
Published by the IEEE Computer Society	 0272-1716/10/$26.00 © 2010 IEEE	 IEEE Computer Graphics and Applications� 61

Feature Article

AniViz: A Template-Based
Animation Tool for Volume
Visualization
Hiroshi Akiba, Chaoli Wang, and Kwan-Liu Ma ■ University of California, Davis

Visualization is a tool for both exploration
and communication. Whereas interactive
visualization is the key to insightful explo-

ration, animation can effectively convey a com-
plex process or structure. In particular, animation
provides a powerful means for illustrating objects’
evolution and interaction in a complex environ-
ment. It lets us observe how an object changes its
shape, size, position, and spatial relationship to
other objects over time.

Despite the extensive use of animation to ef-
fectively present information, existing data vi-
sualization software systems provide limited
support for making animations. Some more help-
ful systems let users specify keyframes and then
interpolate between the keyframes to create a se-
quence. For example, Anima is a keyframe-based
system that produces animation sequences for
scientific visualizations.1 It combines a simula-
tion with light effects, camera settings, and geo-
metric transformations.

However, even with such support, nonexpert
users, such as application scientists, might have
difficulty specifying and managing keyframes. De-
riving a sequence of desired keyframes is a pains-
taking process entailing much trial and error.
This issue becomes more critical for visualizing
time-varying, multivariate volume data, because
scientists must consider a larger parameter space.
Surprisingly, researchers haven’t done much to im-
prove this situation.

To help alleviate this problem, we developed Ani
Viz—a tool for making visualization animations of
time-varying, multivariate volume data. With it,

users can create an animation sequence by defin-
ing instances from motion templates and then ma-
nipulating and combining those instances. When
integrated into a visualization system, AniViz lets
scientists create an animation while visualizing and
exploring their data. This is different from creating
an animation with a postprocess-
ing tool using a set of pregenerated
keyframes, which significantly
limits what scientists can create.
The freedom to create and blend
different effects by operating
on different instances encour-
ages expressiveness, leading to
animation results that scientists
couldn’t easily create with exist-
ing visualization systems (see the
“Animation Support in Visualiza-
tion Systems” sidebar).

From Computer Animation
to AniViz
Our research is inspired by well-
established computer animation R&D and increas-
ing demands from scientific collaborators for better
animation support. In computer animation, you
can perform motion synthesis by defining motion
primitives, such as walk, run, or jump, and then
assembling animation frames from those primi-
tives.2 Moreover, a significant advance in anima-
tion is nonlinear animation (NLA). Offered by
many packages such as Autodesk 3ds Max, Au-
todesk Maya, and Softimage, NLA lets animators
create animation beyond keyframes by letting them

AniViz is an animation tool
following two principles.
First, it’s desirable to directly
turn the results of data
exploration and visualization
into animation content.
Second, users can create a
complex animation sequence
by combining several simple
effects. Such effects, and
operators to combine them,
are fine-tuned via an intuitive
user interface.

62	 September/October 2010

Feature Article

combine, mix, and blend motions to produce en-
tirely new animations.

Analogously, we define primitives (which we call
templates) and operations to create animations for

scientific visualization. The templates cover anima-
tion techniques commonly used in scientific visual-
ization. We derived them by examining animations
typically made for research presentations, science
exhibitions, and instructions.3–8 For instance, us-
ing our technique, you can easily create a video like
the one NASA scientists created for Tropical Storm
Edouard9 by combining templates for spatial explo-
ration and transfer-function exploration with an
operator for blending parameter spaces.

AniViz Basics
In AniViz, we classify a list of motion types; each
type corresponds to a template, which consists of a
set of visualization parameters. Once the user has
specified the parameter values, a template becomes
an instance representing a piece of visualization
content. (The relation between template and in-
stance is analogous to that of class and object in
object-oriented programming.) We chose this de-
sign because we prefer an intuitive way to specify
animation content but also want a flexible, exten-
sible approach that lets users easily construct and
customize their animations. To connect instances,
AniViz provides a set of operators.

Templates and Instances
Table 1 shows some volume visualization tem-
plates. The overview template gives users an over-

Most visualization systems provide some animation
support. For example, VisIt adopts the keyframe ap-

proach.1 Users record a session by storing keyframe param-
eters into files; they then create movies from session files by
specifying movie parameters through a GUI or command-
line interface. This approach, however, doesn’t allow intui-
tive specification of animation content at the semantic level.

