using the scatterplot in a familiar
way, but that reveals aspects of the data that may not be
evident without tedious interaction. In our previous work,
we introduced the flow-based scatterplot (FBS) [10], which
enhances scatterplots with sensitivity lines and streamlines,
suggesting the appearance of flow to represent the relationship
between two variables. FBS have a number of limitations,
mainly the reliance on a 2D projection to compute the flow,
which hides a lot of the complex interactions that may happen
in the hidden extra dimensions, and the fact that the scatterplot
onlys show the sensitivity with respect to a single variable at
a time.

To alleviate these limitations, we have extended our contri-
bution to what we call the generalized sensitivity scatterplot
(GSS). To arrive at such representation, we first conducted
a user-study to understand how people interpret trends from
scatterplots of high-dimensional data. We show that, while cer-
tain trends may be evident from the distribution of points in a
2D projection, noise and complexity of the hidden dimensions
make the task of interpreting a trend nearly impossible for
complex data, unless the user resorts to thorough exploration
of the extra dimensions.

We show that a generalized notion of sensitivity lines is
a way to augment scatterplots in order to expose hidden
interactions between variables. This generalization implies a
subtle but fundamental modification to the FBS: flow-based
scatterplots are by definition smooth and thus sensitivities
are limited to the variables involved in a 2D projection, i.e.,
differentiation occurs after projection. In a GSS, sensitivities
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(a) Scatterplot (b) Flow-based scatterplot (c) GSS (d) Sensitivity Star Glyphs

Fig. 1. Visualization of two variables of the Wine data set [47] where points are color-coded by class. (a) Traditional
scatterplots suffer from overlap and different classes may appear to mix in arbitrary ways. (b) a FBS [10] reveals a
positively correlated trend, but mis-represents the trend of the points in blue. (c) a GSS on a 3D subspace represents
better the trends of points belonging to different classes; class 3 is distinguishable from others. (d) A star glyph plot
summarizes the GSS across multiple 3D subspaces, where all of the three classes stand out distinctly, as evidenced
by the shape and size of the glyphs.

involve the full parameter space or a selected subspace, not
necessarily the same as the projection, i.e., projection occurs
after differentiation. We show that this operation implies a
number of relationships between the visualization of partial
derivatives in a 2D subspace and what can be inferred about
the smoothness of the data in higher dimensions.

In addition, we found that we can interpret sensitivity in a
more abstract way, and we do not need to limit ourselves to
a single variable to represent the sensitivity of data points.
Instead, we can consider multiple sensitivities at once and
represent these using 2D glyphs. We call these the sensi-
tivity fan and the sensitivity star glyph, which encode the
direction and magnitude of sensitivity for multiple variables,
respectively. We show in a number of examples that these
glyphs help visually classify data in ways that are not possible
unless we consider the full parameter space. To illustrate the
contributions of our paper, we now describe an example of
how the GSS and sensitivity glyphs are used.

1.1 An Illustrative Example

Let us consider the wine data set that comprises 13 variables
of 178 observations of the chemical composition of wines
growing in Italy and the relationship to color intensity and hue,
as described in [47]. They are classified into three categories
shown in red, green and blue. A scatterplot of variables proline
and color is shown in Fig. 1(a), with color encoding the class
of wine. One way to visualize sensitivity is via flow-based
scatterplots (FBS), as shown in Fig. 1(b), where line segments
indicate a sense of the local trend of the data. However, vertical
regression, used to extract sensitivity parameters, emphasizes
functional relationships, which, while correctly showing the
relationship between color and proline for the points in red,
forces the points in blue to be interpreted as having the
variable color decrease with the variable proline. Our GSS
provides a more general view of sensitivity. In Fig. 1(c) we
depict two contributions: (1) sensitivity lines are computed
using orthogonal regression, which allows us to discover non-
functional relationships (or functional relationships of the X
variable with respect to Y), as seen for the points in blue; and

(2) sensitivity lines are projected from a higher dimensional
space, allowing us to see two overlapping trends (one formed
by blue points and another formed by green and red points),
exposing a relationship in a third dimension otherwise hidden
in the traditional and FB scatterplots.

While sensitivity lines show quantitative properties of the
sensitivity, we can think of sensitivity in a more abstract
manner. One mechanism is to consider the magnitude of
sensitivity along different subspaces as additional dimensions
of the data. Then, one can replace points in the scatterplot with
glyphs, such as a sensitivity star, described in more detail in
Sec. 5.2.3. Fig. 1(d) shows a GSS of proline vs. color with
sensitivity star glyphs, in which each point is augmented with
a quadrilateral where each vertex is at a distance from the
data point proportional to the magnitude of the sensitivity
in a different subspace. The four subspaces are formed by
the variables proline, color, and one of the extra dimensions:
concentration of magnesium, alcohol, flavanoids and phenols.
This augmentation shows that representing each point by
a glyph provides visual separation of the high dimensional
points in a simpler 2D plot. Notice how points in the overlap
of the three classes have very distinct shapes and sizes that are
similar within each class, but quite different among classes,
which is an ideal property for effective classification.

2 RELATED WORK

Multivariate analysis. Multivariate analysis is at the core
of visual analytics. Approaches can be categorized as data-
centered approaches, such as regression [15], generalized
additive models [24] and response surface analysis [6], or
visual-centered approaches. Since data is becoming large and
complex, data-driven approaches often employ simplification
techniques, which either reduce the number of observations,
such as binning, sampling [42] or clustering [5], or reduce the
number of dimensions in the data, such as projections [37] and
multi-dimensional scaling. Visual-centered approaches follow
a different strategy, where correlations and trends emerge
as salient structures in the human visual system. These ap-
proaches are often coupled with interactive manipulation, as
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shown by Jeong et al., who incorporate interactivity into
principal component analysis [29]. Yang et al. integrate anal-
ysis tools with the visual exploration of multivariate data
[49]. In this paper, we present a combination of analysis
and visualization tools that exploit sensitivity analysis for the
effective exploration and navigation of multi-dimensional data.

Sensitivity analysis. There are numerous approaches to
studying sensitivity, including local analysis [8], [21], where
the sensitivity parameters are found by simply taking the
derivatives of the output with respect to the input; statistical
methods, such as those based on variance, which provide
an estimate of the sensitivity in terms of the probability
distribution of the inputs [9], [28], [1]; or sampling-based
methods, when it is not feasible to sample the entire parameter
space, including methods such as Latin hypercube sampling
[27] and Montecarlo simulations [40], [26].

