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Abstract—In this paper we present an information visualiza-
tion approach for visualizing the intersection between multiple
feature hierarchies. In cases where a dataset has multiple complex
features of interest, especially ones that have been hierarchically
clustered, it is often very difficult to grasp the commonalities
between them. Understanding the overlap between features can
help researchers discover correlations or hot spots in their data.
Our method steps back from actual data features, simplifying
their representation, and presenting them in a fashion which
facilitates interpretation of their inter-feature relationships. We
call this new representation a knowledge graph, and we show how
it can be used to investigate the overlap of multiple features in
a photo database and a social network dataset.

I. INTRODUCTION

As data continues to increase in both size and complexity,
extracting a single feature from an entire collection of infor-
mation becomes a useful path on the road toward discovery.
Smaller subsets of data are easier to understand and process,
using methods such as numerical analysis, hierarchical clus-
tering or direct visualization. Instances arise, however, where
several different features are required to adequately study a
problem. Besides their individual importance, the separate
features of information could potentially contain correlating
values that help support or deny a hypothesis. Exploring and
understanding feature correlations is a task that can benefit
greatly from interactive visualizations.

What a feature represents depends on the underlying data
and how the feature is extracted. For social networks, a data
query might return communities of friends with a common
interest, but for an image database, a feature could be a
collection of photos sharing a specific tag. Individually, each
query may result in thousands of data items being returned,
so when the filtered data becomes overwhelmingly complex,
a common approach is to hierarchically cluster results into
separate categories that show more detail as one expands each
level. Once all the results are collected and processed, a re-
searcher may then want to see how the various resulting feature
hierarchies are related. In order to assist in the exploration
process and provide a meaningful basis for feature comparison,
we propose a representation that can be applied to all types
of problem sets

Our approach creates a high-level abstraction of feature
information in the form of a knowledge graph visualization. In
a knowledge graph, hierarchically structured features and their
intersections are shown in a multi-level compound hypergraph,
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allowing researchers to focus on higher level connections
between features and providing interactive ways for hiding and
revealing details. Unlike recent work in the area of a set visu-
alization, we focus on visualizing sets that are clustered into
one or more levels of abstraction using interactive techniques
provided by node-link diagrams. The classification of features
within a feature hierarchy provides new ways of understanding
how different features correlate on multiple levels.

II. BACKGROUND

The term knowledge graph is chosen for this feature-space
visualization approach because the final graph represents the
intersection of the user’s results that were generated during the
exploration process. The knowledge graph is a collection of
what the user has discovered and how those features overlap.
Our approach is built from areas of visualization meant to
show relationships and correlations between result sets.

A. Visualization of Set Relations

The visualization of overlapping features can be traced all
the way back to the 19th century when John Venn invented his
set diagrams. Euler and Venn diagrams are the most common
ways of visualizing the overlap of multiple sets, and they
effectively show regions representing inclusion, exclusion, and
containment relationships. The simplest representation utilizes
overlapping circles. However, this approach is limited by the
fact that it cannot accurately show intersections of four or
more sets. To solve this problem, there has been considerable
research to expand Venn diagrams to handle more possible set
intersections [7], [17]. Recently, many algorithms have been
developed to generate such diagrams automatically [16], [4].

Verroust and Viaud provided a new constructive method for
creating extended Euler diagrams, which relax and extend the
strict conditions on the traditional form of the diagrams [21].
With this new method, up to 8 sets can be visualized simul-
taneously. Using a planar intersection graph as the underlying
layout, extended Euler diagrams do not require that regions
be convex or completely filled, which allows for more control
over the drawing procedure. A visualization system called
VennMaster was developed by Kestler et al. to show multiple
overlapping sets of results from genetic databases [12]. The
authors provide a genetic algorithm to generate and position
area-proportional sets and their overlap. The inconsistencies
are listed in a separate table that is linked to the visualization.
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Fig. 1. Each set of data items is hierarchically structured. On every level of
the hierarchy, there are adjacency (hyper)edges, shown here with dotted lines,
connecting nodes containing items in common. For simplification purposes,
only the lowest level adjacency edges are shown in this example.