ParaView also uses the keyframe approach; it provides
an animation panel with VCR-like buttons for animation
playback.2 ParaView’s track editor lets users easily cre-
ate, delete, or adjust individual keyframes. This function
is similar to many video-editing software tools and our
AniViz interface (see the main article).

AVS/Express (Application Visualization System/Express)
lets users develop a keyframe animation using an animator
module.3 Users can set the properties of module parameters
to determine which parameters of the view are interpolated
to create the animation.

EnSight provides basic functions to export rendered im-
ages to an animation.4 It includes EnVe, a general-purpose
animation postprocessing tool that splices a series of images
or animation files to generate a new animation. EnSight also
uses keyframe animations. Users can control the movement

through or around the model and can control what entities
the animation shows. In addition, EnSight supports com-
plex keyframe operations such as spline camera control.

A major difference between these visualization systems
and AniViz is the expressive power it offers. Users can
create animations not only through keyframes but also by
using templates, instances, and operators to specify se-
mantic content during data exploration and visualization.

References
	 1.	 H. Childs et al., “A Contract Based System for Large Data

Visualization,” Proc. 2005 IEEE Conf. Visualization (VIS 05),

IEEE CS Press, 2005, pp. 191–198.

	 2.	 C.C. Law, A. Henderson, and J. Ahrens, “An Application

Architecture for Large Data Visualization: A Case Study,” Proc.

IEEE Symp. Parallel and Large-Data Visualization and Graphics,

IEEE CS Press, 2001, pp. 125–128.

	 3.	 H.D. Lord, “Improving the Application Development Process

with Modular Visualization Environments,” ACM Siggraph

Computer Graphics, vol. 29, no. 2, 1995, pp. 10–12.

	 4.	 “EnSight Tutorials,” EnSight, 2010; www.ensight.com/tutorials.

html.

Animation Support in Visualization Systems

Table 1. Some templates for creating animations to visualize time-
varying, multivariate volume data.

Template Description

Overview Animate through a certain set of visualization
parameters (spatial, temporal, variable, or transfer
function) with a default path or scheme.

Spatial exploration Interpolate the camera parameter between
camera parameters c1 and c2, using an
interpolation function fc.

Temporal exploration Animate time steps between ts1 and ts2 with a
playback function ft.

Variable exploration Change a variable from v1 to v2 with a blending
function fv.

Transfer-function
exploration

Interpolate the transfer function between tf1 and
tf2 with an interpolation function ftf .

Highlighting Change the transfer function tf, the lighting
parameter l, or the camera parameter c of objects
of interest with a periodic function fp.

Slicing Change a slicer’s position and orientation with
texture tex mapped onto it.

Image Blend an instance with an image frame to provide
the context.

Caption/annotation Add captions before an instance, or add
annotations on certain frames of an instance.

	 IEEE Computer Graphics and Applications� 63

all impression of the data. The spatial-exploration,
temporal-exploration, variable-exploration, and
transfer-function-exploration templates let users
customize the parameter sets. The highlighting
template is useful for multivariate-data visualiza-
tion in which users animate one variable’s opacity
and simultaneously observe that variable’s rela-
tionships with other variables. The slicing template
helps users observe internal structures by cutting
through the volume. Users can superimpose the
image template with other instances to display the
context. Finally, with the caption/annotation tem-
plate, users can provide transitions between differ-
ent pieces of animation content or explain the data.

This template-based design isn’t limited to those
example templates. It’s flexible enough to incor-
porate state-of-the-art animation-based visual-
ization schemes (see the “Animation-Enhanced
Visualization” sidebar).

Users can create multiple instances from one
common template, each having a different set of
parameter values. They can also opt to directly
specify keyframes in the traditional way. From the
keyframe and animation context, AniViz can au-
tomatically infer what types of templates and in-
stances these keyframes correspond to. Users can
edit instances through the user interface, which
we describe later.

Operators
AniViz uses three types of operators.

Parameter-space blending. This operator creates in-
termediate frames between two instances I1 and I2
by interpolating their respective parameters. If I1
and I2 don’t overlap along the time axis, we gener-
ate intermediate frames by interpolating the pa-
rameters of the last frame of I1 and the first frame
of I2. Otherwise, we generate intermediate frames
by interpolating the parameters of their corre-
sponding frames.

