
1

Ambiguity-Free Edge-Bundling
for Interactive Graph Visualization

Sheng-Jie Luo, Chun-Liang Liu, Bing-Yu Chen, Member, IEEE, and Kwan-Liu Ma, Senior Member, IEEE

Abstract—Graph visualization has been widely used to understand and present both global structural and local adjacency information
in relational datasets (e.g., transportation networks, citation networks, or social networks). Graphs with dense edges, however, are
difficult to visualize because fast layout and good clarity are not always easily achieved. When the number of edges is large, edge
bundling can be used to improve the clarity, but in many cases, the edges could be still too cluttered to permit correct interpretation of
the relations between nodes. In this paper, we present an ambiguity-free edge-bundling method especially for improving local detailed
view of a complex graph. Our method makes more efficient use of display space and supports detail-on-demand viewing through an
interactive interface. We demonstrate the effectiveness of our method with a public coauthorship network data.

Index Terms—Graph Visualization, Network Visualization, Edge Ambiguity, Edge Congestion, Edge Bundling, Detail-on-Demand,
Interactive Navigation.

✦

1 INTRODUCTION

VISUALIZING relational datasets as graphs is a com-
mon approach. In graph visualization, a graph con-

sists of nodes and edges where the nodes represent some
entities and the edges represent the relationships be-
tween the entities (nodes). Its aim is to succinctly reveal
the structural and relational information in the datasets.
As the size of a graph grows, with a limited display
space, laying out the graph directly would lead to two
potential problems: edge-congestion and edge-ambiguity.
The former is due to dense edges which may decrease
the readability of the graph, while the latter is due to
inappropriate edge layout, which significantly decreases
the number of possibly and correctly perceivable rela-
tions from the data.

Edge-congestion and edge-ambiguity problems make a
graph difficult to read and use. Several techniques have
been introduced to relieve these problems. Among these
techniques, edge-bundling [1] [2] [3] [4] [5] [6] is a partic-
ularly effective solution, which reduces the visual clutter
caused by dense edges by merging some groups of edges
together to use less screen space for the same amount of
information. It has been quickly adopted by the graph vi-
sualization community, and there are many approaches
to bundle edges, such as Hierarchical Edge Bundling [2],
Geometry-Based Edge Bundling [4], and Force-Directed
Edge Bundling [6] , etc. They all improved the edge
layout to some degree and can help to visualize an entire
graph with excessive edges. Specifically, these methods
provide better visualization of the structural information
of the whole graph.

• S.-J. Luo, C.-L. Liu, and B.-Y. Chen are with National Taiwan University.
E-mail: {forestking,being31}@cmlab.csie.ntu.edu.tw, robin@ntu.edu.tw

• K.-L. Ma is with University of California at Davis.
E-mail: ma@cs.ucdavis.edu

The goals for visualizing a graph in overview and
detail-view are different. Visualizing a graph in overview
seeks to provide a clearly visible high-level edge pattern
in the whole graph. Under this criteria, the perception
of precisely which two nodes are connected is relatively
less important, and thus displaying detailed connectivity
information in local areas of the graph is usually com-
promised. On the contrary, visualizing a graph in detail-
view seeks to provide accurate connections between the
nodes. Precisely discriminating which two nodes are
connected is essential to allow the viewer to trace a path
and answer some specific questions. If the subgraphs
of interest have highly connected nodes, we still need
to address both the edge-ambiguity and edge-congestion
problems in such local areas.

In this paper, we present an ambiguity-free edge-
bundling method coupled with an interactive (un-
)grouping interface. This method was especially de-
signed to reduce the confusion caused by the clut-
tered edges in the detail-view. Our method improves
users’ ability to accurately perceive individual relation-
ships since the edges with the same target or source
node(s) are merged and curved and the curvature is
automatically adjusted to avoid ambiguities. We employ
a quadtree structure to overcome the time complex-
ity issue, so users can freely interact with the graph.
Through the easy-to-use, interactive detail-on-demand
interface, the users can select some local areas to focus
on by simply enclosing the corresponding subgraphs
with a stroke. Our method effectively removes the short-
comings of the original edge-bundling layout method
and, in particular, enhances the visualization of graphs
with locally dense edges. As shown in each example
presented in this paper, the subtle difference that our
method can be critical in correctly comprehending and
dissecting a graph.

Digital Object Indentifier 10.1109/TVCG.2011.104 1077-2626/11/$26.00 © 2011 IEEE

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

(a) (b)

Fig. 1. (a) The case in which an edge passes near
or even through some unrelated nodes causes incorrect
perception of relationships. (b) The result of routing and
curving the edge away from the unrelated nodes.

(a) (b) (c)

Fig. 2. (a) The original graph. (b) The result of an existing
edge-bundling method, and there are some incorrect rela-
tions due to the edge-bundling. (c) The result of our edge-
bundling while considering to avoid the edge-ambiguity
problem.

1.1 Edge Ambiguity

Most of the edge-ambiguity problems happen when an
edge overlaps unrelated nodes. As illustrated in Fig. 1(a),
the center edge, according to the real dataset, actually
connects Node A and Node B while Node C is only inciden-
tally located on the path of the edge. This case may cause
users to incorrectly perceive that Node A - Node C and
Node B - Node C are connected, respectively. Moreover,
even though the edge does not actually overlap Node
D, the geometrical nearness could still confuse a user’s
visual perception of the connections and then cause an
ambiguity problem. The basic idea of solving the edge-
ambiguity problem is illustrated in Fig. 1(b). Obviously,
the inappropriate overlapping and nearness problems
are avoided. The routed edge uses a smooth curve to
bypass the unrelated nodes. The smoothness improves
the users’ ability to trace the curve. Furthermore, a
routed edge can always choose a bypassing path that
minimizes the number of crossings.

Although edge-bundling is usually used to reduce
the visual clutter problem, it may sometimes introduce
its own edge-ambiguity problem. Most edge-bundling
methods merge the edges together if those edges are
both geometrically close and in similar direction as illus-

(a) (b)

Fig. 3. (a) The graph contains several dense nodes and
edges in some local regions, where high-degree nodes
gathering in the local regions decrease the readability
of the graph. (b) Bundling the edges, which connect to
the high-degree nodes, together can relieve the local
congestion.

trated in Fig. 2(b). According to the actual relationship
shown in Fig. 2(a), Node A - Node C and Node B - Node
D are connected, respectively, and these two relations
are represented by two individual edges. However, since
the two edges are close and in similar direction, if we
bundle these two edges together as shown in Fig. 2(b),
it becomes uncertain whether Node A is connected by
either Node C or Node D or both. Using edge-bundling for
showing a graph’s overview is reasonable since its goal is
to provide a clearly visual edge pattern. However, when
it comes to the detail-view, any perception problem
becomes crucial, since precise and accurate relationships
between nodes is usually necessary. With our improved
edge-bundling method, the ambiguity problem is ad-
dressed. Hence, our result has no such edge-ambiguity
problem as shown in Fig. 2(c).

