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Abstract— In this work, we address the problem of lossless compression of scientific and medical floating-point volume data. We
propose two prediction-based compression methods that share a common framework, which consists of a switched prediction scheme
wherein the best predictor out of a preset group of linear predictors is selected. Such a scheme is able to adapt to different datasets
as well as to varying statistics within the data. The first method, called APE (Adaptive Polynomial Encoder), uses a family of structured
interpolating polynomials for prediction, while the second method, which we refer to as ACE (Adaptive Combined Encoder), combines
predictors from previous work with the polynomial predictors to yield a more flexible, powerful encoder that is able to effectively
decorrelate a wide range of data. In addition, in order to facilitate efficient visualization of compressed data, our scheme provides an
option to partition floating-point values in such a way as to provide a progressive representation. We compare our two compressors to
existing state-of-the-art lossless floating-point compressors for scientific data, with our data suite including both computer simulations
and observational measurements. The results demonstrate that our polynomial predictor, APE, is comparable to previous approaches
in terms of speed but achieves better compression rates on average. ACE, our combined predictor, while somewhat slower, is able to
achieve the best compression rate on all datasets, with significantly better rates on most of the datasets.

Index Terms—Volume compression, Lossless compression, Floating-point compression.

1 INTRODUCTION

In the scientific visualization community, floating-point data result-
ing from observational measurements or computer simulations is be-
ing generated at an ever-increasing rate. In particular, large volumet-
ric datasets with sizes on the order of terabytes or even petabytes are
now commonplace, and such datasets consume massive resources in
terms of both bandwidth and storage. Such datasets are typically high-
dimensional, being high-precision, high-resolution, multi-variate, and
time-varying with thousands of time steps. Consider a 1000 time-step
data output from a state-of-the-art direct numerical simulation, where
each time step is a 10243 volume consisting of five variables stored
in floating-point format. In this case, each time step consumes 20
gigabytes, with the entire dataset requiring 20 terabytes. Difficulties
related to dataset size inundate the entire data processing pipeline, in-
cluding generation, transfer, storage, and analysis. Analysis often con-
sists of volume visualization, but most real-time volume visualization
is accomplished using graphics hardware, which has limited memory.
Even main memory is insufficient for many datasets, with one time
step often exceeding the available RAM on current machines.

Similarly, in the medical imaging community massive amounts of
volumetric data are produced by CT, MRI, PET and other scanning
modalities. There may be multiple studies for each patient, with many
thousands of patients in a typical large hospital. The resolution of the
scanners continues to improve, as well as the precision of the measure-
ments. This results in many petabytes of data, which must be acquired
and archived indefinitely. Furthermore, this data must be immediately
available for evaluation by health professionals; such evaluation typ-
ically consists of slice browsing, although 3D volume visualization
is becoming more popular in certain applications. Thus in medical
imaging, archiving of such massive amounts of data and fast transfer
to local workstations are critical components of this data management
context.

An effective solution to such large data management problems is
to reduce the size of the data using compression techniques. How-
ever, most data compression methods target integer data of limited
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dynamic range, with only a few works focusing on floating-point for-
mats. Floating-point compression is more challenging than integer
compression, as the least significant bits of the mantissa tend to be
very poorly correlated. This is less of an issue for lossy compression,
but makes lossless compression significantly more difficult. Although
lossy compression is acceptable in many applications, the effort and
expense involved in the acquisition of scientific data usually warrants
lossless compression. Likewise, for both practical and legal reasons,
medical imaging data is almost always compressed losslessly. For vi-
sualization, however, a lossy version may be acceptable, so that the
optimal configuration would be a lossy-to-lossless compressed format.

Our solution to this problem is to use an adaptive prediction-based
lossless compression scheme, similar to those used in lossless audio
compression. This is accomplished by using a switched predictor, in
which the best predictor out of a small set of candidate predictors is
selected for encoding at any given time. Such an approach is able to
adapt to varying data statistics by selecting the predictor that best mod-
els the local characteristics of the data. Furthermore, such a scheme is
very extensible, in that it is able to incorporate existing predictors as
well as predictors developed in the future without modifying the ba-
sic framework. While our primary goal is to improve the compression
rate, we also describe a unique feature of our system that supports pro-
gressive analysis of the compressed data, called Progressive Precision.
Progressive Precision allows up to three levels of data access, thereby
providing a lossy, lower-resolution option appropriate for visualiza-
tion preview. To summarize, we believe the salient contributions of
our work to be:

• An adaptive switched prediction framework for lossless floating-
point volume compression, allowing consolidation of existing
prediction methods into a single highly-adaptive compressor.

• A fast method for entropy coding of residual leading zeros using
a rank table and universal codes.

• A method providing progressive transmission, thereby support-
ing efficient visualization.

We apply our approach to several large volume datasets, demon-
strating lossless compression rates consistently in the 30-50% range.
Our approach is able to provide better rates than existing approaches,
while offering similar compression/decompression times. This allows
fast, efficient compression of volume data at acquisition time, so that
the benefit of compression is conferred to data transfer, storage, and



subsequent visualization. Our novel progressive scheme is able to
provide lower-precision, lossy representations of the datasets, thereby
facilitating real-time visualization.