Since not all set relationships must be visualized using
standard Euler diagrams, other techniques have been intro-
duced to extend or complement traditional methods. One such
approach, developed by Simonetto and Auber, relies on the
underlying intersection graphs for drawing Euler-like diagrams
as flexible wrappers [18]. In an intersection graph, all nodes
represent regions to be drawn and edges represent zones that
are adjacent. The boundary of the sets are then drawn with
the intersection graph as a guide, creating blob like structures
that overlap where appropriate. The InfoCrystal layout, created
by Anselm Spoerri, uses a specialized arrangement of shaped
nodes to show every possible set relationship at once [19].
Every data item is assigned to the node that represents the
region it belongs to, such as the intersection of sets A and
B. Chiara and Fish developed a system called EulerView to
replace certain tasks that usually rely on tree views to control
and navigate hierarchies [2]. It utilizes a look and feel similar
to tree views so users can build and manage their own set
relationships. Other systems, such as Mirage [8], leave the
data correlation task to the user by providing a suite of various
information visualization tools.

Our graph representation shares commonalities with differ-
ent portions of the previous work in the field. However, we
focus on an edge-standard hypergraph representation, which
is rarely used for directly visualizing set relations. Unlike
a standard binary graph, hypergraphs allow edges that can
connect any number of nodes together using a hyperedge.
Johnson and Pollack were the first to utilize the commonality
between Venn diagrams and hypergraphs, and they showed that
determining the planarity of a hypergraph is NP-complete [11].
Harel used a combination of Venn diagrams and hypergraphs
to create higraphs, which have been widely used for diagram-
ming concurrent states [6].

Hypergraphs offer many advantages when dealing with the
overlap of hierarchically structured sets due to their flexibility
and interactivity. Ambiguities resulting from misleading over-

lap are not a problem in a hypergraph as intersections are
discreet edges, and the overwhelming amount of information
can be handled in an interactive focus+context manner.

B. Graph-Based Relational Visualization

Graphs are classified into a wide-array of types depending
on the kind of relational information being conveyed [14]. The
most relevant type of graph for our research is the compound
graph, which combines an intersection graph for visualizing
graph hierarchy and an undirected or directed graph for show-
ing adjacency relations. Visualizations that show adjacency re-
lations on top of hierarchies include TreeMaps, ArcTrees [13],
polyarchies [15], compound digraphs [20], and balloon graphs.
Holten and van Wijk improved on these visualizations by
introducing hierarchical edge bundling [9]. These represent
the common basis for creating visualizations that can represent
intersections between two or more distinct hierarchical graphs.

To solve the problem of visualizing node correlation be-
tween independent graphs, VisLink expands on the idea of
coordinated multiple views by connecting the views with
adjacency edges, essentially creating heterogeneous compound
graphs [1]. While the visualization only deals with binary
connections, it does an efficient job of revealing connections
between pairs of visualization results. Along a similar line,
Holten and van Wijk created a visualization for showing the
relations between a pair of distinct hierarchies [10]. Each
hierarchy is laid out separately, and edges are used to connect
hierarchies that are related, similar to the way VisLinks
connects related nodes between views.

The flexibility and interactivity of these visualizations is
what led us to explore the possibility of representing complex
set correlations using hypergraphs. We utilize many of the
principles found in the compound graph visualizations dis-
cussed here and make our own adjustments and additions to
meet the needs of the problem.

III. KNOWLEDGE GRAPHS

Our system, KnowHow, utilizes a knowledge graph to
represent the feature hierarchies generated from a collection
of data. In the following sections we will describe the basic
concepts that KnowHow is built from and then cover the visual
representation and our implementation.

A. Feature Hierarchy

One important part of data analysis and exploration is sep-
arating meaningful subsets of data from the entire collection.
This process can result in numerous features, depending on
the type of data and the extraction method. We define a set
to be a collection of data that results from some type of
search query, such as an SQL select statement. Unlike previous
set visualizations, we focus on sets that are hierarchically
categorized.

We define a feature to be a collection of data items, and a
feature hierarchy is defined as a tree where features are divided
into smaller and smaller groups. The root level is a single
feature that combines all of the data from all search queries,
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Fig. 2. The nodes of the knowledge graph represent features are colored according to the parent set. A regular feature node is shown in (a) and a specialized
noise node is shown in (b). The noise node aggregates small features together. Together, nodes from the same level in the hierarchy form a feature set (c).
The nodes of the feature set are positioned with a force directed layout and are influenced by its movable feature magnet, which is the center icon of (d).

the first level represents the original high level features, where
each query has a single node. The leaves represent degenerate
features, where only a single data item is represented by
that node. The middle levels contain features generated by
hierarchically categorizing the resulting data. We refer to each
collection of features on a given hierarchy level as a feature set.
Figure 1 shows three query sets that each have one hierarchical
level of division.