1.2 Edge Congestion
Most edge-congestion problems in the detail-view
are caused by high-degree nodes, which connect to
many other nodes. These high-degree nodes are usu-
ally clustered into one small region. This is because
most relational datasets have small-world characteris-
tics [7] [8] [9], which tend to make the graphs contain
more subgraphs with high-degree nodes gathering in a
few local regions and the edges in such regions usually
have relatively short lengths as is shown in Fig. 3(a).

Our ambiguity-free edge-bundling method condition-
ally bundles the edges to relieve the edge-congestion
problem in local regions. Ambiguities in the edge-
bundling process are considered, and only the edges
which share a common node can be merged. Fig. 3(b)
shows our result. Comparing it to Fig. 3(a), the bundled
edges better utilize the screen space which helps users
to discriminate the connections of the high-degree nodes.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

The smoothly curved-edges also help the users to trace
the edges. Inappropriate overlapping and nearness prob-
lems, which often occur in traditional edge-bundling
methods, are avoided.

2 RELATED WORK

Correctly perceiving individual relations between nodes
is often the goal of requesting and examining an detail-
view of a graph in graph visualization. Several tech-
niques have been introduced to address this require-
ment. van Ham used a matrix-based representation to
reduce the visual clutter caused by edges [10]. However,
the matrix-based representation is often less intuitive
than using node-link graphs. Eades et al. proposed a
method that only draws the edges between node clus-
ters [11] [12]. Becker et al. proposed half-lines [13] to
visualize a directed edges, which reduces the visual
clutter by drawing only the first half part of the edge
between two nodes. Existing popular methods that re-
duce the edge clutter may be classified into two ma-
jor types, which are interactive approaches and edge-
routing approaches. Interactive approaches refer to the
ability to discriminate additional information by inter-
actively selecting or filtering out current information.
Fisheye views [14], a distortion-oriented method, is one
of the examples, which distorts the content while still
maintaining the user’s mental map model [15]. Many
extensive methods have been presented in the fields
of information visualization [16] [17] [18] [19] as well
as human-computer interaction [20] [21]. Through this
method, a user can interactively manipulate a fisheye-
like view to enlarge some local areas of a graph/network
and examine the details of the confusing subgraph.

Another group of methods under the interactive ap-
proaches can be treated as the edge-dispersing tech-
niques, which disperse the edges away from one local
region, so that the underlying pattern can be revealed
and edge-ambiguity can be temporarily relieved. For ex-
ample, EdgeLens [22] allows users to interactively bend
the edges away from one’s focus without modifying the
nodes’ positions. The lens open up sufficient space to
disambiguate the relationship between the underlying
nodes. Edge Plucking [23] is another technique that
allows users to pull edges away from the region of
interest. The two methods also help users to clarify
the clustered edges without edge-ambiguity problems.
However, they require a lot of efforts from the users
to interact with the local regions and to memorize the
temporal discrimination between the edges.

On the other hand, edge-routing approaches tend to
use a mathematical model to reduce edge crossings,
which cause many of the edge-congestion and edge-
ambiguity problems. Topology preserving constrained
graph layout [24] treats the edges as rubber bands, which
is a constrained graph layout algorithm that supports
polyline edges and clusters where clusters/nodes/edges
may not overlap. However, this algorithm only adapts

well if the number of edges in the graph is relatively
small and recognizable node displacements are pro-
duced.

Recently, many methods were proposed to provide
clearer visual edge patterns even with an excessive num-
ber of edges. The ability to perceive individual relations
is compromised, since perceiving the overall structure of
the graph is the primary goal of visualizing the whole
graph. In spite of this, the idea of relieving the edge-
congestion problem can still be extended for visualizing
the detail-view of the graph if we carefully consider
the perception of individuals. Carpendale et al. first
proposed an edge-displacement technique [25] by using
a distortion-oriented formula to curve the edges that are
passing by the circular region of interest. Dickerson et al.
proposed a technique called confluent drawing [26] to
visualize non-planar graphs in a planar way. The idea
is to allow groups of edges to be merged together.
Phan et al. presented the flow map layout [1] to visualize
flow data. They automatically generate a flow map that
depicts the backbone of a graph in an overview. How-
ever, it may cause the edge-ambiguity problem in the
detail-view. Force-directed edge bundling [6] used a self-
organized approach and modeled the edges as flexible
springs, which can be pulled together to form bundles.
In the detail-view, this method may also cause the edge-
ambiguity problems due to inappropriate node-edge
overlapping and bundling of unrelated edges. Hence,
users may likely perceive incorrect relations, like the
result shown in Fig. 2(b).

Cui et al. proposed an edge-bundling method [4] for
revealing the high-level edge pattern based on the nodes’
geometrical information. They used a uniform grid struc-
ture to sample the excessive edges, and then generate
a control mesh to guide the edge-curving by bundling
the edges that are geometrically close and directionally
similar. The result of this method also provides a clear
visual pattern of dense edges. However, the effectiveness
of this method highly relies on the quality of the control
mesh, and there is no guarantee that an effective mesh
can always be obtained automatically. If this method is
applied directly to visualize the detail-view of a graph,
the result also shows that the curved-edges are forced
to pass close to all nearby nodes. Thus, the relationship
ambiguity for the bundled edges frequently happens
because only the edges’ geometries are taken into con-
sideration. Hierarchical edge bundles [2] was designed
to visualize the data that contains both adjacency re-
lationship and hierarchical structure. To draw an edge
linking two tree leaves, the edge is curved according
to the path connecting the two nodes on the hierarchi-
cal tree structure. The algorithm bundles these edges
together if they share a common path segment on the
hierarchical tree. This method reduces the visual clutter
and also visualizes the hierarchical pattern embodied in
the straight-line graph. It performs well if the dataset
contains hierarchically structured nodes.