Figure 1 illustrates parameter-space blending
with a computed-tomography head data set. This
operator reveals the content buried between the
sets of parameters for two instances, thus gen-
erating novel image frames. When we apply this
operator to transfer-function-related instances, we
can interpolate transfer functions in several ways.
For a 1D transfer function, we can treat the color
and opacity transfer functions as four arrays of
RGBA components each and linearly interpolate
the two sets of four arrays. Or, we can make a
correspondence between one segment in a transfer
function and another segment in another transfer
function, and interpolate both their positions and
values. The examples in Figure 1 use this scheme.
For example, in Figure 1b, the transfer function

V isualizations frequently use animation. The simplest
form is to play back a time sequence. A more interesting

form is to use animation to enrich visualization or highlight
information. For example, Eric Lum and his colleagues pre-
sented kinetic visualization, which adds animated particles
flowing over the surface of an object to enhance the per-
ception of static objects’ shapes and spatial relationships.1
Carlos Correa and Deborah Silver produced animations
that highlight features or enhance a particular aspect of
a dataset by traversing the volume along a specified path
via a transfer function.2 Jonathan Woodring and Han-Wei
Shen incorporated animation into visualization to highlight
objects in volume data.3 As highlighting mechanisms, they
used positional motion and opacity variation.

Ivan Viola and his colleagues presented a solution for
automatic focusing on features in a volumetric dataset.4
The user selects a focus from a set of predefined features,
and the algorithm automatically determines the most
expressive view of the features. This solution estimates
characteristic viewpoints using mutual information from
information theory. The camera path changes smoothly
by switching the focus from one feature to another.

Konrad Mühler and his colleagues introduced view-
point-selection techniques to enhance animation cre-

ation and interactive exploration in medical-intervention
planning.5 To guide viewpoint selection, they use a list
of parameters such as the unoccluded surface’s size, the
occluding objects’ importance, the preferred region, and
viewpoint stability.

References
	 1.	 E.B. Lum, A. Stompel, and K.-L. Ma, “Kinetic Visualization:

A Technique for Illustrating 3D Shape and Structure,” Proc.

2002 IEEE Conf. Visualization (VIS 2002), IEEE CS Press, 2002,

pp. 435–442.

	 2.	 C.D. Correa and D. Silver, “Dataset Traversal with Motion-

Controlled Transfer Functions,” Proc. 2005 IEEE Conf. Visual

ization (VIS 05), IEEE CS Press, 2005, pp. 359–366.

	 3.	 J. Woodring and H.-W. Shen, “Incorporating Highlighting

Animations into Static Visualizations,” Proc. 2007 IS&T/SPIE

Electronic Imaging Conf., SPIE, 2007, article 649503.

	 4.	 I. Viola et al., “Importance-Driven Focus of Attention,” IEEE

Trans. Visualization and Computer Graphics, vol. 12, no. 5, 2006,

pp. 933–940.

	 5.	 K. Mühler et al., “Viewpoint Selection for Intervention Plan

ning,” Proc. Joint Eurographics/IEEE VGTC Symp. Visualization,

Eurographics, 2007, pp. 267–274.

Animation-Enhanced Visualization

64	 September/October 2010

Feature Article

content from frame f2 gradually fades out as the
transfer function content from frame f3 gradu-
ally fades in. Some special templates that aren’t
derived from the visualization content (such as
the caption or image/annotation template) can’t
be used with this operator.

Image-space blending. This operator creates the
animation content between I1 and I2 by interpo-
lating their respective image frames. Similarly to
parameter-space blending, if I1 and I2 don’t over-
lap along the time axis, we generate intermedi-
ate frames by blending the last frame of I1 and
the first frame of I2. The effect is that the last
frame of I1 gradually fades out as the first frame
of I2 gradually fades in. If I1 and I2 overlap, we
generate intermediate frames by blending their
corresponding frames.

Figures 2 and 3 illustrate image-space blending
with combustion and solar-plume datasets. This

operator is typically used with two instances hav-
ing no clear correspondence. It’s useful when two
frames from each instance carry important fea-
tures that shouldn’t be altered by changing their
respective parameters. This operator’s typical uses
are for fade-out and fade-in effects and for ob-
serving relationships by superimposing frames.
The input could come from two frames of differ-
ent variables (see Figure 2), two frames of differ-
ent time steps (see Figure 3), or one caption and
one rendered frame. You must pay attention when
using this operator and interpreting its results be-
cause image-space blending doesn’t reflect an ac-
tual rendering directly from the data.