For surveys on sensitivity analysis methods, including their
application to multivariate analysis, refer to Frey and Patil [19]
and Tanaka [41]. Sensitivity analysis can also be described as
a general recipe for analyzing specific data tools, such as vari-
ance analysis [9], clustering [13], [11], principal component
analysis [39], [48] and uncertainty analysis [31].

Sensitivity analysis in visualization. Recently, it has
become important to visualize sensitivity parameters along
with the data. Barlowe et al. [3] proposed the use of histograms
and scatterplot matrices to visualize the partial derivatives of
dependent variables to reveal the type and strength of correla-
tions between the output and the inputs of a process. Correa et
al. [14] used sensitivity analysis to propagate the uncertainty
in a series of data transformations and proposed a number
of extensions to show this uncertainty in 2D scatterplots.
We explored further this notion with flow-based scatterplots
[10]. Bachthaler et al. [2] presented the continuous scatterplot,
which generates a continuous density function for a scatterplot
and alleviates the issues with missing data. Heinrich et al.
[25] extended this to parallel coordinates, while Feng et al.
[18] incorporated uncertainty analysis to provide density-based
views of multivariate data.

FBS are constructed in a similar fashion, by estimating
a density function that explains the 2D plot. Rather than a
global density, we implicitly fit a density function locally to
estimate the derivative of a function at each point. Guo et al.
[22] extend the visualization of sensitivity analysis to local
views, where the analyst is able to compare local sensitivity
coefficients in a myriad of tools. Berger et al. [4] estimate local
neighborhoods to represent sensitivity with respect to multiple
variables as overlapping areas in a scatterplot. The shape and
size of these areas give an idea of how a function changes
locally. In this paper we also address the issue of visualizing
multiple sensitivities simultaneously. Using sensitivity coef-
ficients as data dimensions allows us to use existing glyphs
to create effective scatterplots. A related representation is the
spiderplot by Eschenbach et al. [17], who used it to show the
relative change in the outcome for a unit change in multiple
independent variables. Their work inspired the sensitivity fan
and star glyphs proposed in this paper.

On augmenting and interacting with scatterplots. Scat-
terplots are intuitive to understand when studying the relation-

ship between two variables. However, projected points may
result in clutter and overlap for large and high dimensional
data sets. To deal with the loss of information that comes from
projection, a number of techniques are proposed. Keim et al.
[30] proposed generalized scatterplots that let users balance
between the amount of overlap and distortion of the data
points. Other augmentations have been proposed by Collins et
al. [12], who enhance the spatial layout of plots with clustering
information, and Shneiderman et al. [38], who link multiple
substrate plots to superimpose cross-substrate relationships.
Other techniques rely on interaction and navigation. One
mechanism is to link projections in a scatterplot matrix in
order to enumerate all possible combinations of projections
of variables, but an effective way to navigate these spaces
remains a challenge. Scatter dice [16] is an alternative that
exploits interactive capabilities to navigate a large scatter
matrix and help visual analytics. Tools also often provide
selection and brushing techniques to aid in the exploration of
high-dimensional spaces. Aside from axis-aligned selections,
ubiquitous in interactive tools, there has been some work
in more meaningful brushes, such as structure-based brushes
[20] and n-dimensional brushes [32]. In our work, we show
that sensitivity information can be considered as additional
important dimensions of the data, and so can be used to select
related data in a more meaningful way. We aim to highlight
the importance of local sensitivity coefficients in aiding visual
analytics, and so we show that existing techniques, such as
selection, brushing and navigation, are enhanced in meaningful
ways. For this reason, we do not survey the extensive literature
in interactive techniques for scatterplots.

3 SENSITIVITY AND SCATTERPLOTS

Common scatterplots, i.e., depicting only 2D points, only
implicitly encode the sensitivity of one variable with respect to
the other, as depicted in Fig. 2(a). To quantify the sensitivity
of one variable with respect to another, we recur to regression.
Typically, linear regression, obtained via total least squares,
provides a single value of linear sensitivity or correlation.
However, when the two variables are not related via a linear
function, such as shown in Fig. 2(a), a single regression
line hides the true nature of the interaction between the two
variables. An alternative is to compute local regression, e.g.,
using weighted least squares or locally weighted polynomial
regression [34], which makes it possible to quantify complex
trends in the data, which, although locally linear, may exhibit
nonlinearities when viewed as a whole.

A visual representation of sensitivity is what we call a
sensitivity-enhanced scatterplot. Trend lines are present in
practically all scatterplot graphing tools. Recently, flow-based
scatterplots (FBS) [10] extend this idea to local regression,
encoding a local regression line for each data point in the
2D plane. In this paper, we present a generalization, called
generalized sensitivity scatterplots (GSS), which decouples
the projection step during the construction of the scatterplot
and the regression step that computes the sensitivities. This is
important in analyzing multi-dimensional data when we aim
to find relationships that cannot be explained by two variables.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

X

Y

X

Y

(a) Scatterplot (b) Flow-based scatterplot

X

Y

X

Y

(c) GSS (d) GSS colored by Z

Fig. 2. Scatterplots of a synthetic function. (b) the sensi-
tivity shows a sinusoidal function. (c) the trend lines show
both the sinusoidal and linear components only visible in
the hidden Z dimension, evident in (d).

An example is shown in Fig. 2(c-d), which depicts a projection
of a 3D function that combines both a linear and a sinusoidal
relationship, as explained below.

First, we introduce the basics of sensitivity estimation in
high dimensional spaces.

3.1 Definition
Let x ∈ RN be a point in an N−dimensional space. The
sensitivity of x with respect to a variable xi is simply the
partial derivative

y =
∂x′

∂xi
(1)

For a FBS [10], y is a 2D vector that results from computing
the sensitivity of a projected point x′ = (x,y)> =ΠS(x), where
ΠS : RN 7→ R2 is a projective transformation. In other words,
FBS applies the differentiation step after projection.

In general, however, one must decouple the projection and
subspace selection transformations from the differentiation
operation for the sensitivity analysis to be effective.

Let us consider, without loss of generality, y = (u,v) a 2D
sensitivity tuple associated with a point x, computed as

(u(x),v(x))> = ΠD

(
∂Πx
∂xi

)>
(2)

for a transformation ΠD : RM 7→R2, called the projection and
a general transformation Π : RN 7→ RM , M ≤ N, called the
subspace selection, which can be the identity transformation
or another projection.

From Eq. 2, we see that, when Π = ΠS and ΠD is the iden-
tity transformation, the GSS becomes a flow-based scatterplot.