There is another approach to deal with the edge-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

Fig. 4. An overview of our ambiguity-free graph visualization process.

congestion problem called the node-adjustment ap-
proach, which adjusts the nodes’ positions instead of
curving edges. To avoid content confusion, the approach
rearranges the nodes’ positions in such a way as to mini-
mize the edge density, crossing, and occlusion. However,
this approach is difficult to obtain an appropriate rear-
rangement with dense edges [27] [28]. Furthermore, it
may not be suitable for the graphs, which the nodes’
positions have semantic meanings, e.g., the nodes repre-
sent the cities in a map.

3 AMBIGUITY-FREE EDGE-BUNDLING
Fig. 4 illustrates an overview of our design. First, we
perform a force-directed layout algorithm to place nodes
in the display space. Then we use a quadtree [29] struc-
ture to decompose the two-dimensional display space
according to the nodes’ positions in the input graph, and
this hierarchical data-structure provides a subdivision-
based approach for further enhancing the efficiency in
the following six major steps:

1) Space partitioning (Sec. 3.1).
2) Occupancy detection (Sec. 3.2).
3) Edge-ambiguity avoiding (Sec. 3.3).
4) Curved-edge bundling (Sec. 3.4).
5) Rendering (Sec. 3.5).
6) Interaction (Sec. 3.6).
The space partitioning step constructs a quadtree struc-

ture by using the nodes’ positions. During this process,
it also identifies which quadtree cell is occupied by
which node(s) in the graph. The occupancy detection step
detects which quadtree cell is occupied by which edge(s)
in the straight-line mode. The edge-ambiguity avoiding
step detects if there exists edges passing near one or
more unrelated nodes. If such instances are detected,
the algorithm creates some control points for routing
these edges away from the unrelated nodes. The curved-
edge bundling step geometrically bundles some matched

edges together while conforming to the edge-ambiguity
requirement. It further enhances the visual discrimina-
tion of the bundled edges between the related nodes
and unrelated ones by separating them when necessary.
Finally, the rendering and interaction steps provide the
final visualization and interaction controls for users.

3.1 Space Partitioning
In order to achieve realtime interaction, an efficient
data structure, quadtree, is first deployed to partition
the space. The quadtree is subdivided according to the
nodes’ positions. For some applications, if the nodes in
the dataset have no exact geometric information in ad-
vance, e.g., social network data, a force-based model [30]
is first applied to compute the initial nodes’ positions.
A quadtree cell is recursively subdivided into four chil-
dren, and the subdivision of a cell stops when either no
node or exactly one node is in that cell. Fig. 5 illustrates a
simple example with only seven nodes. For identification
purposes, we define two types of cells in the quadtree
structure, which are Node Cells and Empty Cells. A Node
Cell contains exactly one node in its local region, and
an Empty Cell contains no node and represents a usable
area for later steps. Unfortunately, the size of a Node Cell
may be too large, which would waste valuable screen
space. Therefore, after constructing the quadtree, we
further subdivide large Node Cells until they fall below
a threshold size U , releasing more Empty Cells in the
process. The result of this subdivision is shown in Fig. 5,
where the nodes are all put into sufficiently smaller Node
Cells. Note that, after this subdivision, Node Cells have a
maximum size of U , but no minimum size, and Empty
Cells have neither a maximum nor a minimum size.

The thresholding value U used as the stopping cri-
terion plays an important role in constructing the
quadtree. In our observations, if the value of the thresh-
old U is too small, the following edge-bundling mecha-
nism would produce a frequently-turning curve layout,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

Fig. 5. The comparison between the space partitioning
without (left) and with (right) further subdivision. The red
cells (Node Cells) are the regions occupied by the nodes,
and the green cells (Empty Cells) are free regions.

a.k.a. the zigzag effect. The zigzag curves change their
edge direction frequently, which makes it more difficult
to perceive the connections between the nodes. More-
over, the meshes in the quadtree will become much more
dense. A dense space partition significantly decreases
the performance of edge-bundling because the widths
of the Empty Cells also become smaller. On the other
hand, if the value of the threshold U is too large, the
edge-ambiguity avoiding mechanism might not be able
to properly find enough suitable Empty Cells for rerout-
ing the ambiguous edges. With less Empty Cells being
identified, the result of edge-bundling and searching the
Empty Cells for avoiding ambiguity will become worse.
In our experience, the value of the threshold U should
be decided by considering both the number of nodes on
the display and the area of the display space. Hence,
we suggest the threshold U to be defined using the
following equation:

U =
√

A/4N, (1)

where A is the area of the display space and N is the
number of nodes on the display.

3.2 Occupancy Detection
Quadtree-based space partitioning provides the ability
to quickly identify any query related to node positions.
If the available display space is sufficient for a standard
edge layout, we consider straight-line edges as the best
drawing style due to their simplicity. However, ample
amounts of display space is not always enough to solve
the visual clutter problem. In our design, the idea is
to improve the edge style from the straight-lines to
curves if the straight-line edge style has edge-congestion
or edge-ambiguity problems. Thus, it is necessary to
analyze which regions are occupied by which edge(s) in
the straight-line style, and then use this information to
detect the regions which have edge-congestion or edge-
ambiguity problems.

To detect the edge-occupied cell, we propose a divide-
and-conquer collision detection method based on the
quadtree data structure. For each edge, the system finds
two Node Cells C1 and C2 that contain two vertices of
the edge. Then, the parent cell CP in the lowest level of

Fig. 6. Cells colored in sky-blue indicate the result of
searching Empty Cells which are passed by specific
straight-line edges.

the quadtree that contains both C1 and C2 is found. The
collision detection is performed recursively from CP . It
maintains a queue of cells that need to perform collision
detection and adds CP in the beginning of the queue.
At every step, it takes a cell C from the queue, detects
the collision of the edge and the four children of C, and
adds the children that are collided by the edge back to
the queue. Detection of edge-cell collision is done by
computing the intersection of the edge and the cell’s four
boundaries. If the cell C is a leaf of the quadtree and is
not a Node Cell, then C is intersected by strait-line edges
(the sky-blue cells in Fig. 6). The process stops when the
queue is empty.

The hierarchical directory of the space partition forms
a cell map that allows us to quickly find which cells are
occupied by which straight-line edge(s). If an edge on the
cell map only passes through Empty Cells, there is a very
low possibility that the edge will cause edge-ambiguity
problems. On the other hand, if it passes through one
or more Node Cells, the edge-ambiguity problems might
occur in those Node Cell regions.