Playback. This operator lets users repeatedly loop
through one or more consecutive instances of
interest. This is useful when users want to show
certain motions or focus on something. The user
specifies the number of loops and the playback

TF Overview T

TF Overview Spatial Exploration

(a)

(b) (c)

Opacity

TTF Overrvve vvviii rationral ExploraaaSppattiiaiiieeeeeeeewwwwwwwww iew Spatial Exploration

f1 f2 f3 f4

Scalar value

Figure 1. Two cases of parameter-space blending. (a) Selected frames of transfer-function-exploration and spatial-exploration
instances. (b) In case 1, the two instances don’t overlap; we generate the intermediate frame by interpolating the parameters of frames
f2 and f3. (c) In case 2, the two instances overlap; we generate the intermediate frame by interpolating the parameters of f1 and f4.

	 IEEE Computer Graphics and Applications� 65

type. Playback types include forward, backward, a
combination of both, or more sophisticated non-
linear playback. This operator has no restrictions;
users can apply it to any instance.

The User Interface and Interaction
Figure 4 shows the AniViz interface, which has
three main components. The explorer lets users
interactively explore data sets and define instance

Tempporal v1

Tempporal v2

f2f1

Figure 2. Using image-space blending for fade-out and fade-in effects. The resulting two frames (on the bottom) are generated by
overlaying frames f1 and f2 in the image space. We determine each intermediate frame’s opacity weight by its distances to f1 and f2.

ppe po aTTemporall

Static Image

(a)

(b)

Temporal Static Image

Figure 3. Using image-space blending to examine frames at different time steps. (a) Selected frames of temporal-exploration
and image instances. (b) The results of blending. The two instances overlap; we generate intermediate frames by blending their
corresponding frames. The image instance shows the frame at the last time step, which provides a reference when blended with
the temporal-exploration instance.

66	 September/October 2010

Feature Article

parameters. The mixer lets users assemble multiple
instances and derive an animation’s overall flow.
The viewer gives a preview of the final animation
output and lets users tune instance parameters.

The mixer and viewer resemble the common in-
terface found in general animation or video-editing
software and tools such as Windows Movie Maker,
TechSmith Camtasia Studio, and Ulead VideoStu-
dio. We chose this familiar interface style so that
users can quickly learn to use AniViz by leverag-
ing their experience with other tools that share a
similar layout.

The Explorer
This component (see the top of Figure 4) consists
of a volume renderer, a transfer-function editor,
and other parameter-specification windows. The
transfer-function editor is a simplified trispace
interface10 that lets users explore the data in spa-
tial, temporal, and variable domains in a guided
fashion. The explorer includes a time-step slider
and widgets for setting other parameters. The ex-
plorer presented here is just one design example; it
can be augmented or replaced with other designs
if necessary.

The Mixer
This component (see the bottom of Figure 4) in-
cludes a template chooser and multiple tracks

stacked along the vertical axis. The horizontal axis
indicates the actual animation time. An instance
appears as a colored rectangle, which we call an
instance widget. Different-colored instance widgets
indicate different template types. Users can place
an instance widget along any track in the mixer by
dragging and dropping a template from the tem-
plate chooser. They can then resize the widgets,
reposition them, or remove them from the tracks.
The widgets’ positions explicitly indicate their or-
der in the final animation.

More important, as Figures 1, 2, and 3 illustrate,
the instance widgets’ positions also imply how the
instances are combined. If two widgets are in the
same track or are offset by half of the track’s height
along the vertical axis, the mixer uses parameter-
space blending. (The offset avoids occlusion because
instance widgets could have overlapped each other
entirely; see the highlighting instance in Figure 4.)
If two instance widgets are in different tracks, the
mixer uses image-space blending.