3.1.1 Example
To understand the importance of this generalization, let us
consider an example of a set of 3D points (x,y,z), where
y = f (x)(1− z)+g(x)z. Fig. 2(a) depicts the projection of this

set of points in the XY plane for f (x) = sin(αx) a sinusoidal
and g(x) = ax+ b a linear function. From the projection, it
is difficult to see that this is indeed the shape of the 3D
function. To visualize this relationship, we attempt to obtain
two different sensitivity-based scatterplots, one using the flow-
based scatterplot and the other one using our generalization.

Let us consider the case of differentiation after projection in
the XY plane (or z= 0). In this case, the newly projected points
(x′,y′) become (x, f (x)). Then, the vector lines are formed
by the derivatives ( ∂x

∂x ,
∂y
∂x ) = (1, ∂ f

∂x ). This approach hides the
interaction of x and z to form function y. As a result, as shown
in Fig. 2(b), the vector lines only show the sinusoidal aspect
of the function, i.e., f (x).

Now let us consider the case of differentiating the function
before projection. The derivatives of a point are ( ∂x

∂x ,
∂y
∂x ,

∂ z
∂x ) =

(1, ∂ f
∂x (1− z)+ ∂g

∂x z, ∂ z
∂x ) and their projection in the 2D plane

becomes: u = 1 and v = ∂ f
∂x (1− z)+ ∂g

∂x z.
Thus, this vector line is now able to represent the interaction

with the hidden coordinate z, as depicted in Fig. 2(c-d).
To understand better the importance of exposing hidden

factors when computing sensitivities, we conducted a user
study where we let subjects draw trends of synthetic data from
looking at a 2D scatterplot of a sampled 3D function. We used
the results of this study to identify the effect of noise and
complexity of the function and justify the need for explicit
depictions of sensitivity.

4 HOW PEOPLE INTERPRET TREND: AN EM-
PIRICAL STUDY

We conducted a user study to help us understand how people
interpret trends from scatterplots. This focus allowed us to
conduct controlled experiments and gather an unprecedented
data set that will be useful for future research on trends and
scatterplots.

We narrowed our evaluation to the understanding of
trends of functions in three dimensions given a single two-
dimensional projection. A 2D scatterplot of this 3D function
gets more difficult to understand when the function is per-
turbed by noise, when the function along the hidden dimension
increases the ambiguity of the function, or when the functions
in the 2D plot are complex.

We generated a number of 3D functions formed by two
functional relationships interpolated smoothly along a hidden
dimension and sampled the functions at discrete positions. We
asked users to look at the 2D scatterplot of these functions
and identify up to two trends that best describe the underlying
function. If we gather enough results for each function, we can
visualize and quantify the amount of agreement the different
users have in terms of the shape and location of those trends.
We hypothesize that the level of agreement decreases as the
level of noise increases and is less for a smooth interpolation
instead of a sharp separation of the function values.

In the cases where it is difficult to infer a trend from a
scatterplot alone, the generalized sensitivity plot will be more
informative and will alleviate the perceptual and cognitive
ambiguities that arise from the projection.
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(a) LIN1: x (b) MLIN: 1− x (c) QUAD: x2

(d) QUAD2: 0.3x2 (e) MQUAD: 1− x2 (f) CUB: x3

(g) EXP: e−x2 −1 (h) SIN: sin2πx (i) LOG: log(ax2+1)
log(a+1)

Fig. 3. Nine of our ten patterns in the study. Top:
LIN,MLIN,QUAD. Middle: QUAD2, MQUAD, CUB. Bottom:
EXP, SIN, LOG. Not seen here is LIN2: 1.5x.

(a) LIN1 & MQUAD (b) MLIN & EXP

(c) QUAD & SIN (d) QUAD2 & LOG

Fig. 4. 3D functions interpolated from seed functions
(red and blue curves) and an interpolant. (a-b) use linear
interpolant and (c-d) are from sigmoid interpolant. In the
image on the left, points are colored by the interpolation
weight w. The monochromatic image on the right is the
final image shown to the participants.

4.1 Data Preparation

We create a set of synthetic 3D functions as follows:

Y (x,z) = w(z)Y1(x)+(1−w(z))Y2(x)+Nα(x) (3)

where Y1 and Y2 are two 1D functions we call seeds, w is a
monotonically increasing interpolating function and Nα is a
noise function of amplitude α . In this experiment, we chose
a uniform noise function, which produces real values in the
range [−α,α]. Fig. 3 summarizes the functions we used as
seeds.

We have generated 45 combinations of these patterns, each
with two interpolating functions w: Linear (LIN) and Sigmoid
(SIG). For a number of tasks, we have also generated 10

functions with a single seed, i.e., for a unit step function
as an interpolation function. In total, this amounts to 100
different 3D functions. Examples of these combinations are
shown in Fig. 4(a-e). Note that users were only presented
with uncolored 2D scatterplots, where the seed functions are
not necessarily obvious. Besides the seed functions and the
interpolation functions, we also introduce three different levels
of noise α ∈ {0.01,0.13,0.25}.

4.2 Design of the User Study
We want to learn how users interpret local trends from the
scatterplot. In order to do that, we expected that we would
need at least ten experimental runs per function. These runs,
coming from different users, can be overlaid on the scatterplot
to generate a confidence plot for how easy it is to infer trend
from data. We also limited each user to 20 tasks to avoid
learning effects and minimize performance degradation for
any given user. We estimated that we needed at least 150
participants for the study, so we developed an online tool that
we made available to volunteers.

After sending invitations to participate, we recruited 223
people. From the total submitted tasks, we identified a set of
6140 valid results after removing some outliers, which resulted
in 10.77 valid results per plot. A total of 134 males and 89
females participated: 132 of them had graduate or similar level
of education, 150 participants were in the 20-30 age group,
and 167 people had an Engineering or Science major.

Subjects filled a questionnaire about their background first,
and were exposed to 20 randomly selected tasks from the 100
sets of different trend plots as shown in Fig. 5. The noise level
and the interpolation function for each task were randomly
selected while guaranteeing that the total number of tasks for
each difficulty level was similar in order to avoid cases where
tasks are all simple (low noise level) or all difficult (high noise
level). In each task, subjects were asked to draw freely a curve
that best describes each trend they perceived in the plot, and
were allowed to unlimited re-dos if they were not satisfied.
For each task, we collected:
• The total time to finish the task and to to draw curves.
• The number of re-do for each curve and the curves drawn.
All the subjects were asked to make an intuitive decision on

the trends they perceived in the plot of mixed pattern. Before
the study, the subjects knew nothing about the generalized
sensitivity nor the seed functions we used to generate mixed
trends. They did not know the answers of the trends mixed in
the plots until the end of the study.