3.3 Edge-Ambiguity Avoiding
The edge-ambiguity problem in graph visualization of-
ten leads users to perceive incorrect relationships be-
tween nodes or requires considerable effort to read
the graph. In the previous step, most possible edge-
ambiguity locations are identified by detecting the Node
Cells that intersect with straight-line edges whose desti-
nation or source is not one of the nodes contained in that
cell. After determining all such Node Cells, which may
contain an inappropriate overlap or nearness problem,
we then calculate the control point(s) for every edge
and curve the local part of the involved edge(s) to
pass through the control point(s). Thus, the involved
edge(s) avoid any inappropriate overlap or nearness
problem. The position of the control point for bypassing
is determined by the following three crucial conditions:

• Whether this edge-ambiguity problem is solved or
not.

• Whether additional edge-ambiguity problem(s) will
occur or not by bypassing this location.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

(a) (b)

(c) (d)

(e) (f)

Fig. 7. The step of determining the control points for
bypassing an edge. (a) Find the cell with an edge am-
biguity problem. (b) Calculate the two vectors that are
perpendicular to the involved edge, and choose the one
causes the least number of edge-crossings. (c) Find the
candidate Empty Cells to curve the edge. (d) Remove
the candidates that will make the curved-edge cause
edge-ambiguity problems. (e) Choose the cell from the
remaining candidates that has the best continuity for the
curved-edge. (f) Calculate the precise position of the
control point.

• Whether the representation of this bended edge
improves the readability of the graph and makes
it easier to read or not.

Based on some graphic aesthetic guidelines [31] [32],
we define the rules for bending the edges as follows:

1) The number of edge-crossings should be reduced.
2) The continuity of the curved-edge should be main-

tained.
3) The number of bends of the curved-edge should be

as small as possible.
Keeping the number of bends of the curved-edge as
small as possible and considering the continuity of
the curved-edge could make the curved-edge smoother
and easy-to-track, while reducing the number of edge-
crossings could reduce the visual clutter. Hence, the

procedures for deciding on a control point for bypassing
an edge are listed in sequence as follows (also see Fig. 7):

1) Calculate the two vectors that are both perpen-
dicular to the line-segment of the involved edge.
(Fig. 7(a))

2) In these two vectors, choose one as the vector V

which will make the bypassing curve cause the
least number of edge-crossings with the connected
edges of the involved node. (Fig. 7(b))

3) Find the candidates of the bypassing Empty Cells by
searching a line-segment starting from the projec-
tion point of the involved node along the direction
of the vector V. (Fig. 7(c))

4) Remove any candidate of the bypassing Empty
Cells that will make the curved-edge cause edge-
ambiguity problems for other nodes. (Fig. 7(d))

5) If there remains more than one candidate, choose
the one that has the best continuity for the curved-
edge. (Fig. 7(e))

6) Calculate the precise position of the control point
for bypassing the curved-edge. The specific posi-
tion of the control point is the projection point of
the center of the best candidate on the line-segment
formed by the position of the involved node and
vector V. (Fig. 7(f))

In order to ensure that the control point(s) for by-
passing an edge will guide the curved-edge away from
the inappropriate overlap or nearness problem, the al-
gorithm first chooses two searching directions that are
effective at leaving the problem region. In the second
procedure, the rule for reducing the edge-crossings is
taken into account. Thus, the searching direction with
fewer possible edge-crossings is chosen. This procedure
can be completed by examining the directions of the
involved node’s connected edges. More precisely, it takes
all of the involved node’s connected edges and calculates
the vectors of these edges from the node to destinations.
The angle between each candidate vector and the edge
vector is specified, respectively. Possible edge-crossings
are those edges that form an acute angle with the
candidate vector. In the third procedure, the algorithm
searches the candidates of the bypassing Empty Cells. It is
reasonable to only search Empty Cells because the Empty
Cells are the regions which are not occupied by any node
and can be used with less cost. We suggest a search
line that is one-fourth the length of the involved edge.
The algorithm then checks and removes any candidate
which will cause additional edge-ambiguity problem(s)
by detecting pairs of potential line segments. The line
segments are formed from the center of each candidate
and two points, which are the vertices of the involved
edge or the nearest existing control point. In the fifth
step, if there remains more than one candidate, the
best candidate is the one that affects curvature the least
according to the readability rule of continuity. Geomet-
rically, the algorithm chooses the candidate with the
minimal change to the turning angle.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

(a) (b) (c)

Fig. 8. Determine which edges to be bundled within one Empty Cell. (a) Original layout and the quadtree cells. (b)
The Empty Cells are found that a group of edges sharing a common node passes through. (c) The control points are
calculated in these Empty Cells and the edges are bundled together.

Note that after rerouting an edge, the rerouted edges
are taken as a set of polylines formed by the endpoints
and control points. Therefore, the edge-crossing detec-
tion of a rerouted edge is performed on these polylines
instead of original straight edge. Although the order
of rerouting might affects the final result, the visual
complexity does not change too much because an edge’s
direction does not change severely after rerouting.

3.4 Curved-Edge Bundling
In most graph layouts, the largest proportion of vi-
sual clutter is caused by edge-congestion. To alleviate
this problem, our framework utilizes edge-bundling. By
bundling some groups of edges together, less display
space is cluttered by the edges, which significantly
helps users to perceive individual relations in the detail-
view of the graph. The basic idea behind our edge-
bundling mechanism, which differs from the traditional
approaches, is to bundle the edges that share a common
node. In other words, only related edges that connect to
the same node can be bundled together.

Traditional edge-bundling methods, however, have
one main drawback: it is very difficult to trace in-
dividual edges from source to destination out of the
entire bundled collection. This makes it problematic to
discern which nodes connect to which others without
interactive highlighting. To avoid this type of edge-
ambiguity problem, in our system, the edges are bundled
together if and only if they are geometrically close and
also share one common node. This condition guarantees
that, even if two edges are geometrically close, they will
not be bundled together if they do not share at least
one endpoint. If this condition is not enforced, incorrect
relationships, like the one shown in Fig. 2(b), may be
generated.