The Viewer
As the user organizes instance widgets in the
mixer, the viewer (see the middle of Figure 4) sum-
marizes the animation result. The viewer consists
of keys (thumbnail images) and their correspond-
ing parameter widgets, along with an animation
time indicator. Each key shows an actual frame

Explorer

Viewer

Mixer

Transfer function editorVolume renderer

Parameter widgetsKeys

Template chooser

Tracks
Instance widgets

Variable 1

Various parameter windows

Variable 2

Variable 3

Current timeline

Figure 4. The AniViz interface comprises the explorer (top), including a volume renderer, a transfer function editor, and various
parameter specification windows; the viewer (middle); and the mixer (bottom), including multiple tracks and a template chooser.

	 IEEE Computer Graphics and Applications� 67

of the final animation. The keys are selected either
automatically whenever the motion type changes or
manually, when the user explicitly sets them. The
viewer serves not only as a preview for the anima-
tion but also as an editor for individual instances.
The user can modify instances’ parameter values
anytime while creating an animation.

Parameter widgets show the change of param-
eters between two consecutive keys. If more than
one parameter changed between two keys, their
parameter widgets are stacked together. A parame-
ter widget is spherical with a name label. Similarly
to instance widgets, different-colored parameter
widgets indicate different parameter types.

Using intuitive drag-and-drop interaction, us-
ers can insert a new key or merge two keys (see
Figure 5). To create a key, users separate a stack
of parameter widgets into two or more groups. To
merge keys, they stack one parameter widget back
on top of another.

Animation Time Allocation
Each animation has a certain time budget. We
allocate time to each piece of animation content
according to its importance or complexity. A key’s
position in the viewer indicates when it appears in
the actual animation sequence. To adjust the dura-
tion between keys, users can manually move a key
by dragging it along the horizontal axis.

Alternatively, AniViz can automatically allocate
animation time for all the keys. By allocating more

time to complex scenes and less to uniform scenes,
AniViz can present information within the bud-
get and avoid abrupt changes or flickering in the
animation.

To quantify the information that changes be-
tween two keys, we use the following three dis-
tance measures.

The image distance is the summation of pixel-
wise differences between two consecutive keys:

d i i u j u j
j

M

1 1 2 1 2

1

,()= ()− ()
=
∑ � �

,

where �u j1 () and �u j2 () are the CIELUV color vec-
tors at the jth pixel in images i1 and i2, respectively.
M is the number of pixels in the image. �x denotes
the L2 norm of �x . We use the CIELUV space be-
cause the distance calculated in it roughly approxi-
mates the perceived color difference.11

The parameter distance is the Euclidean distance
calculated in the high-dimensional parameter
space, with each parameter carrying a user-specified
weight:

d p p w w p p w p pn n n2 1 2 1 11 21
2

1 2
2� � �, ,()= −() + −()+… ,

where 0 < w1, w2, …, wn < 1 and w1 + w2 + … +
wn = 1. �p1 and �p2 are the parameter vectors as-
sociated with the two keys. n is the number of
dimensions in both vectors. wi is the weight for
the parameter pair (p1i, p2i), 1 ≤ i ≤ n.

(a)

(b)

Rot

RotRoTF

TF

Figure 5. Drag-and-drop interaction with parameter widgets to (a) insert a new key or (b) merge two keys,
illustrated with a bonsai data set. “Rot” means “rotate” and “TF” means “transfer function.” This interaction
associated with expanding and collapsing visual feedback lets the user easily fine-tune the animation parameters.

68	 September/October 2010

Feature Article

The third measure is the Kullback-Leibler (KL)
distance. Let h1 and h2 denote the probability den-
sity functions of pixel values in the two keys. We
calculate the KL distance (also called the relative
entropy) as

d h h h i
h i
h ii

B

3 1 2 1
1

21

�()= () ()
()=

∑ log ,

where h1(i) and h2(i) are the normalized heights of
the ith histogram bin, and B is the number of bins
in the histogram of the keys.

The inputs to each of the three measures are
quite different. The image distance takes the ac-
tual pixel values, the parameter distance takes the
parameters for deriving the image frames, and the
KL distance takes the image histograms.

Each measure has its own advantages and dis-
advantages. For example, the KL distance captures
the overall change of two image histograms but is
rotation invariant (when the rotation axis is per-
pendicular to the image plane). However, we can
use the image distance to capture the difference
introduced by rotation.