To alleviate any technical difficulty, the subjects were given
a practice session where they were shown the same drawing
interface in Fig. 5 and it was not timed. The subjects were
allowed to use their preferred input device such as a mouse, a
touch screen, or a pen stylus. We asked the user to explicitly
identify their input method. Among the 223 subjects, 180 used
their mouse to draw, while only 27 used a more intuitive way
to draw such as a stylus pen or their finger on the display.

We show the results of our study in two forms: (1)
Confidence plots, which summarize all the drawings from
participants for each function, and (2) The average error of
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Fig. 5. A snapshot of the online user study.

Fig. 6. Confidence plots as noise increases.

the perceived trends compared to the seed functions and the
local trend given by their local sensitivity.

4.3 Confidence Plots
The confidence plot for a function is constructed by overlaying
the responses for the different subjects that encountered that
function using semi-transparency. We pre-processed the raw
sketches by smoothing the drawing (with the same parameter),
color coding each sketching curve to the corresponding seed
curve, and removing outliers. Since we made no assumption
of the trend lines that subjects might draw, and we encouraged
subjects to draw the most intuitive trends they saw from the
plot, a few of the results included loops and non-functional
relationships, which we excluded as outliers. Some example
of the confidence plots are shown in Fig 8. The complete set of
the confidence plots are available at http://vidi.cs.ucdavis.edu/
projects/RegressionStudy. We identified noticeable differences
in the dimensions considered in our study:
• Noise: the larger the noise, the lower the consensus.

For a set of three functions with the same seeds and
interpolation but different noise levels, it is clear that
participants agree less. An example is shown in Fig. 6.

• Interpolation: functions interpolated using a sigmoid
interpolant have more consensus than those using a
linear interpolant. This illustrates one of the difficulties
in inferring trends from 2D projections. While it may
be easy when points are clearly separated in the hidden
dimension, it becomes increasingly difficult to infer trends
for smoothly changing functions. An example is shown
in the third (sigmoid) and fourth (linear) images in Fig. 7.

• Single or Mixed Seed functions: also shown in Fig. 7
as a special interpolant with a unit step function.

Fig. 7. Confidence plots in terms of interpolation along
the hidden dimension.

Rank function Mean Min (inter,noise) Max (inter,noise)
1 LIN 0.0904 0.0252 (SIG,M) 0.1805 (LIN,S)
2 LOG 0.0904 0.0182 (one,S) 0.2144 (LIN,M)
3 EXP 0.0935 0.0295 (LIN,M) 0.2429 (LIN,M)
4 QUAD 0.0936 0.0187 (one,S) 0.2398 (LIN,M)
5 MLIN 0.0993 0.0178 (one,S) 0.2453 (LIN,M)
6 SIN 0.1038 0.0198 (one,S) 0.1969 (LIN,S)
7 LIN1 0.1043 0.0304 (SIG,L) 0.1909 (LIN,L)
8 CUB 0.1145 0.0197 (one,S) 0.2777 (LIN,S)
9 MQUAD 0.1204 0.0242 (one,L) 0.2182 (LIN,M)
10 QUAD2 0.1617 0.0312 (one,S) 0.3537 (LIN,S)

TABLE 1
Mean, Min and Max Error of the distance index E.

4.4 Performance
In addition to qualitative evaluation, we also study the quanti-
tative performance of the user perception of trends versus the
ground-truth trend given by either the seed functions or the
local sensitivity illustrated by generalized sensitivity plots.

4.4.1 Perceived Trend vs. Seed Functions
We estimate the average error for each function Y as the
Euclidean distance of a point in the curve to the closest point
in the corresponding seed function. We denote the error as

E(Y,C,α,w) = ∑
x∈C

mind(C(t),Y (t)) (4)

for a user drawn curve C parameterized by t and the curve Y
defined by a seed function. The total error for a function is
simply the average among the available curves: E(Y,α,w) =
1
N ∑i E(Y,Ci,α,w) for a set of N curves Ci.

To summarize the error for each seed, we also averaged the
error among different values α and interpolations functions
w. The resulting averages, along with the minimum and
maximum noise and interpolation configuration, is shown in
Table.1 and depicted in Fig. 8. Notice that for seven out of
ten functions (LOG, QUAD, MLIN, SIN, CUB, MQUAD, and
MQUAD2), the minimum error took place in the respective
plot with a single seed. For the other three functions (LIN,
EXP, and LIN1), their minimal error took place at plots that are
either interpolated by SIGMOID function (LIN and LIN1), or
at plots with a smaller noise level (EXP with Medium noise).
Larger errors, as observed before, appeared when using the
linear interpolant.

A 2-way ANOVA on the effects of noise and interpolation
showed a significant effect of noise F = 6.94 (p=0.0011) and
a significant effect of the interpolant, F = 180.31 (p <0.0001),
validating our hypotheses with much higher confidence.

4.4.2 Perceived Trends v.s. Local Fit
Because users may interpret local trend in different ways,
we measured the degree to which the curves drawn by the
subjects appear to locally fit the data. We estimate a similar
error for each function Y as the error between the a point
in the drawn curve and a sample point. We denote the
error as EF(Y,C,α,w), and computed similar averages and
bounds. The confidence plots of their min and max error are
summarized in table 2 and shown in Fig. 9. Finally, to see
how well the curve agrees with the local fit, we treat the seed
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Fig. 8. The confidence plots of the minimal and maximum E.

Fig. 9. The confidence plots of the minimal and maximum EF .

Rank function Mean Min (inter,noise) Max (inter,noise)
1 LIN 0.0774 0.0173 (one,S) 0.1981 (LIN,S)
2 LIN1 0.0908 0.0253 (LIN,S) 0.2328 (LIN,S)
3 MLIN 0.1063 0.0341 (LIN,M) 0.2037 (SIG,M)
4 QUAD2 0.1068 0.0565 (LIN,S) 0.1884 (SIG,M)
5 CUB 0.1103 0.0464 (LIN,M) 0.1861 (SIG,M)
6 EXP 0.1107 0.0609 (LIN,M) 0.1764 (LIN,L)
7 SIN 0.1162 0.0417 (SIG,M) 0.2375 (SIG,S)
8 LOG 0.1233 0.0216 (one,M) 0.1956 (SIG,S)
9 MQUAD 0.1263 0.0615 (SIG,M) 0.2109 (SIG,L)
10 QUAD 0.1290 0.0353 (LIN,L) 0.2307 (SIG,S)

TABLE 2
Mean, Min and Max Error of the distance index EF .

function as a baseline curve and compute the error as the
Euclidean distance between points in the seed function and
the closest sensitivity line, denotes as ES. Table 3 summarizes
the three types of errors: E between a seed function and drawn
curves, EF between the sensitivity lines at the sampled points
and drawn curves and ES between the seed function and the
sensitivity lines. For any given function when ES is closer to
E than EF , users interpret trends more in a global manner,
as a fitting of a single perceived function. Otherwise, users
interpret trends more locally and in an adaptive manner, as a
function of the hidden dimension.