A bundle of edges is created when a group of edges
shares a common node and passes through the same
Empty Cell. The bundling is achieved by curving the
edges and forcing them to pass through their respective
control points. Catmull-Rom splines are used in our

(a) (b)

Fig. 9. The strength of edge-bundling varies according
to the width of the Empty Cell. In a smaller Empty Cell,
the strength is larger to avoid further overlap or nearness
problems. On the contrary, in a larger Empty Cell, the
strength is relatively smaller to discriminate the bundled
edges.

implementation due to their local control properties.
Fig. 8 illustrates the steps for finding the groups of edges
to bundle. It finds the Empty Cell that a group of edges
sharing a common node passing through, and calaulates
the control points for those lines in these cells. If the
ambiguity-avoidance step is performed in advance, it
creates a set of polylines according to the control points
generated in the ambiguity-avoidance step, and uses
these polylines instead of original straight-lines to check
the bundling criteria. In order to distinguish the edges
within a bundle from one another and, thus, retain con-
tinuity, the edges only pass through their own respective
control points instead of a single point. Although these
control points do not coincide, the bundling effect is
still achieved because the points are geometrically close
in a local spatial region. The equation for calculating
the control point for each bundled edge is defined as
following:

CP = P ′ +
2U

U + Lb

∗
�P ′P , (2)

where CP is the control point for the spline, P is the
center of the Empty Cell in which the involved edge

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

(a) (b)

Fig. 10. (a) Before node adjustment, some nodes acci-
dentally locate at the border of their Node Cells and this
may reduce the effectiveness and niceness of the bundled
edges. (b) After adjusting the nodes slightly toward their
Node Cells’ center respectively, this problem is relieved.

will be bundled, P ′ is the projection point of P on the
involved edge in straight-line style, U is the threshold
used in constructing the quadtree, Lb is the width of
the Empty Cell in which the part of curved-edge will
be bundled, and �P ′P is the vector from P ′ to P . Note
that Lb may be either larger than or less than U , and
in the latter case CP is located beyond P on the other
side of the Empty Cell. This was a deliberate design
choice so that, if the cell is small, we do not limit the
control points to be located in a crowded area. After
calculating a control point for a bundled edge, it is
added into the edge’s list of control points. Then, the
list of control points is sorted by their projections on
the original straight-line edge, which aligns the control
points in the correct sequence for drawing a smooth
spline.

The quadtree decomposes the two-dimensional space
into adaptable cells, and the width of each cell depends
on the distribution of the nodes, which makes the width
of each Empty Cell variable according to the area of free
regions as shown in Fig. 9. If the width of an Empty
Cell is large, then any edge bundled in this region has
a higher degree of freedom, and the sparsely bundled
edges are easier to visually separate as a result. On the
contrary, if the width of one Empty Cell is small, these
edges should be tightly bundled in order to prevent
further edge-ambiguity problems. The term U/(U + Lb)
in Eq. (2) provides this control feature.

3.5 Rendering
In Sec. 3.3 and 3.4, we introduced how to determine
the control point(s) for each straight-line edge, so that
inappropriate overlapping and nearness problems are
avoided by bundling related edges together. To represent
the bundled edges, each edge is forced to pass through
all of its control points. In some cases, a node may be
too close to the boundary of its Node Cell, which could
lead to proximity ambiguity problems. To alleviate this
problem, we slightly adjust those nodes’ positions by
displacing it to the mid-point of its original position

(a) (b) (c)

Fig. 11. (a) Two edges are bundled together in the solid-
black Empty Cells. (b) The curvature of the bundled edges
changes dramatically due to the square cells. (c) After
removing some unnecessary control points, the problem
is alleviated.

(a) (b) (c)

Fig. 12. (a) High-degree nodes gathered in the center
cause the edge-congestion and edge-ambiguity prob-
lems. (b) The detail-on-demand user interface adopts the
lasso selection tool that allows users to create a selection
by drawing free-hand. (c) After drawing free-hand with
the lasso selection tool, connected nodes in the area are
combined together to make the region clean.

(a) (b) (c)

Fig. 13. An interactive way to reveal individual relations
of the combined nodes and the outer ones. The detail
relationships can be understood and the edge-congestion
problem is significantly relieved.

and the center of its Node Cell. Fig. 10 shows the nodes’
positions before and after the node displacement. Fur-
thermore, the nature of edge-bundling causes an edge-
overlap problem. To discriminate bundled edges apart,
they are drawn with 50% transparency, which helps to
reveal the underlying patterns.

Using square cells for space partitioning simplifies im-
plementation and computation time. However, in some
cases, detecting the territory of edges within square

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

Fig. 14. Our system shows the global view of the public coauthorship data compiled by Newman [33] (left). Users can
interactively explore the information in the detail-view (right).

cells causes an aliasing problem, and the bundled edges
would tend to over-fit the square cells. For example,
as shown in Fig. 11(a), if two edges pass through the
same Empty Cell ECi, located on the left-side of their
common node, and another Empty Cell ECj , located at
the lower-left-side of the common node, these two edges
will be bundled together in both Empty Cells according
to our edge-bundling mechanism. However, the result in
Fig. 11(b) shows that our method dramatically changes
the curvature of the two edges in such a situation. To
avoid this kind of zigzag problem, every edge’s control
points are examined before drawing. For each control
point CPi, we determine if the previous control point
CPi−1 and the next control point CPi+1 are located in its
8-adjacent neighboring cells or not. If CPi−1 and CPi+1

are located in its 8-adjacent neighborhood, the control
point CPi is removed from the edge’s control-point list
to avoid the zigzag problem. Fig. 11(c) illustrates the
result of this refinement step after it is applied to a set
of control points.

3.6 Interaction
In our graph visualization system, an interactive detail-
on-demand mechanism is utilized to provide a compre-
hensible visualization for dealing with the graphs or net-
works that contain small-world characteristics [7], which
often exist in relational datasets such as social networks,
bibliography reference data, software structure data, etc.
Graphs or networks with small-world characteristics
usually have many high-degree nodes gathering in a few
local regions, which also cause short edges when com-
pared with random graphs of the same scale. The high-
degree clustering makes the graphs or networks incom-
prehensible. Hence, we introduce a detail-on-demand
mechanism that allows users to interactively modify

the visual representation of the clustered, short-edged
subgraphs without losing their underlying relationships.
The users may modify the distribution of settings via an
interactive user interface to obtain the desired results as
shown in Fig. 12.

During the interaction process, we provide the lasso
selection tool that allows a user to create a selection
by drawing free-hand. For example, if a user wants a
local region like Fig. 12(a) to be more abstract, he or
she can simply use the lasso tool to make the region
sparser by drawing free-hand as shown in Fig. 12(b). The
system then merges connected nodes in the area into a
larger meta node, applys a simple graph layout to its
children, and converges their external edges, as shown
in Fig. 12(c). On the contrary, the user can also make the
region denser if local details need to be seen. If a meta
node is assigned for release, its node children will be
freed to their original subgraphs.