So, a better way to use these three measures is to
take a hybrid distance heuristically as the weighted
sum of the three distances:

d = c1d1 + c2d2 + c3d3,� (1)

where 0 ≤ c1, c2, c3 ≤ 1 and c1 + c2 + c3 = 1. The
animation time allocated between keys is propor-
tional to their hybrid distances. In this way, our
solution ensures that the animation content is
evenly distributed over the animation sequence.

Case Studies
We demonstrated AniViz with three case studies:
one with an MRI head dataset, one with a time-
varying, multivariate hurricane dataset, and one
with a time-varying combustion dataset. Our sys-
tem used a GPU-accelerated volume renderer to

enable interactive data exploration. We performed
all three studies on a desktop PC with a 3.2-GHz
Intel Pentium 4 processor, 2 Gbytes of main mem-
ory, and an Nvidia GeForce 7900 GTX graphics
card with 512 Mbytes of video memory.

MRI Head Data
This case study (see Figure 6) focused on high-
lighting a brain tumor. The animation comprised
four pieces of animation content. The first was a
spatial overview (usually the first step for explor-
ing data) that rotated the volume data 360 degrees
along the y-axis. The second piece was a spatial
exploration in which the user customized the view.
The third was a parameter-space blending between
a spatial exploration and a slicing, which revealed
the tumor’s inner structure. The user played back
this piece twice to repeatedly observe the spatial
relationship between the tumor and head. The last
piece was a parameter-space blending between a
spatial exploration and a highlighting, which
highlighted the tumor by varying the opacity while
zooming in on the region of interest.

To specify the types of playback and number
of loops for a group of instances, the user right-
clicked on the group and selected the types and
the number from a popup menu. The spatial over-
view, three spatial explorations, and slicing in-
stance came from direct keyframe specification in
the traditional way. The highlighting instance was
generated from the template chooser.

Hurricane Data
In this case study (see Figure 7), the animation
comprised five pieces of content. The first was a
caption showing the animation’s content, blended
with a spatial exploration that zoomed in on the
data. The second piece was a temporal exploration
to show early time steps. The third was a variable
overview that browsed through three variables: va-
por, wind speed, and cloud. This overview let the

Figure 6. Highlighting a tumor (rendered in red) in the MRI head data set. This case study used the slicing and highlighting
templates. The vertical timeline indicates the time point for each of the four snapshot frames in the animation.

	 IEEE Computer Graphics and Applications� 69

user clearly examine each variable in detail, while
maintaining each variable’s context. The fourth
piece was a temporal exploration to show later
time steps; the fifth was a spatial exploration that
zoomed in on the hurricane’s eye. Furthermore,
the user blended the temporal and spatial explora-
tions with a highlighting of the cloud. Creating
such a complex animation, which normally might
prove difficult without hard-coding all the param-
eters, is easy with AniViz.

Time-Varying Combustion Data
This case study examined animation time alloca-
tion schemes based on the parameter, image, and
KL distance measures. As Figure 8 shows, the pa-
rameter distance allocated much of the time to the
rightmost spatial instance, in which two parame-
ters (rotation and zoom) changed simultaneously.
This wasn’t desirable because other instances re-
ceived a relatively short animation time.

The results improved when we used the image

distance and KL distance because these measures
take into account information content from the
rendered images. However, the image distance
and KL distance allocate a very short time for the
transfer function and slicing instances, respec-
tively, which could also be undesirable.

The hybrid solution yielded the best result be-
cause, as we mentioned before, it more evenly dis-
tributes the information throughout the animation.

Discussion and Future Work
AniViz is valuable for adding animation to volume
visualization, but we could enhance it in several
ways to make it even more useful.

AniViz’s object-oriented design makes it easily
extensible. Besides volume visualization, AniViz
could work with other rendering algorithms, such
as surface rendering or geometric-model render-
ing. For these new applications, we’ll evaluate
other appropriate animation functionalities and
add them as templates.

Vapor
Wind speed
Cloud

Figure 7. Exploration in the temporal and variable domains of the hurricane dataset. This case study examined three variables:
vapor, wind speed, and cloud. It used both parameter-space blending and image-space blending.

(a)

(b)

Uniform
distribution

Parameter
distance

Image
distance

KL distance

Hybrid

Figure 8. Animation time allocation for the combustion dataset. (a) The uniform time allocation result with the corresponding
viewer display, for reference. (b) The instance widgets resized on the basis of allocated time for the parameter, image, and hybrid
distances. The hybrid solution yielded the best result because it more evenly distributed the information throughout the animation.