The basis of our knowledge graph representation, however,
is to show the overlap between features from multiple search
queries. Since degenerate features, or the leaves, may be found
in more than one search query, we connect duplicate leaves
with an adjacency edge or hyperedge, which are shown as
dotted lines at the bottom of Figure 1. These adjacency edges
are propagated up the tree so that each feature in the tree is
connected to other features with shared items. The structure is
similar to the one visualized by Holten with hierarchical edge
bundles [9], with the addition of hyperedges.

The grouping of data items into feature hierarchies depends
on the what the user deems important, and each type of data
can have different attributes used for dividing up the results.
For a social network, a set would contain a collection of
individuals who fall into a certain search query, such as users
from the same university. Calculating community structure
is a common method for dividing the results into a feature
set. In such an example, an overlap of features exists if two
community clusters contain the same person. Other types
of simple categorization could hierarchically divide data by
geographical location or by date and time.

B. Hypergraph Representation

Given that each feature hierarchy constitutes a collection
of clustered results, the relationships between those results
at a given tree level can be represented by a hypergraph. In
a knowledge graph, each node represents a clustered feature
and the edges convey the intersections that exists between the
features.

1) Nodes: At the first level of a feature hierarchy, each
result subset is represented by a single node. We assign an
individual color to each of these nodes, such that all features
originating from it will share that color. This high level node
is split into multiple feature nodes as the user descends the
tree, revealing new feature sets at each level. In addition to
coloring, we collect a family of features from the same result
subset into a cohesive magnet cloud. The size of a node is
proportional to number of data items contained within that
clustered feature.

We also allow for a special type of node, called a noise
node, to help reduce clutter in the graph. A noise node, shown
in Figure 2(b), is an aggregate of features that contain only
a small number of data items. The noise node aggregation is
performed on a per feature set basis and is colored by the
parent feature set. The noise nodes are given a special type of
rendering so the user does not mistake it for a normal feature.

2) Edges: The edges of the knowledge graph represent the
intersection of data items between features. In terms of two
different photo database searches, intersection means that the
features contain at least one photo in common. For standard
partial intersection, i.e. where ANB # @ and ANB # A for
|A| < |B|, we use a straight edge between nodes, as shown in
in Figure 3(a). The edge size describes the number of items
in the intersection and the color and brightness describe what
percentage of each node is contained in that intersection.

Since part of the knowledge graph’s power is the ability
to correlate multiple result subsets simultaneously, we also
generate hyperedges, such as the one shown in Figure 3(c).
A hyperedge shows the multi-intersection among a group of
nodes in the same fashion as a binary edge. Whenever a group
of three or more feature nodes share data items then there
exists a subset of data contained in all those features. If this
exists, then a hyperedge can be drawn as a star structure by
having an outgoing edge from every node meet at a centralized
crux, which we define as the centroid of the intersecting nodes.
The same color scheme is used here as with binary edges, and
thus, the hyperedge shows the overlap of many sets at a time.
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When intersecting multiple features (a), partial intersections are shown as straight edges, (b) where the color shows the percentage of containment

for each node. The brighter the color, the more of that node is contained in that intersection. When multiple features simultaneously share data, a multi-edge
is used as in (c). When features are subsets of another feature, they are aggregated into a one-way bubble edge (d).

In the case of total containment, i.e. where ANB = A for
|A| < |B|, we use a specialized type of edge, called an edge
bubble, that groups all such nodes into a single collection of
contained nodes. This helps to reduce visual edge clutter in the
knowledge graph by aggregating nodes with a commonality
and eliminating unnecessary edge rendering. For every node
A; that is completely contained in a node B, the nodes A; are
clustered together and surrounded by a polygonal boundary, as
shown in in Figure 3(d). This polygon boundary then connects
to the node B just like an edge and is filled with the color of
node B’s set.