2 RELATED WORK

Many approaches for scientific data compression focus primarily
on combining compression with data synthesis in order to increase
throughput and conserve storage. Engelson et al. [5] compress se-
quences of double-precision floating-point values resulting from sim-
ulations based on ordinary differential equations. In their approach,
the numbers are treated as integers and then compressed using pre-
dictive coding, with residuals being explicitly stored in the case of
lossless coding or truncated for lossy coding. Ratanaworabhan et
al. [16] propose a lossless prediction-based compression method for
double-precision floating-point scientific data using a DFCM (Differ-
ential Finite Context Method) value predictor, which is based on pat-
tern matching using a hash table holding the recent encoding context.
The bitwise residual is then computed using the XOR operator, with
the compressed representation consisting of the number of leading ze-
roes and the remaining residual bits. Lindstrom and Isenburg [13] also
focus on the goal of fast throughput for online encoding, achieving
lossless or lossy compression of floating-point sequences by predic-
tion and entropy coding of residuals. A Lorenzo predictor is used
with computation of the predicted value by floating-point arithmetic,
with the option of bit-wise integer arithmetic. The residual is com-
puted by transforming the actual and predicted values to unsigned
integers and taking the integer difference, which is subsequently en-
coded using a two-level scheme based on fast entropy coding of the
sign and leading zero bits, with explicit transmission of the remaining
residual bits. Burtscher and Ratanaworabhan [1] [2] propose a loss-
less compression method for double-precision scientific data with the
goal of achieving fast encoding/decoding for high throughput environ-
ments. This method employs two prediction methods, FCM (Finite
Context Method) and DFCM, with the method producing the smallest
residual being chosen. The difference is computed using XOR and
the number of leading zero bytes is recorded along with the nonzero
residual. The authors compare their method with previous approaches
and show competitive overall compression ratios with much higher
throughput. Xie and Qin [30] describe a method for compression of
seismic floating-point data wherein a differential predictor is used,
followed by separate context-based arithmetic coding of each of the
sign, exponent, and mantissa fields of the residual, where the expo-
nent switches between contexts. Tomari et al. [23] propose a simple
lossless scheme for double-precision scientific data designed with fast
hardware decompression in mind. They compress only the exponent
by keeping a small table of recent exponents into which they index.

On the other hand, some researchers attempt to compress in a
way that facilitates post-processing and analysis, especially visualiza-
tion. Tao and Moorhead [21] [22] compress scientific floating-point
data by using a biorthogonal wavelet transform followed by entropy
coding, with the goal of providing progressive transmission. Trott
et al. [24] [25] compress scientific floating-point data in curvilinear
grids by using a Haar wavelet transform followed by entropy cod-
ing. Lossless coding is achieved by converting the single-precision
floating-point numbers to double precision prior to the transform, with
the double-precision coefficients being compressed directly via byte-
wise application of Huffman coding. Du and Moorhead [4] describe a
similar approach using Haar or first-order B-spline wavelet transforms
preceded by conversion to double precision. The double-precision co-
efficients are encoded by separate entropy coding of the exponent and
mantissa, with run-length encoding of the least significant mantissa
bits. Adaptive coarsening [19] [20] is an alternative method for lossy
compression in which the data is sub-sampled according to a permis-
sible level of error.

Most high-quality audio coding approaches are built around a PCM
(pulse code modulation) lossless coding scheme. Ghido [7] proposes
a method for lossless compression of single-precision audio data by
defining a transform from floating-point to integer numbers that is
portable and renders the integers amenable to efficient compression.

The transform yields an auxiliary stream with encoding parameters
and an integer stream, which is then compressed using a PCM loss-
less entropy coder. Yang et al. [31] encode single-precision audio
data by truncating the floating-point numbers to integers and comput-
ing the bit-wise residual between the truncated integer version of the
number and the original version. The integers are encoded using an
established PCM lossless compression method, whereas the floating-
point residuals are compressed byte-wise using the lossless coder gzip,
excluding zero bytes. Liebchen et al. [12] describe compression of
single-precision floating-point audio data in the MPEG-4 ALS specifi-
cation. Floating-point values are decomposed into a truncated integer
component, which is encoded using the prediction-based integer ALS
scheme, a common multiplier, which is related to the local dynamic
range of the signal, and a floating-point residual, which is compressed
using a masked Lempel-Ziv dictionary coder.

The problem of floating-point compression also arises in image,
texture, and geometry encoding. Most floating-point image methods
are based on JPEG-2000. Lossless variants are described by several
authors [6] [26] [27] [28] [29]. Most floating-point texture compres-
sion methods are based on block truncation coding and are therefore
lossy, being designed for hardware application. In the area of geom-
etry compression most methods are lossy, but some lossless methods
based on predictive coding have been described [11] [32] [33].

3 OVERVIEW

The primary source of floating-point volume data is scientific simula-
tions, in which simulation code runs on massively parallel supercom-
puters in an attempt to model some natural or theoretical phenomenon.
To begin the simulation, an initialization of the volume is defined, and
then the code iteratively modifies the volume as the simulation pro-
gresses in order to explore the dynamic behavior of the system. Each
iteration defines a time step in the simulation, and these iterations are
of great interest to the scientists. A simulation can run for many thou-
sands of time steps, yielding thousands of volumes for subsequent pro-
cessing and analysis. Managing such large amounts of data continues
to be a challenge for simulation centers.

In order to meet this challenge, there has been increasing interest in
compression strategies that ameliorate this problem. One such strat-
egy is called in-situ compression, in which the data is compressed in
conjunction with the simulation, as it proceeds. This approach is ad-
vantageous, because by reducing volume size early savings are gained
in transfer of data to storage, storage requirements, and transfer of data
to clients for data analysis. The cost of this approach is additional pro-
cessing time up front to compress the data, as well as any additional
cost to decompress the data on the client side. Therefore, in-situ com-
pression methods should ideally maximize the compression rate with
the constraint of modest encoding/decoding complexity. Modest de-
coding complexity allows better integration of decoding with volume
visualization.

In the following sections, we present a lossless compression method
for floating-point volume data that meets these requirements. In partic-
ular, we describe a method that offers fast and efficient coding, thereby
allowing in-situ compression. Decoding is even faster, which allows
this approach to be integrated with visualization.

4 PREDICTIVE CODING FRAMEWORK

Only a few approaches have been developed for lossless floating-point
compression of volume data, most of which are based on predictive
coding using various source models. We believe that in certain aspects
the challenges of floating-point compression more closely resemble
those of audio compression; in particular, audio data formats typically
accommodate high dynamic ranges (e.g. 16-bit integer) and require
efficient compression/decompression. Based on this observation, we
attempt to combine ideas from audio and image coding in order to
address the unique challenges of floating-point compression.

The basic approach to lossless compression of correlated data is
to first decorrelate the data and then apply entropy coding. There
are two general approaches to decorrelation: prediction-based encod-
ing and transform coding (most notably wavelet transform coding).



Fig. 1. Datasets are encoded block by block, with each block further sub-
divided into many frames. Our proposed switched prediction scheme
selects the best prediction from a small set of predictors P with given

context C for each frame and encodes the residual, which is the dif-

ference between the predicted value SP and the actual value S . The

residual R is divided into the Leading Zero Count (LZC), which is fur-
ther encoded, and some number of error bits, which are transmitted
unencoded.