4.5 Discussion
We have set out to qualitatively and quantitatively measure
how much agreement there is between different users about

Rank function Mean E EF ES
1 LIN 0.0847 0.0905 0.0774 0.0863
2 LIN1 0.0968 0.1043 0.0908 0.0954
3 EXP 0.1062 0.0935 0.1107 0.1144
4 MLIN 0.1076 0.0993 0.1063 0.1173
5 CUB 0.1156 0.1145 0.1103 0.1220
6 SIN 0.1164 0.1038 0.1162 0.1293
7 LOG 0.1175 0.0905 0.1233 0.1388
8 QUAD 0.1200 0.0937 0.1290 0.1373
9 QUAD2 0.1257 0.1617 0.1068 0.1086
10 MQUAD 0.1289 0.1205 0.1263 0.1398

TABLE 3
Means of the three distance indexes: E, EF , and ES.

what constitutes a local trend. While this is a seemingly
simple task, there is little consensus about what constitutes
a trend when data is corrupted by noise, or obvious trends are
obscured by the projection when data varies along an unknown
dimension. In those cases, it is imperative to augment the
scatterplot to explicitly depict the local trend and alleviate
any ambiguities perceived by users. Generalized sensitivity
scatterplots provide such augmentation, as we will describe
in the next section.

5 GENERALIZED SENSITIVITY SCATTER-
PLOTS (GSS)
A GSS is a graphical representation of N-dimensional data
that represents a data point x∈RN via a tuple (x,y,u(x),v(x))
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Fig. 10. Process of computing a GSS. We start by computing sensitivities from the input data on a selected
subspace. After approximating the derivative for each point in that subspace, we project to a 2D space. The resulting
sensitivities are visually encoded as sensitivity lines in the general case. For multiple sensitivities, we can encode
them simultaneously using the fan or the star glyph.

where (u,v) is computed using Eq. 2. The process of com-
puting a GSS from raw data to a visual representation is
depicted in Fig. 10, and described in the following sections.
The first stage computes the sensitivity coefficients (u,v) using
the method outline in Eq. 2, which comprises three transfor-
mations: subspace selection, differentiation with respect to a
variable of interest, and projection. Because we start from
discretely sampled data and the underlying function is not
always known, we start by estimating the partial derivatives
numerically.

5.1 Estimating Partial Derivatives
In this paper we follow the approach in our previous work
[10] and approximate the partial derivatives using a variational
approach, where we use the slope of the locally fitted linear
regression around a given point, by taking in consideration the
Taylor expansion of a given variable y with respect to another
variable x. For a point (x0,y0),

yi− y0 ≈
∂y
∂x
|(x0,y0)(xi− x0) (5)

For a set of k points (xi,yi), it can be posed as a linear problem:

W

 x1− x0
...

xk− x0

β = W

 y1− y0
...

yk− y0

 (6)

WXβ = WY (7)

where W = diag{wi} is a diagonal matrix of weights, rep-
resenting the importance given to any point i, and β (variable
to solve), is the partial derivative ∂x

∂y . In general, these weights
are inversely proportional to the distance to the target point
(x0,y0). We use a Gaussian weighting scheme where d(x0,xi)
is the Euclidean distance between two points in RM:

wi = e−d(x0,xi)
2

(8)

This problem can be solved using linear least squares [45],
by solving the linear system

X>W 2Xβ = X>W 2Y (9)

This approach, however, fits a hyperplane using vertical offsets
along the y dimension, and fails to represent partial derivatives

perpendicular to the x dimension, as evidenced by our previous
work [10]. In this work, we adopt the notion of orthogonal
least squares [46], where the quantity to be minimized is the
orthogonal distance to the hyperplane defined by the partial
derivative by solving the quadratic problem:

β
2 +Cβ −1 = 0

C =
Syy−Sxx +(S2

x −S2
y)/Sw

SxSy/Sw−Sxy

Sx = ∑
i

wi(xi− x0)

Sxx = ∑
i

wi(xi− x0)
2

Sw = ∑
i

wi

Sy = ∑
i

wi(yi− y0)

Syy = ∑
i

wi(yi− y0)
2

Sxy = ∑
i

wi(xi− x0)(yi− y0)

Fig. 1(b-c) show the difference between vertical and orthog-
onal regression. While local trends using vertical regression
emphasize functional relationships (and thus tend to align
with the X axis), orthogonal regression is more effective at
capturing non-functional relationships, including trends that
are not aligned with the X axis, such as the trend of class 3
points in blue.

5.1.1 Setting the Neighborhood Size
As seen above, we can estimate the derivatives for a point
depending on a local neighborhood around that point in a given
dimension RM . Several different neighborhood criteria can be
applied in approximating partial derivatives locally, such as
kernel density estimation [43] and geographically weighted
regression [7], which result in different estimates depending
on the local density of the points. Here, we consider two
common neighborhood methods. Let N(x) = {x1, . . .xk} be
the neighborhood of a point x in Euclidean space RM .

One neighborhood, the R−ball, is obtained by using a fixed
radius R around each data point. A point xi is a neighbor of the
target point x0 if d(xi,x0)<R. Another common neighborhood
is the k−nearest neighbor graph (KNN), where a point is a
neighbor of the target point x0 if it is among the k nearest
neighbors other than x0 itself.

These two criteria provide the user an adjustable kernel to
accommodate datasets that have a non-uniform density in the
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(a) Radius (b) Num of Neighbors

Fig. 11. Different neighborhood kernels and sizes.

projection space. In general, a fixed radius is useful when we
are interested in finding smooth flow signatures that explain the
sensitivity of a given variable with respect to another. On the
other hand, a fixed number of neighbors is more suitable when
trying to discriminate the trends between regions of points of
disparate density or that are separated in the selected subspace.
Local Density. In addition to estimating the derivative, the
local neighborhoods are estimates of the local density of points
at any given region in a high dimensional space RM . For the
case of a fixed radius, we can estimate the density as Eq. 10
where |N(x0)| is the cardinality of set N(x0):

δ (x0)≈
|N(x0)|

RM (10)

For the case of a fixed number of neighbors:

δ (x0)≈
K

maxx∈N(x0)d(x,x0)M (11)

Fig. 11 shows the effect of the neighborhood parameters in
the estimated sensitivity lines. It also depicts the estimated
local density by coloring each sensitivity line using a warm-
to-cool color map, where hot colors highlight locally dense
areas while cold colors indicate sparse neighborhoods.