3) Hypergraph Layout: In order to better utilize screen
space, the graph is positioned using a force directed layout [5].
During the layout phase of the visualization, however, the
algorithm takes certain hidden forces into consideration. To
properly handle the contents of an edge bubble, the nodes
inside the bubble are conceptually tied together and attached to
the larger feature node. This keeps the bubble tightly bundled,
which reduces clutter and improves visual appeal. Hyperedges
do not influence the layout of nodes in the graph; only the
the binary edges, or simple intersections, are used. Since a
complete binary subgraph exists for every hyperedge’s incident
nodes, it is unnecessary to use the hyperedge in the force
calculations, regardless of its visibility.

A significant modification to the force directed layout is
the addition of interactive magnets, which is similar to a
technique that has been applied to multivariate data [22]. The
purpose of magnets is to organize a scattered collection of
nodes and edges into more meaningful sectors. A magnet
exists for each result subset, i.e. for every search query, and
can be repositioned by the user. The magnet stays anchored
to its set location and attracts all of its corresponding feature
nodes toward it, as is shown in Figure 2(d). Since all magnets
pull on their respective nodes, the end result is a separation
of connection types, e.g. unconnected nodes float around the
magnet while nodes with a standard edge to another node will
be positioned in the middle of the two feature magnets.

C. Interactive Exploration and Modification

While the force directed, magnet layout reduces overlap,
other tools are required for exploring the graph in detail and
reducing clutter. One of the simplest ways of modifying the
knowledge graph is by moving through the hierarchy levels,
revealing more detailed feature sets at lower and lower levels.
In order to help the user keep track of information between
transitions, such as adding a new result set or changing the
hierarchy level, we provide animations that lead the user from
one stage to the next. When adding a new set, the nodes are
faded into the existing knowledge graph gradually with the
layout only being modified slightly from the previous one.
These types of animated transitions are used throughout to
provide visual feedback of changes being made, similar to the
work done by [3].

Besides being able to move from one hierarchy level to
another to see each feature set, it is occasionally advantageous
for a user to see a single node’s children without completely
changing the view. In this case, a user may select a node from
the current feature set and expand its contents much like a
balloon graph. The children nodes become surrounded by an
expanded circle to show that they are on a lower level than
the rest of the feature set. The edges of the children become
visible as they connect to higher level nodes outside of the
balloon.

Additional interface options are provided for filtering nodes
and edges. Cardinality sliders can hide nodes or edges that
do not fall within the specified range. The layout updates
interactively as items are hidden. We also allow individual
edge types to be selectively made invisible without disrupting
the layout positioning. For example, the user may select only
tri-edges, which represent the intersection of three sets, or
quad-edges to be rendered while hiding all others. This allows
some fine grain control to generate the exact image the user
would like to see.

A more powerful interactive tool is the edge toggler. When
viewing the knowledge graph, it may not be useful to see
intersections between certain features sets and not others.



Thus, we provide a simple user interface that allows the user
to turn on or off edges between any pair of feature sets.
The unwanted edges become invisible, and the force directed
layout will adjust node positions accordingly, as if those nodes
no longer attract. This would be analogous to a Euler diagram
choosing not to overlap circles between certain sets.

The system also allows a user to see the original data
represented by each feature node through mouse selection.
When a node or edge is picked, the original data is displayed
in a side window. The default view is a table of entries and
specialized views, such as a photo viewer for flickr data, can
be written for specific types of data.

IV. RESULTS

Now we will show the overlap of search results from Flickr
data and social network data. While the method of obtaining
and clustering the results is not a topic of this paper, we created
a simple test application that uses a SQL database for queries
and simple categorization that is coded specifically for each
different dataset. It is possible to find all possible types of in-
tersections manually using SQL queries, but knowledge graphs
present a complete view of all intersections simultaneously and
provide a suite of interactive methods that let the user explore
the hierarchy in context while creating a custom view of the
data.

A. Flickr

Our Flickr database contains over 13 million photo details
pulled from Flickr prior to 2009. Each photo entry contains 31
values, including user, timestamp, view count, location, title,
and technical specifications, plus any number of possible tags.
Since the last images we collected were at the end of the
2008 U.S. presidential elections, we performed our case study
to examine the popularity of the candidates over time based
on their appearance in photo tags.