As shown in Fig. 12(c), a circular layout is used to
show the subgraph contained within a meta node, and
the meta node may also be combined by another higher-
level meta node if they meet the combining criterion
under the same cell. Fig. 13(a) illustrates the result of
a two-layer combination. Furthermore, if the user wants
to visualize the details of one child node inside a meta
node, he or she can click to highlight it in the simplified
subgraph layout as shown in Fig. 13(b) and Fig. 13(c).

4 RESULTS
To demonstrate the effectiveness of our method at reliev-
ing the edge-ambiguity and edge-congestion problems
in the detail-views, we show the layout with a public
coauthorship data compiled by Newman [33]. The data
contains a coauthorship network of network theory and
experiment field. There are totally 1,589 vertices and

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

(a) (b)

Fig. 15. (a) The graph contains a surprisingly large
number (about 10) of edge-ambiguities in a relatively
small region. (b) Our result.

(a) (b)

Fig. 16. (a) The node in the center has high-degree
of connections. The edges of this node tend to be in
similar directions and acute angles, which make these
edges hard to be traced and read. (b) After bundling the
edges together with less similarity of edge directions, the
bundled edges are easier to be discriminated and hence
the edge-ambiguity problem is relieved.

2,742 edges in the network. We use the data to show how
our method deals with the edge-congestion problems
formed by completely connected subgraphs and the sub-
graphs with high-degree nodes in local regions. We also
compare our method with previous methods [3] [5] [6].
Finally, we show some snapshots of manipulating the
graphs with our interactive user interface. The interface
allows us to modify the detail-level of the graphs in
order to alleviate the degree of clutter.

Our method scales well with several hundreds of
nodes. It can provide realtime interaction on a laptop PC
with an Intel Core 2 Duo Mobile T5500 1.66 GHz CPU
and 2GB memory. Fig. 14 shows a global view and a local
view of a coauthorship data. Since our approach mainly
focuses on the accuracy of the topology in the detail-
view, we therefore show some more results of the detail-
view in the following. Fig. 15 and Fig. 16 show the side-
by-side comparisons of the original layouts and our own
results in a local area. Compared to the original edge-
layout in the straight-line style, the effects of relieving
the edge-ambiguity problem are clear. By considering

(a) (b)

Fig. 17. The result of the coauthorship data using (a)
force-directed edge bundling [6] and (b) our method.

(a) (b)

Fig. 18. The comparison of (a) energy-based hierarchical
edge clustering [5] and (b) our method.

the perception issues related to decreasing the edge-
crossings and smooth edge turning, our method is able
to enhance the readability of the curved-edge layout. The
improved edge-layout helps users to easily understand
the correct relationship between individual nodes, and
no user interaction is needed to reveal the actual rela-
tions on the whole display space. Relational datasets,
in practice, often contain high-degree nodes gathering
in some local regions, and this phenomenon results in
dense cluttered edges and numerous edges pointing to a
few common nodes (Fig. 16). The visual clutter caused by
these kinds of dense edges can be relieved by bundling
them together. As our results show, compared to the
straight-edges, the results of bundling edges together
frees a significant portion of space, which improves
visual discrimination of edges, and the bundled edges
tend to decrease the number of edge-crossings, which
are common in the straight-line edge-layout.

We compare our result with [6] [5] [3] as shown in
Fig. 17, 18, and 19 respectively. From the comparison,
the bundling of the force-directed method [6] results
in more ambiguity. Some unrelated edges are bundled
together and thus users cannot figure out the accurate
topology of the network. Although the force-directed
edge bundling introduces the compatibility measures to
prevent incompatible edges to be bundled, two unrelated
but compatible edges are still probably bundled (i.e.,
two close and parallel edges). Instead, our approach
bundles only the edges which share a common node.
In addition, the involved edges are curved when am-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

11

(a) (b)

Fig. 19. The comparison of (a) controllable and progres-
sive edge clustering (without control points) [3] and (b)
our method.

(a) (b)

Fig. 20. (a) The subgraph has serious problems of
edge-congestion and edge-crossings. (b) The simplified
subgraphs generated by our method.

biguity happens. Therefore, our approach can provide a
more accurate visualization while exploring the network
in the detail-view. The energy-based hierarchical edge
clustering method [5] introduces the ambiguity prob-
lem(Fig. 18) along the edges. Many edges cross at the
same points, therefore it’s not easy to figure out where
these edges go. Our approach can avoid this problem.
Fig. 19 shows that the controllable and progressive edge-
clustering approach [3] handles the ambiguity problem
near nodes in a similar fashion to our method. However,
their approach would bundles unrelated edges, and
therefore makes the edges ambiguous. On the contrary,
our approach prevent such bundles and make the visu-
alization more accurate.

In the regions with densely packed edges, a simplified
subgraph layout can be generated by combining the
selected nodes based on user preference. As shown in
Fig.20, the simplified subgraphs, when compared to
the original subgraphs, have a higher degree of edge-
convergence, which makes them easier to read and
comprehend while still conveying the relations between
combined nodes.

Individual relations between the child nodes that are
inside the meta node and the nodes outside are lost
by the simplification method. Nevertheless, our method
provides an interactive mechanism that allows users to
highlight the nodes of interest, which in turn highlights

(a) (b)

(c) (d)

Fig. 21. The interaction for highlighting the connected
edges and nodes provides the ability to reveal individual
relations between the combined nodes within the meta
node and its outer nodes. A user can just move the mouse
cursor to the node in which the user is interested, and all
connected edges and nodes will be highlighted with light-
green color to reveal their individual relations.

the nodes’ connected edges and the neighboring nodes.
As shown in Fig. 21, the relations between the nodes
inside the meta node and the nodes outside are high-
lighted according to which outside node is in focus. The
relations between the nodes outside are also highlighted
to ease comprehension.

5 DISCUSSION
5.1 Excessive Edge Bends in Local Regions
In some cases, if the nodes in a small region are highly
connected to one another, the subgraphs suffer from
numerous overlaps between the nodes and edges, and
this problem can cause the relations to be misrepresented
and confusing. Although our method can relieve the
edge-ambiguity problems for this kind of subgraphs,
it may cause frequent edge-bends in a small region as
shown in Fig. 22. Frequent, sharp turns can sometimes
make tracing edges a difficult task for users.