Density estimates may also be useful for decimating sen-
sitivity lines when data points clutter or they appear with
varying density. While this may be a requirement for large
data sets, existing techniques can be easily adapted to control
the visibility and density of sensitivity lines.

5.2 Visual Encoding of Sensitivity
After the steps of subspace selection, differentiation and pro-
jection are completed, we can encode the resulting sensitivity
in the 2D scatterplot.

One of the goals of the proposed visual glyphs is to let
users visually separate regions of the high dimensional space
from simpler projections. As we shall see, each new glyph
exposes dependencies in the data that are not visible from a

(a) Sensitivity Fan

(b) Sensitivity Star Glyphs

Fig. 12. Plot of color vs. proline using sensitivity fans
and star glyphs. In this case, star glyphs are effective at
visually segmenting the data based on the size and shape
of glyphs, into the ground-truth classes, encoded by color.

2D projection, while retaining the scalability and familiarity
of 2D interaction.

5.2.1 Sensitivity Lines
In its simplest form, the GSS is formed by drawing unit
length lines centered at each data point in the direction of the
derivative (u,v). Depending on which dimensions we choose
to compute the derivative, the resulting lines will be different.
Note that, while sensitivity lines do not cross in a FBS, that
is not the case for a GSS, and two points in a vicinity may
exhibit very different sensitivities, indicating the effect of a
hidden variable.

Sensitivity lines are also limited to a single differentiating
(or reference) variable. To understand all sources of sensitivity,
one must explore different combinations of subspaces and
reference variables, but this is prohibitive to compute or
visualize in its entirety. Instead, we consider sensitivities of
different subspaces as extra variables that we use to populate
2D glyphs. Two of these, which we call the sensitivity fan and
the sensitivity star glyph, encode the direction and magnitude
of multiple sensitivities simultaneously in a single plot.

5.2.2 Sensitivity Fan
The sensitivity fan is a collection of multiple sensitivity lines
estimated in subspaces {X ,Y,Zi}, where X and Y are the pro-
jection variables in the scatterplot and Zi represents the other
different dimensions. It is a simplified visualization to overlay
and to compare multiple GSSs on the same X-Y projection.
To improve readability, instead of showing lines crossing on
each data point, we only show half of the sensitivity line for
each dimension.
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Given a set of k variables Z = {Z1,Z2, ....,Zk}, the sensitivity
fan on a point x is formed by lines:

(ui(x),vi(x)) =
∂Πix

∂x
(12)

where Πi : RN 7→ R3, is a projection transformation from the
N-dimensional space to the space formed by variables X ,Y,Zi.

Each of these fan lines are constructed by a line segment
from x = (x,y) to (x+ δui(x), y+ δvi(x)) scaled by a given
constant factor δ , so that the slope of the fan line denotes the
direction of the sensitivity. Lines can be colored differently
to enable visual comparison between the different subspaces.
We connect adjacent fan lines with a polyline, interpolating the
colors associated with each variable to highlight the difference
between fan lines and to ease reading fans overlapping each
other in a local region. The color of the fans can be turned
off using the user interface. An example of sensitivity fans is
shown in Fig. 12 for the wine data set.

5.2.3 Sensitivity Star Glyphs
A sensitivity star glyph is similar to a sensitivity fan, but
it highlights the magnitude of the sensitivities instead. In a
sensitivity fan, each line is normalized independently so that
the lines have the same length in the plot. This makes it
difficult to compare across different data dimensions. Instead,
one can consider the magnitude of the sensitivity as an extra
dimension and use these dimensions to define a signature
shape around each point. This shape is a star glyph and is built
as a polygon, where each vertex is placed uniformly around
the data point at a distance proportional to the magnitude of
sensitivity in each subspace. We follow the design of the radar
chart [17] and the star glyph [44].

For each variable Zi, i ∈ {1, . . . ,K} considered in the multi-
dimensional sensitivities, we define K directions d uniformly
around a point, and place a vertex at x + |(ui(x),vi(x))|d,
where |(ui(x),vi(x))| denotes the magnitude of the sensitivity
in the subspace (X ,Y,Zi). An example of sensitivity star glyphs
is in Fig. 12.

5.3 Selection and Clustering
An important issue with scatterplots is the selection of mean-
ingful groups. Selection consists of assigning a class to a
subset of the points based on a containment or proximity
function. In traditional scatterplots, it can be containment in a
user-dragged rectangular region, or proximity to an arbitrary
brushing region. In this paper, we show that the use of
sensitivities, especially along different subspaces, provides the
user with better hints of the shape of the multi-dimensional
space, and thus improves the selection of meaningful groups.
We can now select and cluster points in terms of two new
similarity metrics, described in the following sections.

5.3.1 Trend Similarity
In general, it is natural to think that nearby points with similar
sensitivities are likely to be grouped together, indicating that
they are also nearby in the high-dimensional space. Therefore,
one can consider a similarity measure as the Euclidean dis-
tance between tuples (x,y,u,v) formed by the projection in the

(a) Unsupervised clustering (b) Classification by RAD

Fig. 13. (a) Clustering of median housing price
(CMEDV) as a function of number of rooms (RM).
While in a 2D scatterplot the groups are not separable,
the automatic clustering of sensitivity in the subspace
(CMEDV,RM,RAD) picks up both visually and analytically
the difference in trend, exposing two groups (b) These
groups can be evident if we classify by variable RAD,
which is hidden in the 2D plot (only shown in insets)

2D space and their respective projected sensitivities. Selection
can be defined as proximity in this space. In practice, a user
simply selects points in terms of proximity in the 2D space,
then those points with a sensitivity outside a user-specified
range are removed from the selection.