While wavelet coding is preferred for lossy compression, prediction-
based methods generally achieve better rates for lossless compression.
Furthermore, prediction-based methods are fast, efficient, and require
only one pass over the data. For these reasons, prediction-based meth-
ods are popular for both lossless image and audio compression, and
form the basis of our proposed solution as well.

A prediction-based compression scheme uses a subset of previously
encoded values, called the context, to attempt to predict the next value
to be encoded. Then the difference between the actual value and its
prediction, called the residual, is encoded instead of the value. If the
prediction is accurate then the difference values will be decorrelated
and small in magnitude, thereby allowing efficient compression with
entropy coding. Central to this approach is the definition of the context
and how to compute the prediction. Typically, the prediction calcula-
tion is based on knowledge of the structure of the data and is a linear
combination of a few previously encoded values. Given a finite con-
text, it is possible to compute the optimal linear coefficients in terms
of minimum prediction error; however, in practice this is prohibitively
expensive. An alternative is to use a set of coefficients, or equivalently
a set of linear predictors, in order to approximate an optimal predic-
tor. If one predictor out of the set is chosen to make the prediction
then this is called a switched prediction scheme, and this arrangement
forms the basis of our prediction framework. Such a scheme is able to
adapt both to different datasets and to varying statistics within the data
by choosing predictors that best model the local behavior of the data.
This allows more effective and robust decorrelation, thereby yielding
good compression rates over a wide range of data.

Our approach operates as follows. We encode the data in blocks
consisting of several thousand values (8K in our system), within which
we subdivide the data into small frames consisting of only a few val-
ues, as shown in Figure 1. Blocks are encoded independently to allow
efficient access to subsets of the data. Blocks are processed frame by
frame, and within each frame a prediction is computed for each value
by each of the predictors based on its respective context. The total
prediction error is computed for each prediction method and the pre-
dictor with the minimum error is selected to encode the frame. The
predictor selection for each frame is sent to a dedicated entropy coder.
The added complexity involved in the selection scheme is justified as
producing a good prediction is of paramount importance, since all in-
correctly predicted bits are transmitted uncompressed.

Once a prediction is generated, the residual is computed. If the
prediction is accurate then the predicted and actual values should be

(a) Axis-aligned prediction contexts (b) Diagonal prediction context

Fig. 2. Our prediction context consists of three sets of linear contexts
in the X, Y, and Z orientations (a), as well as a diagonal predictor in the
X-Y plane (b). Interpolating polynomials of orders one through four in
each of these contexts yield a total of 16 predictions of V, the voxel to be
encoded. The contexts used by each predictor configuration are given
in Table 1.

close, which allows a residual to be computed that consists of a string
of leading zeros followed by a set of significant bits representing the
error in the prediction. The leading zero count can be efficiently en-
tropy coded, whereas the error bits are sent verbatim to allow lossless
reconstruction.

4.1 Polynomial Predictors
Our basic scheme, which we refer to as APE (Adaptive Polynomial
Encoder), uses a set of interpolating polynomial predictors with inte-
ger coefficients, as first proposed for audio coding by Robinson [17]
and adopted by Hans and Shafer in their AudioPaK coder [8]. A
unique (k− 1)-order polynomial can be constructed from the last k
data points and subsequently used to predict the next value, xn. We
have found that the most useful polynomials for encoding floating-
point data are orders zero through three, which give the following pre-
dictions:

P1(n) = xn−1 (1)
P2(n) = 2xn−1− xn−2 (2)
P3(n) = 3xn−1−3xn−2 + xn−3 (3)
P4(n) = 4xn−1−6xn−2 +4xn−3− xn−4 (4)

where Pi(n) is the (i− 1)th-order prediction of xn. The prediction
residuals for each polynomial predictor can be computed directly us-
ing only subtractions based on the following recursive relationship:

R0(n) = xn (5)
R1(n) = R0(n)−R0(n−1) (6)
R2(n) = R1(n)−R1(n−1) (7)
R3(n) = R2(n)−R2(n−1) (8)
R4(n) = R3(n)−R3(n−1) (9)

We can also use these equations as a more efficient way to determine
and compute the best prediction. These four linear polynomial predic-
tors of orders zero through three form the basis of our APE predictor.
We extend this 1D approach to 3D by computing parallel predictions
in the three cardinal directions, as shown in Figure 2. This results in
12 predictors (4 X-oriented, 4 Y -oriented, and 4 Z-oriented), which
requires a four-bit binary code. To take advantage of the full range of
the four bits (which selects for 16 predictors), we also use an X−Y di-
agonal context. This often complements the X and Y predictors well,
especially when the inter-plane distance in Z is larger than the reso-
lution in the X −Y plane. We could potentially add more predictors,



requiring additional encoding bits, but this would require more predic-
tion calculations, which would impact the encoding efficiency.

In the case of the X-oriented predictions only, wherein the contexts
overlap from one step to the next, we can compute the residuals even
more efficiently by reusing residuals from the previous prediction:

R′k(n) =
{

Rk−1(n)−Rk−1(n−1) n = 1
Rk(n−1) otherwise (10)

where R′ denotes the new residuals to be computed. This amounts to
one subtraction per residual.

Because the prediction context includes the previous four voxels in
the Z direction, the memory footprint for encoding must potentially
include five slices of the volume. Since our block size is smaller
than the size of a slice, blocks will depend on previously-encoded
blocks for their Z context, and therefore cannot be coded indepen-
dently. However, if we consider simulations in which a distributed
processing model is used so that each node processes a small subvol-
ume, then we can independently encode blocks as long as the slices of
the subvolume are sufficiently small.