5.2 Ambiguity Avoidance and Edge Bundling
Edge bundling tries to reduce the visual clutter due
to dense edges by merging some edges together, while
ambiguity avoidance bypasses an edge if it passes un-
related node(s). Actually, avoiding ambiguous bundling

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12

(a) (b)

Fig. 22. (a) The nodes in the subgraph are highly con-
nected to themselves in one small region and the edge
layout in this region has serious problem of excessive
node/edge overlaps gathering in the small region. (b)
Our method does relieve the problem of inappropriate
overlaps. However, there are too many edge-bends in one
small region, and frequent edge-bends make the user
need to take more visual efforts to trace with bended
edges.

also reduces the maximum bundles. This is an impor-
tant issue while performing edge bundling in detail-
view. When exploring information in the detail-view,
users are concerned about the accuracy of the network
topology. Therefore, the ambiguity-avoidance step plays
the role of preventing the bundling step from being
ambiguous. The ambiguity-avoidance step can be turned
off if we want to maximize the bundling. Therefore,
our algorithm can be generalized to overview by only
performing the edge bundling step.

The order of the ambiguity-avoidance step and the
edge-bundling step is also important. In our algorithm,
the ambiguity-avoidance first creates a set of control
points to bypass the edges, and then the edge-bundling
step creates another set of control points to bundle the
related edges. According to the aesthetic rules of line
drawing mentioned before, the number of bends of
the curved-edge should be as small as possible. After
some experiments, we found that the bends of an edge
increase if the edge-bundling step is performed first.
The reason is that if an edge becomes longer, they have
more opportunities to intersect with Node Cells. If the
edge-bundling step is performed first, it creates a set of
polylines and takes them into the ambiguity-avoidance
step. Then, the ambiguity-avoidance step creates more
control points because the total length of these polylines
is larger than or equal to the length of the straight-lines.
As such, we choose to do the ambiguity-avoidance step
before the edge-bundling step for the aesthetic guideline.

5.3 Limitations
Our mechanism for avoiding edge-ambiguity is to route
any involved edge away from unrelated nodes. How-
ever, in some rare cases, if there is no Empty Cell in

either of the two searching regions for an unrelated
node, our method may find no candidate Empty Cell
for solving the edge-ambiguity problem on this node.
In such a case, our method does not force the edge to
pass through farther Empty Cells since such a bypassing
would make the edge become a disturbance in this
graph. Instead, we highlight it with a color to draw the
user’s attention. Another limitation is that compare with
flow map layout [1], which visualizes a tree’s backbone
structure in clear fashion, our approach can’t depict
a graph’s backbone. The reason is that our approach
was designed for bundling general graphs, the bundles
between two edges are done only at the sources or
destinations instead of the entire edges. It is possible to
extend our method to generate results similar to theirs by
bundling more parts of the edges that share a common
source when their destinations are near to each other.

6 CONCLUSION
Our work addresses the fundamental problem of vi-
sualizing locally dense graphs by building on edge-
bundling, a novel technique invented to generate graph
visualizations that are more visually pleasing and better
at conveying structural information when compared to
standard methods. In addition to being ambiguity free,
our method adds to the edge-bundling layout a level of
the control for abstract and detailed views through an
interactive user interface.

Graph visualization remains an on-going area of re-
search. Our method is simple and efficient, and can be
straightforwardly integrated into existing graph visual-
ization systems. For very large graphs, since our method
is based on local operations on the graph, it can co-exist
with most large graph visualization solutions.

We propose a few of future work directions as follows:
(1) Combine confluent graphs [26] with our bundling
technique. With confluent drawing, we can merge cross-
ing edges and draw many graphs in a planar way with-
out causing ambiguity problem. By combining confluent
drawing, we can bundle edges not only at the sources
and destinations of edges, but also in the middle of
edges forming complete bipartite subgraphs. It would
enable more bundling and further reduce visual clutter
while preventing any ambiguity problem. (2) Adaptive
threshold U for space partition. In the cases of failing to
find Empty Cells for ambiguity avoidance, the regions are
always dominated by Node Cells. To reduce such cases,
we could employ a modification to the threshold U by
decreasing its value only in these local regions. The local
regions with smaller threshold U would be decomposed
more exhaustively, such that more Empty Cells would be
identified for solving inappropriate overlaps.

ACKNOWLEDGMENTS
The authors would like to thank the reviewers for their
insightful comments which greatly helped improving the
manuscript, and also to Chad Jones for proof-reading.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

13

REFERENCES

[1] D. Phan, L. Xiao, R. Yeh, P. Hanrahan, and T. Winograd, “Flow
map layout,” in IEEE Information Visualization 2005 Conference
Proceedings, 2005, p. 29.

[2] D. Holten, “Hierarchical edge bundles: Visualization of adjacency
relations in hierarchical data,” IEEE Transactions on Visualization
and Computer Graphics, vol. 12, no. 5, pp. 741–748, 2006, (Informa-
tion Visualization 2006 Conference Proceedings).

[3] H. Qu, H. Zhou, and Y. Wu, “Controllable and progressive edge
clustering for large networks,” in Proceedings of 2006 International
Symposium on Graph Drawing, 2006, pp. 399–404.

[4] W. Cui, H. Zhou, H. Qu, P. C. Wong, and X. Li, “Geometry-based
edge clustering for graph visualization,” IEEE Transactions on
Visualization and Computer Graphics, vol. 14, no. 6, pp. 1277–1284,
2008, (Information Visualization 2008 Conference Proceedings).

[5] H. Zhou, X. Yuan, W. Cui, H. Qu, and B. Chen, “Energy-based
hierarchical edge clustering of graphs,” IEEE Pacific Visualization
Symposium 2008, pp. 55–61, 2008.

[6] D. Holten and J. J. van Wijk, “Force-directed edge bundling for
graph visualization,” Computer Graphics Forum, vol. 28, no. 3, pp.
983–990, 2009, (Proceedings of 2009 Eurographics/IEEE Sympo-
sium on Visualization).

[7] S. Milgram, “The small world problem,” Psychology Today, vol. 1,
no. 1, pp. 60–67, 1967.

[8] D. J. Watts, Small Worlds: The Dynamics of Networks Between Order
and Randomness. Princeton University Press, 1999.

[9] F. van Ham and J. J. van Wijk, “Interactive visualization of small
world graphs,” in IEEE Information Visualization 2004 Conference
Proceedings, 2004, pp. 199–206.

[10] F. van Ham, “Using multilevel call matrices in large software
projects,” in IEEE Information Visualization 2003 Conference Proceed-
ings, 2003, pp. 227–232.