More interesting is the generalization of the selection pro-
cess to automatically cluster the data points. We automatically
assign classes to points that share similarity depending on both
their location and derivative. We used the k-means algorithm to
classify points in the four dimensional space (x,y,u,v) formed
by data points and their derivatives. An example is shown
in Fig. 13(a) for the Boston housing data set [23]. Here we
consider the subspace that shows the relationship between the
average number of rooms in a house (RM) and the median
housing price (CMEDV). In a traditional scatterplot, it may
not be obvious that this relationship is not entirely monotoni-
cally increasing and there are two main groups, which could
be exposed by looking at a third dimension (RAD), which
indicates the accessibility of a home to radial highways. A
GSS highlights these groups visually, and automatic clustering
of the sensitivities validate the visual grouping. Compare to
Fig. 13(b), which color codes the data points based on the
hidden variable RAD. While the automatic clustering in (a) is
not perfect, it is effective at highlighting two main groups, one
formed by the points in light pink exhibiting a strong linear
relationship between RM and CMEDV and another formed by
bright pink and purple points.

The implications of this are important, since it shows
that clustering in a the 4D subspace formed by points and
sensitivity may be as accurate as clustering in a possibly high-
dimensional space.

5.3.2 Distance to Streamline
Another way to select points is to follow the structure of
the data. In our previous work [10], we showed that FBS
give rise to streamlines as a metaphor for showing global
trends. Streamlines are computed in 2D by integrating the
sensitivity lines from a given seed point x, using Runge-Kutta
methods. Because we deal with scattered points, FBS use
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(a) FBS (b) GSS (c) 3D Scatterplot

Fig. 14. Streamline selection by (a) 2D distance on (RM, LSTAT); (b) 3D view shows pink and purple trends are
differentiated by RAD; (c) GSS of (RM, LSTAT, RAD).

scattered interpolation to predict the value and derivative at
each sampled point, using similar kernels to the ones used in
sensitivity estimation.

Unlike our previous work, we compute streamlines in
the selected subspace, a possibly high-dimensional space. In
addition, we do not rely on multiple streamlines to encode
trends. We have noticed that predicting flow far away from
sample points may create trends that extend well beyond
the bounding hyper-volume of the scattered points and thus
may be misleading. Instead, we only estimate streamlines for
individual seed points as selected to the user to define a guide
for selection. Computing and drawing a single streamline of a
data point of interest is real-time and highly interactive. In
the worst case, its computational time scales linearly with
the number of data points, but with the aid of spatial data
structures such as kd-trees, it can be done in logarithmic time.

Now we can define a selection in a more “data-aligned”
manner: instead of Euclidean distance to a single point, we
compute the shortest distance from a point to the selected
line in the selected subspace. A point is said to be in the
selection if its shortest distance to the streamline is less than
a given threshold. This requires two interactive parameters:
the streamline seed, often selected as the user hovers over
data points, and the distance to the streamline, or width of the
selection.

We show an example in Fig. 14 using the Boston data
set [23], analyzing the relationship between LSTAT ( the
percentage of the lower status of the population) and RM
(average number of rooms per dwelling). Fig. 14(a) shows the
selection using FBS, where the selected streamline is shown
as a solid blue line, and selected points in blue. Notice how
the selection is not axis-oriented but rather feature oriented.

Fig. 14 we show selection on a GSS using the subspace
formed by LSTAT, RM and RAD. The sensitivity lines hints at
us of the presence of two distinct regions, judging by the trends
of the sensitivity lines. When we select points by streamline,
this high-dimensional curve (projected onto 2D) is aligned
with the feature formed by purple points (with a high RAD),
allowing us to select points in that region of hyper-space.
In contrast to FBS, selection in a GSS plot helps us detect
a relationship that could only be evident in a 3D space, as
shown in Fig. 14(c). In traditional scatterplots, it would not be

possible to discern the data points in this region without access
to a third dimension. Our generalized sensitivity scatterplot
includes the extra dimension implicitly in the view, which
becomes more space-efficient and demands less time when
navigating multi-dimensional spaces.

6 RESULTS

We now show examples of GSS in the analysis and visu-
alization of multi-dimensional data sets. We aim to show
that augmenting scatterplots with sensitivity information helps
analysts identify trends and groups in 2D with little need for
interaction, while these may only be evident in traditional
scatterplots with access to multiple dimensions or after tedious
and time-consuming user interaction.

6.1 Wine Data Set
As described in Sec.1.1, the wine data set [47] comprises 13
variables of 178 observations of the chemical composition of
wines growing in Italy, and a classification of these wines in
three classes. One of the interesting questions regarding this
data set is whether it is possible to understand which variables
are key in explaining these classes.

For a traditional scatterplot in Fig. 15(a), the classes may
be overlapping or their boundaries may not be clearly defined.
We notice that no single 2D projection can produce a perfect
separation of these classes. Therefore, we turn to our GSSs
to examine if sensitivity information can help us to better
understand this data set.

Fig. 15(b-c) shows the GSSs of the selected subspace:
(P,C,F), projected on the 2D subspace (P,F) (P: the per-
centage of proline; C: the color intensity; F : the percentage
of flavanoids).

Although on the projection (P,F) in Fig. 15(b) we observe
two distinct trends (one mostly composed by class 1 points in
red, and the other formed mostly by classes 2 and 3) , these do
not perfectly segment the data into the three classes of wines.

Fig. 15(c) shows a different projection (F,C) from the
same selected subspace. We see that the sensitivity lines
clearly delineate two different trends: one for class 1 wines
with a linear relationship between color and concentration of
flavanoids, and another non-linear relationship formed by the
other two classes.
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(a) scatterplot (b) GSS of a subspace (P, F , C) (c) GSS on a different projection (d) GSS of a 8-D subspace

Fig. 15. GSSs of the wine dataset. (a) class boundaries are not clear; (b) provides more separation cues; (c) class 1
exhibits a linear relationship distinguishable from others; (d) shows sensitivities of an 8-D subspace that class 2 and 3
are distinguishable on trends.

To help us identify differences between classes 2 and 3
wines we select a higher dimensional subspace for sensitivity,
as shown in Fig. 15(d). In this case we select the subspace
(P,C,F,A,H,M,O,Pr) (A: Alcohol; H: Hue; M: Magnesi; O:
OD280; and Pr: Proanthocyanin). We observe that class 2 and
3 wines, which could not be segmented in (c) are now easy
to segment in terms of their sensitivity in (d), judging by the
sudden change in the orientation of the lines (minus a few
exceptions). From Fig. 15(c-d) we see that sensitivity is a
useful tool for visually segmenting data without the need for
complex multi-dimensional interactions.