In order to support lossless reconstruction, we must be careful that
the predictions at the decoder exactly match the predictions made by
the encoder. This can be accomplished in several ways. The most
direct way, which we adopt in our system, is to use floating-point op-
erations (of the same or greater precision) while using the same plat-
form for the encoder and decoder. Even this is problematic if truly
lossless compression is important, as differences in compilers, com-
piler options, runtime environments, and several other factors may af-
fect floating-point operations. Therefore, the most robust approach is
to base the prediction on integer operations only. One integer-based
method is to map the values to integers and carry out the operations
using integer arithmetic, with an associated reduction in prediction ac-
curacy. A second integer-based method is to use a software implemen-
tation of floating-point arithmetic such as SoftFloat [9] that relies on
integer operations, which preserves prediction accuracy but is signifi-
cantly more expensive.

It is possible to implicitly select the predictor, for instance by tak-
ing the median prediction or by examining the nearby context; how-
ever, we explicitly select the predictor with the best prediction (i.e. the
smallest residual) and send the selection as auxiliary information. This
choice is based on our observation that the overhead for transmitting
the predictor selection is more than compensated by the better predic-
tion accuracy. As we have 16 predictors, binary coding of the selection
requires four bits. For our encoder we use frames of size eight, so that
the cost of selection is 0.5 bpf (bits per float), since one predictor is
chosen to encode the entire frame. For reference, Table 1 lists our
encoder configurations based on the constituent predictors. The pre-
dictor selection tends to be highly skewed, with some predictors being
selected much more frequently than others, allowing for further re-
duction in cost by entropy coding. In our system, within each block
we record the predictor selection using binary codes while simultane-
ously collecting the predictor pmf (probability mass function). Once
we reach the end of the block we compute a Huffman table based on
the pmf and encode the selections, which have been recorded in the
binary-coded buffer. This buffer serves a dual purpose. In the case of
ineffectual Huffman coding, which might result from a more uniform
selection pmf, the binary-coded buffer is transmitted instead, thereby
guaranteeing at most 0.5 bpf.

4.2 Combined Predictors
Our second scheme combines the polynomial predictors with other
types of predictors in order to diversify our framework, and is thus re-
ferred to as ACE (Adaptive Combined Encoder). Incorporating other
predictors provides additional data models which may aid in achiev-
ing effective decorrelation. This not only allows us to build on previ-
ous work, but provides a convenient mechanism for extension should
better predictors be developed in the future. Based on an analysis of
previous work in floating-point prediction, we chose two predictors to
incorporate in our system. The first is the Lorenzo predictor, which is a

Scheme Predictors
APE P1(x),P2(x),P3(x),P4(x)

P1(y),P2(y),P3(y),P4(y)
P1(d),P2(d),P3(d),P4(d)
P1(z),P2(z),P3(z),P4(z)

ACE P1(x),P2(x),P3(x),P4(x)
P1(y),P2(y),P3(y),P4(y)
P1(z),P2(z),P3(z),P4(z)
Lorenzo, FCM, DFCM, Mean

Table 1. Configurations for the APE and ACE encoders. For each frame
the best predictor from the given set is selected. The frame size is set
so that the maximum rate for specifying the predictor selection is 0.5 bpf
(bits/float).

generalization of the parallelogram predictor, as introduced by Ibarria
et al. [10]. The second is the FCM/DFCM hash-based predictor pair
introduced by Burtscher and Ratanaworabhan [1], which relies on lo-
cally repeating patterns in the data. Additionally, we compute a mean
prediction as the average of all the constituent predictors. Thus we
add a total of four additional predictors: Lorenzo, FCM, DFCM, and
Mean.

The ACE predictor configurations are listed in Table 1, with rele-
vant contexts for the polynomial predictors shown in Figure 2. The
ACE scheme includes the X , Y , and Z polynomial predictor sets, and
the four additional predictors, Lorenzo, FCM, DFCM, and Mean. We
use a frame size of eight in order to ensure a worst-case rate of 0.5
bpf. Inspection of the predictor selection histograms for ACE demon-
strates that each predictor is selected a variable number of times, de-
pending on the characteristics of the dataset. Again, in most cases the
histogram is highly skewed, allowing efficient entropy coding. The
strength of our approach is manifest, in that our encoder adapts to
each dataset by selecting the predictors that best model the data. Al-
though there is some amount of overhead in calculating several predic-
tions and in the selection process, we show that this modest increase
in complexity is offset by significantly better compression rates.

5 PREDICTION RESIDUAL ENCODING

Prediction residuals for integer data are usually entropy coded based
on a Laplacian model of the error signal. However, this approach is
not pragmatic for floating-point residuals, for several reasons. First,
consider the pmf of the residuals for a typical dataset, as shown in Fig-
ure 3. The pmf shows the probability of occurrence for each possible
residual, which aids in the development of a statistical model for en-
coding. Although from a distance the pmf appears to be Laplacian,
when we inspect the distribution more closely we discover that there
are discontinuities due to the sparse population of possible values, of
which there are over four billion. This structure will be difficult to
model without assigning codes to residuals that do not occur. Further-
more, as pointed out by Lindstrom and Isenburg, there are many possi-
ble residuals compared to the cardinality of the data to be compressed,
so that entropy coding will be inefficient and likely ineffectual. An
alternative approach, first proposed by Sayood and Anderson [18] and
used in variant forms by both Burtscher and Ratanaworabhan [1] and
Lindstrom and Isenburg [13], is to use entropy coding for the number
of leading zeros in the residual while simply transmitting the remain-
ing error bits verbatim. Our framework also uses this method, but with
a novel fast entropy coding scheme for the leading zero count.

5.1 Computation of the Prediction Residual
There are two efficient methods of computing the residual using only
integer operations. The first approach, used by Burtscher and Ratana-
worabhan [1], is to simply XOR the two values, since floating-point
numbers in close proximity will often have identical bit patterns in
their most significant bits. The second approach, used by Lindstrom
and Isenburg [13], is to map the floating-point numbers into unsigned
integers and compute the absolute integer difference, while keeping
track of the residual sign explicitly. Regardless of the method, the end



Fig. 3. Bottom: The pmf of the prediction residual for a typical floating-point dataset appears to be Laplacian. Top: Magnification demonstrates how
sparsely the pmf is populated; these discontinuities in the pmf, along with the exceptionally large number of possible residuals compared to actual
residuals, precludes conventional entropy coding of the residual.