[11] P. Eades, Q. Feng, X. Lin, and H. Nagamochi, “Straight-line draw-
ing algorithms for hierarchical graphs and clustered graphs,”
Algorithmica, vol. 44, no. 1, pp. 1–32, 2006.

[12] Q. Feng, “Algorithms for drawing clustered graphs,” Ph.D. dis-
sertation, University of Newcastle, 1997.

[13] R. A. Becker, S. G. Eick, and A. R. Wilks, “Visualizing network
data,” IEEE Transactions on Visualization and Computer Graphics,
vol. 1, no. 1, pp. 16–28, 1995.

[14] G. W. Furnas, “Generalized fisheye views,” ACM SIGCHI Bulletin,
vol. 17, no. 4, pp. 16–23, 1986.

[15] K. Misue, P. Eades, W. Lai, and K. Sugiyama, “Layout adjustment
and the mental map,” Journal of Visual Languages and Computing,
vol. 6, no. 2, pp. 183–210, 1995.

[16] T. A. Keahey and E. L. Robertson, “Techniques for non-linear
magnification transformations,” in IEEE Information Visualization
1996 Conference Proceedings, 1996, pp. 38–45.

[17] ——, “Nonlinear magnification fields,” in IEEE Information Visu-
alization 1997 Conference Proceedings, 1997, pp. 51–58.

[18] G. W. Furnas, “The FISHEYE view: a new look at structured
files,” in Readings in information visualization: using vision to think.
Morgan Kaufmann Publishers, 1999, pp. 312–330.

[19] D. Schaffer, Z. Zuo, S. Greenberg, L. Bartram, J. Dill, S. Dubs,
and M. Roseman, “Navigating hierarchically clustered networks
through fisheye and full-zoom methods,” ACM Transactions on
Computer-Human Interaction, vol. 3, no. 2, pp. 162–188, 1996.

[20] M. Sarkar and M. H. Brown, “Graphical fisheye views of graphs,”
in ACM CHI 1992 Conference Proceedings, 1992, pp. 83–91.

[21] Y. K. Leung and M. D. Apperley, “A review and taxonomy of
distortion-oriented presentation techniques,” ACM Transactions on
Computer-Human Interaction, vol. 1, no. 2, pp. 126–160, 1994.

[22] N. Wong, S. Carpendale, and S. Greenberg, “Edgelens: An inter-
active method for managing edge congestion in graphs,” in IEEE
Information Visualization 2003 Conference Proceedings, 2003, pp. 51–
58.

[23] N. Wong and S. Carpendale, “Using edge plucking for interactive
graph exploration,” in IEEE Information Visualization 2005 Poster
Compendium, 2005.

[24] T. Dwyer, K. Marriott, and M. Wybrow, “Topology preserving
constrained graph layout,” in Proceedings of 2008 International
Symposium on Graph Drawing, 2008, pp. 230–241.

[25] M. S. T. Carpendale and X. Rong, “Examining edge congestion,”
in ACM CHI 2001 Extended Abstracts, 2001, pp. 115–116.

[26] M. Dickerson, M. T. Goodrich, and J. Y. Meng, “Confluent
drawings: Visualizing non-planar diagrams in a planar way,”
in Proceedings of 2003 International Symposium on Graph Drawing,
2003, pp. 1–12.

[27] P. Eades and R. Tamassia, “Algorithms for drawing graphs: An
annotated bibliography,” Tech. Rep., 1988.

[28] I. Herman, G. Melançon, and M. Scott Marshall, “Visualiation
and navigation in information visualization: A survey,” IEEE
Transactions on Visualization and Computer Graphics, vol. 6, no. 1,
pp. 24–43, 2000.

[29] H. Samet, “The quadtree and related hierarchical data structures,”
ACM Computing Surveys, vol. 16, no. 2, pp. 187–260, 1984.

[30] J. Barnes and P. Hut, “A hierarchical O(N log N) force-calculation
algorithm,” Nature, vol. 324, no. 6096, pp. 446–449, 1986.

[31] H. C. Purchase, “Which aesthetic has the greatest effect on human
understanding?” in Proceedings of 1997 International Symposium on
Graph Drawing, 1997, pp. 248–261.

[32] C. Ware, H. Purchase, L. Colpoys, and M. McGill, “Cognitive mea-
surements of graph aesthetics,” Information Visualization, vol. 1,
no. 2, pp. 103–110, 2002.

[33] M. E. J. Newman, “Finding community structure in networks
using the eigenvectors of matrices,” Physical Review E, vol. 74,
no. 3, p. 036104, 2006.

Sheng-Jie Luo received the B.S. and M.S. degrees in Information
Management from the National Taiwan University, Taipei, in 2007 and
2009, respectively. He is currently a Ph.D. candidate in the Graduate
Institute of Networking and Multimedia of the National Taiwan University.
His research interests are mainly for image processing, information
visualization, and human-computer interaction.

Chun-Liang Liu received the B.S. and M.S. degrees in Information
Management from the National Taiwan University, Taipei, in 2007 and
2009, respectively. His research interests are mainly for information
visualization.

Bing-Yu Chen received the B.S. and M.S. degrees in Computer Science
and Information Engineering from the National Taiwan University, Taipei,
in 1995 and 1997, respectively, and received the Ph.D. degree in
Information Science from the University of Tokyo, Japan, in 2003. He
is currently an associate professor in the Department of Information
Management, the Department of Computer Science and Information
Engineering, and the Graduate Institute of Networking and Multimedia
of the National Taiwan University. His research interests are mainly for
computer graphics, image and video processing, and human-computer
interaction. He is a member of the ACM, ACM SIGGRAPH, Eurograph-
ics, IEEE, IEICE, IICM, and IPPR.

Kwan-Liu Ma received the Ph.D. degree in computer science from the
University of Utah in 1993. He is a professor of computer science at
the University of California, Davis, and he directs the DOE SciDAC
Institute for Ultrascale Visualization. His research interests include vi-
sualization, high-performance computing, and user interface design. He
received the US National Science Foundation (NSF) PECASE Award in
2000, the Schlumberger Foundation Technical Award in 2001, and the
UC Davis College of Engineerings Outstanding Mid-Career Research
Faculty Award in 2007. He is the paper chair of the IEEE Visualization
2009 Conference. He also serves on the editorial boards of the IEEE
Computer Graphics and Applications and the IEEE Transactions on
Visualization and Graphics. He is a senior member of the IEEE.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