70	 September/October 2010

Feature Article

AniViz should also let users define their own
templates. For example, if a user determined that
combining temporal exploration and highlighting
was effective and useful, he or she could define a
new template including these two and use it directly.
Such flexibility would let users familiar with AniViz
customize the system to better meet their needs.

In AniViz, users can use keyboard shortcuts to
save or load instances. It could also have a menu-
like interface that lets users save and load in-
stances they create as projects. Furthermore, we
could extend AniViz to let users import and export
templates and instances. In this way, a group of
scientists could collect and share templates or in-
stances from different datasets.

For time-varying, multivariate data up to hun-
dreds of gigabytes, our system on a PC is highly
interactive except when browsing the time series,
which requires intensive disk access. To improve the
performance, we could use prediction, temporal-
space encoding, and data prefetching. As shown
in the videos at www.computer.org/portal/web/
computingnow/cga/videos, specifying and assem-
bling pieces of animation content (instances) nor-
mally takes several minutes. For data of more than
hundreds of gigabytes, we could employ downsam-
pling or multiresolution rendering to reduce the
data to a suitable scale for interactive data explo-
ration and animation content specification and

assembly. The original data, however, could still
be used for high-quality output during the final
animation production.

Finally, AniViz should be able to output more than
just animation. On the basis of the key information
attached to instances, the ideal output is multime-
dia, which integrates a wide variety of forms, such
as image, video, text, and sound, for a more compre-
hensive presentation. Some studies on visual media
provide inspiration in this direction (see the “Con-
ceptual Models and Visual Media” sidebar).

Scientists commonly use animation to explain
complex physical phenomena or chemical pro-

cesses. The volume visualization examples we’ve
presented show that AniViz offers scientists expres-
sive power in making animation by using various
options to create in-between frames. Because Ani
Viz is tightly coupled with an interactive visualiza-
tion system, animation can become a by-product
of data exploration. Scientists can play back a
sequence for fine-tuning or simply rearrange it
without leaving the system. Our research shows
the value of advanced animation support for sci-
entists to make sophisticated animation sequences
by themselves. We anticipate future visualization
systems equipped with animation support compa-
rable to AniViz.�

Researchers have explored new models and media to
effectively convey information through visualization.

Stephen Wehrend and Clayton Lewis proposed a taxonomy
of visualization techniques that helps users design applica-
tions according to specific visualization goals.1 Issei Fujishiro
and his colleagues introduced Gadget (Goal-Oriented
Application Design Guidance for Modular Visualization
Environments), an enhanced modular visualization environ-
ment.2 Gadget lets the user design visualization networks
on the basis of the methodologies for classifying visualiza-
tion techniques and for showing visualization examples.

For time-varying-data visualization, Gareth Daniel and
Min Chen introduced video visualization. This technique
extracts meaningful information from original video data-
sets and conveys the information to users through a novel
visual representation.3

Michael Wohlfart and Helwig Hauser introduced the
concept of volume visualization as storytelling.4 Their volu-
metric storytelling process has two phases (story author-
ing and storytelling) that give users greater control of data
presentation. Aidong Lu and Han-Wei Shen presented
an interactive-storyboard approach to observing overall
data content and changes in time-varying volume data.5

By quantifying data differences for automatic selection of
representative time steps, their approach summarizes a
time-varying dataset in an automatic layout with snap-
shot images and paths connecting them to indicate data
relationships.

References
	 1.	 S. Wehrend and C. Lewis, “A Problem-Oriented Classifica

tion of Visualization Techniques,” Proc. 1990 IEEE Conf.

Visualization (VIS 90), IEEE CS Press, 1990, pp. 139–143.

	 2.	 I. Fujishiro et al., “Gadget: Goal-Oriented Application Design

Guidance for Modular Visualization Environments,” Proc.

1997 IEEE Conf. Visualization (VIS 97), IEEE CS Press, 1997,

pp. 245–252.

	 3.	 G. Daniel and M. Chen, “Video Visualization,” Proc. 2003 IEEE

Conf. Visualization (VIS 03), IEEE Press, 2003, pp. 409–416.

	 4.	 M. Wohlfart and H. Hauser, “Story Telling for Presentation

in Volume Visualization,” Proc. Joint Eurographics/IEEE VGTC

Symp. Visualization, Eurographics, 2007, pp. 91–98.