Fig. 4. A rank table keeps a sorted list of symbol frequencies. As sym-
bols are encountered, the frequency array is updated by moving entries
up or down in order to maintain a decreasing frequency order. As en-
tries are moved, the pointers to and from the rank array are modified
accordingly. This data structure allows the use of Universal codes for
fast entropy coding of the LZC′ symbols.

result is a residual which consists of some number of leading zeros,
followed by a number of significant error bits. The error bits are trans-
mitted uncompressed, so in general the more leading zeros we can
produce the better the compression rate. The XOR method of com-
puting the residual is faster than the second method (which we call
UINT/SUB), but produces fewer leading zeros when the values are
close but separated by an exponent boundary. We offer both methods
in our framework, but the default is UINT/SUB. One key observation
to make is that the most significant bit of the residual error bits is al-
ways 1, and therefore does not need to be transmitted. This small
modification improves the compression rate by 1 bpf.

5.2 Entropy Coding of Leading Zero Count

For single-precision floats, the LZC (Leading Zero Count) can range
from 0 to 32. In order to more efficiently represent this quantity we
compact it into 32 values by the following mapping:

LZC′ =
{

0 LZC = 0,1
LZC−1 otherwise (11)

which maps a LZC of 0 and 1 to the same value. This means that for
both LZC = 0 and LZC = 1, 32 bits will need to be transmitted, since
the value of the first bit is unknown. Since values of 0 and 1 tend
to occur very infrequently, this has negligible effect on the encoding
process. LZC′, in the range [0,31], can be encoded using a binary code
of 5 bits.

Examining the histogram of LZC′ in some typical datasets (see Fig-
ure 5) demonstrates that further reduction is possible with entropy cod-
ing. In our system we offer adaptive Huffman coding for this purpose,
as well as range coding, the arithmetic coding variant described by

Lindstrom and Isenburg [13]. In addition, we introduce a third op-
tion that is faster than either of these and achieves nearly the same
rate. This method uses Universal codes with an associated rank ta-
ble. Universal codes are variable-length, self-delimiting integer codes
that encode a set of integers where smaller values are more likely than
larger ones. Codes for the integers can be computed on-the-fly or pre-
computed and stored if the range of possible values is given a priori,
as in the case of the LZC′ integers. Using precomputed codes is ex-
tremely fast, since only a single table look-up from a very small table
is required. The problem with using Universal codes for encoding the
LZC′ is that the assumption of lower values having a greater proba-
bility of occurrence does not hold in general; in fact, this assumption
only holds for early-peaking LZC′ pmfs, and even then not perfectly.

In order to address this problem, we propose the use of the rank
table in conjunction with Universal codes. A rank table is a data struc-
ture that is used in some adaptive Huffman coders [15] in order to
determine when a revised Huffman table should be recomputed. The
basic structure of a rank table is shown in Figure 4. It consists of two
arrays, one for the symbol ranks, which is indexed by the symbols,
and another for the symbol frequencies. The frequency array keeps
a sorted list of the symbol frequencies, along with a reverse pointer
which indicates to which symbol each frequency belongs. The sym-
bol rank table is indexed by the symbol value and contains a forward
pointer to the corresponding frequency in the frequency array. The
rank table operates by updating the symbol frequencies as each symbol
is encountered and maintaining them in sorted order by manipulating
table pointers.

We can use the same structure as a way to transform the symbols
into another set of sorted symbols (i.e. the rank symbols) in which the
probabilities are strictly non-increasing, thereby allowing proper use
of Universal codes; that is, we encode the rank of the LZC′ instead of
the LZC′ itself. As long as the decoder constructs and uses the same
rank table then we can unambiguously decode the rank sequence and
use the reverse pointer to obtain the LZC′ for each rank. Figure 5
shows how each type of LZC′ pmf is transformed to a corresponding
rank pmf having the necessary Universal coding property. The only
remaining issue to resolve is the choice of Universal code. There are
several types of Universal codes, of which we tested the Gamma code,
the FK1 code, Rice codes, Golomb codes, and Split-sample codes.
Rice codes, Golomb codes, and Split-sample codes are more flexible,
as they each have a parameter that can be optimized in order to tailor
the codes to a particular sequence. Based on our experiments, Golomb
codes with the parameter adaptively determined give the best overall
coding rate.

6 ADAPTIVE PROGRESSIVE PRECISION

The least significant bits of floating-point numbers in scientific
datasets often appear to be statistically random. Although it is im-
possible to determine whether they are truly random or not, we do
know that for many datasets some of the least significant bits of the
mantissa represent noise resulting from data acquisition (random vari-
ation in measurements or model parameters) or from data processing
(e.g. quantization noise from floating-point computation/storage). As



(a) Early-peaking LZC pmf. (b) Mid-peaking LZC pmf. (c) Late-peaking LZC pmf.

Fig. 5. In practice we encounter three types of LZC pmfs (probability mass functions): (a) early-peaking, (b) mid-peaking, and (c) late-peaking. By
using a rank table structure, all three types are converted into a non-increasing pmf appropriate for Universal codes.

a result of the apparent randomness in these last bits, lossless com-
pression of floating-point values is constrained, and we often end up
explicitly storing the least significant bits of the residual for all val-
ues. However, as these bits may not contain useful information at all,
it would be nice to offer a more compact representation of the data in
which these bits are initially omitted, in order to facilitate data analy-
sis and/or visualization. We describe such an approach, which we call
Progressive Precision (PP). PP provides a lossy preview option for our
lossless compression algorithm; however, this method is not intended
to compete with more conventional lossy methods. If lossy compres-
sion is acceptable, then other methods are more appropriate, such as
those based on wavelets.

6.1 Variable-precision Prediction
At first glance, it may appear that in order to create a representation
supporting progressive precision we can simply partition the error bits
in the residual and store them separately. However, prediction-based
encoding relies on a context that must be the same for the encoder and
decoder, and this requires all residual bits. Instead, we can partition
the bits in the original data, with the most significant bits participat-
ing in predictive coding and the least significant bits left unencoded.
The least significant bits can then be stored separately and accessed as
necessary.