In Figure 4 we begin with five tag searches, which include
the president and vice-president candidates and the tag ’elec-
tion’. The first level is, of course, one node per result. We
then create the feature hierarchy by dividing nodes by date
of photo, with the second level being year, the third level
being month, etc. Level 1 of Figure 4 shows how some of the
interactive tools are used to discover high-level aspects of the
data. First, the nodes appear fully connected, and with edge
hiding, we show a hyperedge representing photos containing
all five tags. Second, by ballooning out the nodes and using
the edge toggler, we can see just how the tag ’election’ relates
to every other tag based on year. In this example, 2008 is the
largest year for all of the feature sets, and it is the only year
that the the vice-president candidates appear with the tag. In
addition, there are some photos from the years 2006 and 2007
that reference either John McCain or Barack Obama.

We transition to the next hierarchy level, which reveals
features sets separated by year. We remove the ’election’ tag
to focus on just the candidates. In 2008, Barack Obama is
the most popular tag of the group, which can be seen by
comparing feature node sizes, so we decide to expand that
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Fig. 4. The above example shows feature hierarchies from a Flickr database.
Each hierarchy represents a tag pertaining to the 2008 US presidential
elections clustered by time. Using several interaction techniques, the first
level reveals 2008 was the most popular for photographing all candidates, and
the second level shows how Barack Obama became more prominent as the
November election approached. A detailed view of one of the edges between
Obama and McCain is shown at the bottom.

node to reveal it’s sub-hierarchy. If we mouse over the nodes
to reveal the cluster labels, we see that the most popular
month is November, the same month as the election. Also,
Obama and McCain began appearing together before either of
the vice-president candidates came into the picture. A detail
view of images is seen below the graph by selecting the edge
connecting Obama and McCain during the month of October.
Overall, this exploration of the knowledge graph reveals the
rise of important figures in the media during the long election
process. Without knowledge graphs, the same conclusions
might require multiple searches or visualizations of the data
in order the represent the same hierarchy and overlaps.

B. Orkut Network

Our social network dataset, which comes from the Orkut
network (a Google product), contains over 15,000 anonymized
user profiles and over 60,000 friend connections. The feature
hierarchies in this case are generated using community struc-
ture clustering methods commonly found in social network
studies. Therefore, each node represents a cluster of closely
connected friends. In the example shown in Figure 5, instead of
taking queries intended to generate highly correlated groups of
people, the queries were chosen randomly, without considering
the others. The feature hierarchies are as follows: people



Photography

i A Business »

Video Games Partying

Fig. 5. In this figure, four unrelated search queries are combined into a
knowledge graph. The sets represent the interests of Orkut users, divided into
photography, video games, business, and partying. Even though no overlap
was intended, some users were found having eclectic listings of activities.

interested in cameras or photography (red), people interested
in video or computer games (green), people over the age of 20
on Orkut for business (blue), and people interested in partying
or hanging out (orange).

The knowledge graph here shows where these very different
feature hierarchies have commonalities. Between each feature
set, there exists a small amount of intersection that indicates a
combination of those interests. In the center, a large commu-
nity of business minded people can be seen sharing interests
from each of the other feature sets. Since these are not full
containment or subgraph cliques, these are minorities from the
larger feature node. A social network researcher may be able
to discover individuals who appear in many popular, unrelated
searches, which could then lead to an understanding of some
small outlying connection among them all.

V. CONCLUSION

This paper has introduced knowledge graphs, a visual-
ization of overlapping feature sets. Using a modified node-
link diagram representation where nodes are features and
hyperedges are intersections, our system, KnowHow, pro-
vides a high level view of feature hierarchies from a wide
range of different datasets. Unlike other set relation diagrams,
knowledge graphs focus on sets that have been hierarchically
clustered. KnowHow utilizes various aggregation, abstraction,
and interaction techniques to help reduce the complexity of
the feature space and allow for feature exploration. We have
applied this system to a photo database and a social network.
Without modification, KnowHow is able to abstract different
types of data into the same feature space, which shows that
the knowledge graph representation is versatile enough to be
applied to many areas.

It is clear from our evaluation of the system that being able
to comprehend and navigate the knowledge graph requires the

user to become familiar with the new abstract view of their
features. Linking the feature nodes directly to the original
data helps in this regard, though, as it maps the abstract
features back to the actual features. As our work on feature
space visualization continues, we are prepared to perform user
studies to test the ability of users in using knowledge graphs
to answer questions about features and its effectiveness as an
interface for exploring the original data. In addition, we plan
to study enhanced visual representations that may be more
intuitive at conveying the same information or are capable of
simplifying the information.
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