Besides the ability to visualize sensitivities from a selected
subspace, we would still need a mechanism to explore sensi-
tivities in a higher dimensional space systematically. Therefore
we turn to sensitivity fans and the star glyphs to summarize the
sensitivity parameters along multiple dimensions. Fig. 12(a-
b) showed the projected subspace of proline vs. color using
sensitivity glyphs to summarize four sensitivities simultane-
ously, namely the concentration of magnesium (red), phenols
(yellow), alcohol (green) and flavanoids(blue). In Fig. 12(a),
we see regions where the color-proline relationship has little
sensitivity to other dimensions, judging by how “closed” the
fan is. The more closed a fan is, i.e., appearing more like a
single line segment, the less impact have the other variables
into explaining the 2D relationship. This is the case for those
data points with a high proline (rightmost points), or high
color intensity (topmost points). They both have closed fans.
However, in the region in the middle of the plot we observe
larger discrepancies, depicted as larger or “open” fans. These
fans indicate that color, as a function of proline, is more
sensitive to the concentration of flavanoids (blue) and phenols
(yellow) than to the concentration of magnesium (red).

Then we explore the data using sensitivity star glyphs in
Fig. 12(b) and identify three distinct groups by the distinct
shapes of the quads spanned by the four query variables.
In fact, we can now segment the data into their respective
classes by looking at the relative sizes of the star glyphs,
which indicate the magnitude of the sensitivity. For example,
class 1 wines appear less sensitive to the four query variables
(pink quads), while class 3 wines exhibit more sensitivity (blue
quads). We also observed that the class 3 wines highlighted in
the black rectangular region, where the three classes overlap,
exhibit more sensitivity to the concentration of flavanoids and

phenols. However the class 3 wines in the topmost part of the
scatterplot exhibit a rather homogeneous sensitivity along all
four query dimensions.
6.2 Automobile MPG
The Automobile mpg data set concerns city-cycle fuel con-
sumption in miles per gallon for a number of automobiles
[36]. It contains 398 records for different cars made between
1970 and 1982, with eight attributes, five of which – miles-per-
gallon (MPG), weight, acceleration, horsepower and displace-
ment –are continuous. We use the predicted variable MPG as
the output variable and investigate its relationship with other
dependent variables. To better understand the relationship
between these variables, we used the number of cylinders,
a discrete variable, as a classification variable.

Figs. 16(a) and (c) show the FBS of the 2D spaces formed
by MPG and weight, and MPG and acceleration, respectively.
In contrast, Figs. 16(b) and (d) show the GSS of the same
projections, using sensitivities formed by the 3D subspace of
MPG, number of cylinders, and either weight or acceleration.

From these plots, we observe the following relationships:
1. MPG vs. Weight. Fig. 16(a-b) shows that there is an

inverse relationship between weight and MPG. The fact that
this relationship does not seem to change when considering
the 3D subspace (considering number of cylinders) shows that
the relationship between MPG and weight is insensitive to the
number of cylinders in the car, and validates the intuition that
heavier cars consume more fuel.

2. MPG vs. Acceleration. The 2D scatterplot in Fig. 16(c)
suggests little correlation between the two, though some
positive relationship emerges locally, as suggested by the flow
lines. However, the GSS in Fig. 16(d) suggests differently:
for 8-cylinder cars (purple), the correlation is mostly positive,
while for 6-cylinder (blue) cars they exhibit an inverse rela-
tionship.

We also analysed the magnitude of sensitivity using star
glyphs, as shown in Fig. 16(e). This allows us to show the
sensitivity of multiple variables (horsepower, displacement
and weight) in a single plot. To better highlight the differences
between points, we color coded the triangles by area. High
MPG cars exhibit larger sensitivity than those with low MPG,
as evidenced by the large size of the respective triangles. The
relationship between acceleration and MPG seems less uncer-
tain for 8-cylinder cars, as suggested by the small triangles
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(a) FBS (b) GSS

(c) FBS (d) GSS

(e) Star glyphs

Fig. 16. (b) and (d) show the GSSs of (a) and (c) with
the extra dimension cylinders. (d) indicates the trends
between MPG and Acceleration is more different for the
6-cylinder cars (in blue) than in (b). (e) highlights high
sensitivity data.

at the bottom of the plot. The 4-cylinder cars have a larger
sensitivity, which also explains why there seems to be little
correlation between these two variables, suggesting there is
more variability in cars with fewer cylinders.

7 CONCLUSIONS AND FUTURE WORK

Although simple in nature, the scatterplot remains a powerful
visual representation of bivariate data. It provides visual cues
about the relationship between two variables, in terms of prox-
imity of data points, continuity and the saliency of outliers. In
this paper, we present a visual augmentation of scatterplots
that introduces sensitivity information. As we have shown
with examples, our generalized sensitivity scatterplot (GSS)
retains the perceptual benefits of a scatterplot that it does not
hide any information that could be extracted from the original
scatterplot, while it also introduces new visual cues that

provide better insight into the relationship between two data
variables. First, the orientation cues provided by the flow lines
give an idea of the local trend of data and a sense of continuity
not graspable from the unaugmented scatterplot. Second, we
have shown that these cues become useful when flow lines are
obtained from a higher dimensional space than the subspace
represented in the plot, since coherent groups of trend lines
are perceptually interpreted as smooth regions that can only
be visualized in a higher dimensional space. These properties
make the GSS a more efficient visualization technique for
exploring multi-dimensional data since it alleviates the need
for time-consuming change of coordinates and re-projections.

One can understand the flow lines as gradient lines from
an underlying density function estimated from the data points,
and that is why a GSS is effective as an accurate depiction of
both the function values and local derivative. Nonetheless, we
have also shown the benefits of extending this idea to provide
more abstract plots, where glyphs are used to summarize
multiple sensitivities. This is the case of the sensitivity fan
and sensitivity star glyph, which summarize the orientation
and magnitude of the sensitivity, respectively. As shown in
our examples, the shapes of these 2D glyphs showing multiple
three-dimensional sensitivity derivative are useful to group
data points in a higher dimensional space, which may not
be possible in a low dimensional projection such as the
scatterplot itself. This flexibility makes the GSS useful for both
regression tasks – such as explaining the relationship between
fuel efficiency, horse power and weight in the automobile
example – and classification problems, such as the ability to
predict the number of cylinders in a car given its different
attributes.

We would like to explore the analysis of GSS in a more gen-
eral setting where ground truth data is not known, and compile
testimonies from users regarding its use as a visual analytics
tool. We believe this paper provides the technical foundation
that will spark user studies that show to what extent users can
interpret multi-dimensional data using a GSS and draw correct
conclusions about their data. Our experiment has resulted in
an unprecedented data set of over six thousand curves and
one hundred functions that we will make publicly available to
foster further research about the benefits of scatterplots, trend
lines and function fitting.
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