As shown in Figure 6, partitioning on byte boundaries results in two
options for progressive encoding, based on encoding the first two bytes
or first three bytes. This is to be compared to the standard encoding
of all four bytes. Ideally we would like to partition the data as much
as possible in order to provide greater flexibility in accessing the data;
however, partitioning will negatively impact the compression rate if
the unencoded bits are not random and are able to be predicted. This
means that in practice the efficacy of this approach will depend on
the characteristics of the dataset. This method is appropriate in cases
where a lossless version of the dataset must be maintained, but yet
a more compact, lossy preview of the dataset is desirable for certain
types of analysis (i.e. visualization).

6.2 Statistical Modeling of Mantissa
Evaluation of scientific data often involves computation of derived
properties, statistical analysis, and/or visualization, especially for
2D/3D data. These tasks may be sensitive to the effects of quantiza-
tion when using the lossy progressive approximations offered by PP.
For instance, visualization of quantized properties may exhibit band-
ing, a distracting artifact that is due to sensitivity of the human visual
system to sudden visual discontinuities. In order to address this issue,
we propose to keep some statistical information regarding the unen-
coded bytes along with the encoded data. Specifically, as we process
the blocks of data we compute the pmf of the third and fourth bytes
of the mantissa and store them with the encoded data if the bytes are
partitioned into separate files. This allows us to model the statistical
behavior of the last bytes even if they are not entirely uniformly dis-
tributed. We find in practice that these pmfs possess varying degrees of

(a) Full encoding (b) Encoding 3 bytes (c) Encoding 2 bytes

Fig. 6. The Progressive Precision method offers two progressive options
for the ACE encoder, by applying the ACE method to the first three bytes
and first two bytes of each floating-point value. The remaining bytes are
transmitted unencoded. Multiple levels of the data, denoted as L0-L2,
are stored separately. In the case of the two-byte and three-byte options,
the L0 level provides a compact, lossy version of the data.

nonuniformity; they are not so nonuniform as to allow entropy coding,
but they are usually not completely uniform either. If they do hap-
pen to be uniform, which sometimes happens with the least significant
byte, then we can simply use a uniform random variable to reconstruct
bytes. Otherwise, when analyzing the data we reconstruct these last
bytes using the inversion method [3], whereby the inverse cumulative
mass function is sampled with a uniform random variable. This effec-
tively achieves a non-deterministic, full-precision lossy reconstruction
of the data that reduces the deleterious effects of quantization on sub-
sequent evaluation. Shown in Figure 8 is a synthetic sphere volume
rendered using Level 0 with and without statistical modeling. Com-
parison to rendering of the original full-precision volume indicates that
this approach is able to reduce some but not all of the artifacts from
limiting the precision.

(a) Level 0 (b) Level 0 w/ modeling (c) Levels 0-2 (Original)

Fig. 8. A synthetic sphere dataset is compressed using our Progressive
Precision ACE encoder. Images show volume rendering based on: (a)
reconstruction using only Level 0; (b) non-deterministic reconstruction at
original precision using statistical models of the least significant bytes;
(c) original image reconstruction using all levels. Statistical modeling is
able to reduce some but not all of the artifacts of limiting the precision.



(a) Combustion Dataset (b) Vortex Dataset (c) Atmospheric Dataset (d) Supernova Dataset

Fig. 7. Our data suite includes four simulation datasets: (a) A jet flame turbulent combustion (1200× 600× 270, 122 time steps, 5 variables); (b)
A CFD simulation of turbulent vortex structures (1283, 100 time steps); (c) A thermal starting plume descending through an adiabatically-stratified
fluid (2562×1024, 400 time steps, 5 variables); (d) A supernova core collapse simulation (8643, 105 time steps, 5 variables).

7 RESULTS

In this section we evaluate our proposed technique and compare the re-
sults to other lossless compression methods for floating-point volume
data.

7.1 Floating-point Datasets
In order to evaluate our proposed compression scheme, we collected a
variety of datasets with various dimensions and from various sources.
We use four numerical simulations and two measurement datasets,
all in single-precision floating-point format. The numerical simu-
lations, shown in Figure 7, include a jet flame turbulent combus-
tion (Sci Comb), a CFD simulation of turbulent vortex structures
(Sci Vortex), a thermal fluid simulation (Sci Ohm), and a supernova
core collapse (Sci Super). The dimensions of these datasets are noted
in the figure caption. For the jet flame combustion we list results for
two of the five variables: the scalar dissipation rate (Sci Comb Dr) and
the stoichiometric mixture fraction (Sci Comb Mx). We also choose
two of the five supernova variables, namely density (Sci Super D) and
pressure (Sci Super P).

Our measurement datasets, shown in Figure 9, include the head
MRI from the Visible Human Female, but instead of using the orig-
inal 12-bit dataset we use a registered floating-point version of this
data as generated by Muraki et al. [14]. The registration method they
employ is based on numerical solution of a nonlinear minimization
problem, such that the resulting transformed data is expanded into
floating-point precision. This dataset consists of three variables: T1-
weighted image (Med MRI T1), T2-weighted image (Med MRI T2),
and proton-density-weighted image (Med MRI PD). The other dataset
is a Diffusion Tensor MRI (DT-MRI) scan of a healthy person, which
consists of the tensor volume (Med DTMRI T) as well as the com-
puted anisotropy field (Med DTMRI A).

7.2 Implementation
As already mentioned, our encoder processes the data block by block,
with each block being independently coded. In our system we use
blocks of size 8K, with a frame size of eight, in order to ensure at
most 0.5 bpf overhead for predictor selection. Our default APE/ACE
encoders use floating-point operations for prediction, compute resid-
uals using the UINT/SUB method, and use Golomb codes for en-
tropy coding the LZC′. The residual sign, produced by the UINT/SUB
method, is stored directly, as efforts directed at more efficient encoding
were generally unsuccessful. All tests were conducted using a single-
threaded program running on a machine equipped with a 2.7GHz Intel
i7 processor and 12GB of memory.