	 5.	 A. Lu and H.-W. Shen, “Interactive Storyboard for Overall

Time-Varying Data Visualization,” Proc. IEEE Pacific Visualiza

tion Symp., IEEE CS Press, 2008, pp. 143–150.

Conceptual Models and Visual Media

	 IEEE Computer Graphics and Applications� 71

Acknowledgments
This research was supported partly by the US National
Science Foundation through grants CCF-0811422,
CCF-0808896, OCI-0749227, OCI-0749217, CNS-
0551727, and OCI-0325934 and by the US De-
partment of Energy through the SciDAC (Scientific
Discovery through Advanced Computing) program
with agreements DE-FC02-06ER25777 and DE-
FG02-08ER54956. We thank the reviewers for their
helpful comments.

References
	 1.	 L. Moltedo and S. Morigi, “Anima: An Interactive

Tool for Scientific Data Animation,” Computer
Graphics Forum, vol. 12, no. 5, 1993, pp. 277–288.

	 2.	 O. Arikan, D.A. Forsyth, and J.F. O’Brien, “Motion
Synthesis from Annotations,” ACM Trans. Graphics,
vol. 22, no. 3, 2003, pp. 402–408.

	 3.	 “Scientific Visualization Studio,” NASA, 2010;
http://svs.gsfc.nasa.gov.

	 4.	 “Featured Visualizations,” Univ. Corp. for Atmo
spheric Research, 2010; www.vets.ucar.edu/vg.

	 5.	 “MPEG Animations,” Oak Ridge Nat’l Lab, 2010;
www.csm.ornl.gov/viz/mpegs.html.

	 6.	 “ASC Visualization Project: Image and Movie Gallery,”
Lawrence Livermore Nat’l Lab, 2010; https://computing.
llnl.gov/vis/images.shtml.

	 7.	 “Featured Animations,” EnSight, 2010; www.ensight.
com/featured-images/animations.html.

	 8.	 J. Clyne et al., “Interactive Desktop Analysis of High
Resolution Simulations: Application to Turbulent Plume
Dynamics and Current Sheet Formation,” New
J. Physics, vol. 9, no. 301, 2007; www.iop.org/EJ/
abstract/1367-2630/9/8/301.

	 9.	 L. Perkins, “Tropical Storm Edouard,” NASA, 2010;
http://svs.gsfc.nasa.gov/vis/a000000/a003500/
a003536/index.html.

	10.	 H. Akiba and K.-L. Ma, “A Tri-space Visualization
Interface for Analyzing Time-Varying Multivariate
Volume Data,” Proc. Joint Eurographics/IEEE VGTC
Symp. Visualization, Eurographics, 2007, pp. 115–122.

	11.	 A.S. Glassner, Principles of Digital Image Synthesis,
vol. 1, Morgan Kaufmann, 1995.

Hiroshi Akiba is a component design engineer at Intel. His
research interests include visualization, user interface design,
and GPU computing. Akiba has a PhD in computer science
from the University of California, Davis. Contact him at
hiroshi.akiba@intel.com.

Chaoli Wang is an assistant professor of computer science
at Michigan Technological University. He previously was a
postdoctoral researcher at the University of California, Davis.
His research focuses on large-scale data analysis and visu-

alization, high-performance computing, and user interfaces
and interaction. Wang has a PhD in computer and informa-
tion science from Ohio State University. He’s a member of
the IEEE. Contact him at chaoliw@mtu.edu.

Kwan-Liu Ma is a professor of computer science at the Uni-
versity of California, Davis and directs the US Department
of Energy’s SciDAC (Scientific Discovery through Advanced
Computing) Institute for Ultrascale Visualization. His re-
search involves visualization, high-performance computing,
and user interface design. Ma has a PhD in computer sci-
ence from the University of Utah. He serves on the editorial
board of IEEE Transactions in Visualization and Com-
puter Graphics and IEEE Computer Graphics and Appli-
cations. He’s a senior member of IEEE and a member of the
ACM. Contact him at ma@cs.ucdavis.edu.

Selected CS articles and columns are also available

for free at http://ComputingNow.computer.org.

LISTEN TO GRADY BOOCH
“On Architecture”

podcast available at http://computingnow.computer.org