We compare our method to two established floating-point com-
pressors for scientific data. The first is FPC [1], which uses FCM

(a) MRI Dataset (b) DT-MRI Dataset

Fig. 9. Our data suite includes two medical datasets: (a) A registered
MRI scan (256×256×187, 3 channels); (b) A Diffusion Tensor MRI scan
(256×256×64, 9 channels), along with the computed anisotropy field.

and DFCM for prediction. Both are essentially hash tables, with the
hash value for FCM based on the previous value and the hash value
for DFCM based on the previous stride. In their original form these
methods operate on double-precision data, so we modified them in a
straightforward way to work on single-precision data as well. Our
single-precision implementation follows FPC closely except that we
compute the stride using floating-point operations. In particular, we
compute residuals using the XOR method and explicitly store both the
predictor selection (FCM or DFCM) and number of leading zero bytes
(0-3) for each value. We also experimented with different hashing pa-
rameters in order to find the best overall settings.

The second method we use for comparison is the Lorenzo predictor
as described by Lindstrom and Isenburg [13]. Predictions are com-
puted in floating-point arithmetic and residuals are computed based on
the UINT/SUB method. Entropy coding of the LZC′ is accomplished
using a C translation of the C++ range coder implementation provided
by the authors. Our implementation differs only in that the residual
sign is stored separately, instead of being folded in with the LZC′ as in
the original implementation.

7.3 Compression Analysis
Of paramount importance in achieving good compression rates for
lossless floating-point compression is computing accurate predictions.
In order to evaluate the different prediction methods we can ana-
lyze the predictor selection histograms for ACE, since this selec-



Fig. 10. We apply the PP scheme to scientific datasets using the ACE
encoder, with compression of two bytes (2B), three bytes (3B), or all
four bytes (4B). The results indicate that providing a lossless, progres-
sive version of certain datasets does not greatly impact the compression
rate. Regardless, the L0 level of the 3B and 2B options provides a com-
pact lossy version of the dataset for preview.

tion is based on minimum prediction error with all the candidate
predictors participating. We observe that the polynomial predictors
and the Lorenzo predictors are almost exclusively selected, with the
Lorenzo predictor being selected much less frequently, except in the
Sci Super D dataset. However, we point out that the Lorenzo pre-
dictor generally incurs less prediction error than any one polynomial
predictor.

The efficiency of entropy coding the predictor selection is related
to the relative frequency of selection for all predictors, which varies
greatly from dataset to dataset. For most datasets, entropy coding
of the predictor selection using adaptive Huffman coding results in
a rate of 0.2-0.3 bpf. Experiments with entropy coding of the LZC′
are shown in Table 2, where our rank-based Golomb coding scheme
is compared to adaptive Huffman coding and range coding. The pro-
posed method is able to offer faster encoding, typically twice as fast as
Huffman coding and four times as fast as range coding, with slightly
lower compression factors. This explains why encoding times for the
Lorenzo method and APE are very close; the switched predictor in
APE is slower than the Lorenzo predictor, but some of this cost is
offset by using a faster entropy coder. Overall, we believe that this
method offers a good compromise between encoding speed and cod-
ing quality.

The results of applying our PP (Progressive Precision) scheme to
the datasets are shown in Figures 10 and 11. Compression rates are

Universal Huffman Range
Coding Coding Coding

(Compression (Compression (Compression
Factor / Factor / Factor /

Dataset Coding Time) Coding Time) Coding Time)
Sci Comb Dr 1.5 / 1.0 1.6 / 1.7 1.8 / 4.1
Sci Ohm 1.2 / 1.0 1.3 / 2.2 1.4 / 5.0
Sci Super D 1.5 / 1.0 1.6 / 1.9 1.8 / 4.3
Med MRI PD 1.2 / 1.0 1.5 / 2.0 1.6 / 4.5

Table 2. The proposed Universal coding scheme using Golomb codes is
compared to adaptive Huffman coding and Range coding for represen-
tative datasets. Results are reported as compression factor, followed
by relative encoding time, expressed in terms of the time required for
Universal coding. The results show that the proposed method is about
four times faster than Range coding and about twice as fast as Huffman
coding, at the cost of some coding efficiency.

Fig. 11. We apply the PP scheme to medical datasets using the ACE
encoder, with compression of two bytes (2B), three bytes (3B), or all
four bytes (4B). Although compression using the 3B version results in a
small to moderate increase in compression rate, the 2B version requires
a significantly higher rate. However, the L0 level of the 2B option offers
a lossy version of the dataset at about 10% compression rate.

shown for encoding the first two bytes (2B) and the first three bytes
(3B), with comparisons provided for conventional encoding of all four
bytes (4B). For the 3B and 2B options, a breakdown of the space
required by each of the constituent levels (L0, L1, L2) is shown in
stacked form. For some of the datasets, the 3B and/or 2B options can
provide a lossless progressive version of the data with minimal in-
crease in compression rate. However, for several other datasets, these
options significantly increase the rate. The primary advantage of using
PP in these datasets is the relatively small size of the L0 level, which
can provide a very compact, lossy version of the dataset, often at a rate
of about 10% for the 2B option.

Tables 3, 4, and 5 list the main results of this work, in which our
proposed methods are compared against the two previously published
methods for our given data suite. Results are reported for a single
representative time step, with other time steps giving similar results.
Compression is lossless, so the results are reported in terms of the
compressed data size relative to the original data size. We provide
two metrics of compression performance, namely the compression rate
(compressed size / original size) and the compression throughput, re-
ported as mean bpf (bits per float). Based on these tests, we con-
clude that the best encoder is ACE, which achieves the best rate on
all datasets, regardless of dimensionality or source (simulation or ob-
servation). These higher compression rates come at a cost, however,
as ACE is also the slowest of the methods, although objectively it is
not slow. Our other approach, APE, achieves the second best rate on
all datasets except for the Supernova dataset, in which the Lorenzo
method is second best. Of particular interest are the remarkable rates
that APE/ACE is able to achieve on the 3D medical datasets. By ex-
amining the predictor selection histogram we are able to attribute this
phenomenon to the success of the 4th order Z-oriented polynomial
predictor, which is an excellent model for these particular datasets.

By examining the compression rates in conjunction with the pre-
dictor selection histograms, we can make some inferences about the
characteristics of the datasets themselves. We can think of each pre-
dictor as a model for the data, so that if a particular prediction method
achieves a low rate then that model is valid. From this we can infer that
when the predictor selection pmf shows significant contributions from
multiple predictors then there are multiple regions within the data.
This heterogeneity can be exploited by the selection mechanism of
ACE, and so we expect the ACE rate to be significantly better than the
best single method. On the other hand, if the predictor selection pmf
is dominated by one predictor, then we can infer that the dataset is ho-
mogenous, in which case the ACE method will only do marginally
better than the best individual predictor. In general these observa-



Dataset Lorenzo FCM/DFCM APE ACE
Sci Comb Dr 30.4 (9.7) 51.5 (16.5) 25.3 (8.1) 23.3 (7.5)
Sci Comb Mx 54.5 (17.4) 71.4 (22.8) 49.0 (15.7) 47.8 (15.3)
Sci Vortex 60.9 (19.5) 80.9 (25.9) 53.9 (17.2) 53.7 (17.2)
Sci Ohm 64.3 (20.6) 81.7 (26.1) 57.6 (18.4) 55.2 (17.7)
Sci Super D 31.2 (10.0) 51.6 (16.5) 32.1 (10.3) 29.2 (9.4)
Sci Super P 40.5 (13.0) 58.1 (18.6) 40.8 (13.1) 37.9 (12.1)
Med MRI T1 74.2 (23.8) 90.1 (28.8) 46.3 (14.8) 42.0 (13.4)
Med MRI T2 68.9 (22.1) 86.4 (27.7) 49.8 (16.0) 45.9 (14.7)
Med MRI PD 68.9 (22.0) 87.3 (27.9) 52.3 (16.7) 49.1 (15.7)
Med DTMRI T 45.6 (14.6) 63.4 (20.3) 41.9 (13.4) 41.6 (13.3)
Med DTMRI A 40.9 (13.1) 55.5 (17.8) 33.4 (10.7) 30.7 (9.8)

Table 3. Results for lossless compression of single-precision floating-point datasets, reported as compression rate in percent with mean bits per
float in parenthesis. Results using four compression methods are given: Lorenzo and FCM/DFCM refer to previously published methods, with APE
and ACE being the proposed methods. For each dataset the best compression rate is highlighted in bold. As indicated in the table, ACE achieves
the best rates for all datasets.

tions are borne out in the data. In terms of dataset modeling, we see
that APE models the Sci Comb and Med MRI datasets well, whereas
Lorenzo works well for Sci Super. Results for the other datasets are
fairly mixed. The conclusion we make is that no one model works
well for all types of data, thereby justifying our switched prediction
framework (in particular ACE).

In regards to compression speed (shown in Table 4), FCM/DFCM is
easily the fastest method on all datasets. The Lorenzo and APE meth-
ods lie between FCM/DFCM and ACE in terms of rates and speed.
Lorenzo is faster than APE but with lower compression rates in gen-
eral. The slower speed of ACE compared to APE is primarily due
to the computational cost of the Lorenzo predictor and to the addi-
tional overhead related to FCM/DFCM caching. Results for decom-
pression speed (shown in Table 5) mirror those of compression, with
FCM/DFCM being the fastest decoder. Again, Lorenzo and APE offer
similar speeds. The decoding times demonstrate the same trend as en-
coding times, but are shorter than encoding times, mostly due to fast
entropy decoding.

Dataset Lorenzo DFCM/FCM APE ACE
Sci Comb Dr 31 24 37 50
Sci Comb Mx 36 26 39 52
Sci Vortex 0.3 0.3 0.4 0.5
Sci Ohm 1.2 1.1 1.7 2.3
Sci Super D 110 105 148 174
Sci Super P 113 102 145 172
Med MRI T1 2.0 1.7 2.6 3.3
Med MRI T2 2.0 1.7 2.6 3.2
Med MRI PD 2.1 1.7 2.6 3.2
Med DTMRI T 16 10 24 33
Med DTMRI A 1.7 1.1 2.5 3.4

Table 4. Compression timing results for encoding of single-precision
datasets by previously published methods (Lorenzo and FCM/DFCM)
and the proposed methods (APE and ACE), reported in seconds. The
best time for each dataset is highlighted in bold. FCM/DFCM is shown to
be the fastest method on all datasets, with Lorenzo and APE marginally
slower.

8 CONCLUSION

In this work, we introduced a switched prediction lossless coding
scheme for compressing scientific and medical floating-point volume
data. Our basic approach, APE, uses a set of interpolating polyno-
mials, whereas ACE, our combined approach, uses the Lorenzo and
FCM/DFCM predictors along with polynomials. The end result is an
encoding framework that is robust, adapting to the data as it encodes,
performs extremely well, and is easily extensible. We demonstrate
on a variety volume datasets that our proposed approach achieves sig-
nificantly better compression rates than existing methods at a modest

Dataset Lorenzo DFCM/FCM APE ACE
Sci Comb Dr 22 19 24 29
Sci Comb Mx 24 21 25 32
Sci Vortex 0.3 0.2 0.3 0.4
Sci Ohm 0.9 0.8 1.1 1.7
Sci Super D 88 84 96 110
Sci Super P 89 81 94 107
Med MRI T1 1.4 1.3 1.9 2.3
Med MRI T2 1.4 1.3 1.9 2.3
Med MRI PD 1.4 1.3 1.9 2.3
Med DTMRI T 12 8 18 21
Med DTMRI A 1.2 0.8 1.9 2.4

Table 5. Decompression timing results for decoding of single-precision
datasets by previously published methods (Lorenzo and FCM/DFCM)
and the proposed methods (APE and ACE), reported in seconds. The
best time for each dataset is highlighted in bold. As with encoding,
FCM/DFCM is the fastest method on all datasets, but the differences
between the decompression times for the various methods are less than
with encoding.

increase in encoding time. We believe this additional cost is justi-
fied, since our method is still relatively fast and the data is compressed
only once, whereas the cost due to increased storage/transmission is
incurred continuously/frequently.

An important future investigation is the use of only integer opera-
tions in the prediction calculation. As mentioned previously, this is
important when encoding and decoding on multiple platforms, and
could be accomplished without loss of accuracy by using an integer-
based floating-point implementation. Furthermore, an obvious direc-
tion for future work is the development of better prediction methods
for volume data. These predictors could be incorporated directly into
our ACE encoder, perhaps replacing predictors like FCM/DFCM that
aren’t often used.
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