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ABSTRACT

Finding correlations among data is one of the most essential tasks in
many scientific investigations and discoveries. This paper addresses
the issue of creating a static volume classification that summarizes
the correlation connection in time-varying multivariate data sets. In
practice, computing all temporal and spatial correlations for large
3D time-varying multivariate data sets is prohibitively expensive.
We present a sampling-based approach to classifying correlation
patterns. Our sampling scheme consists of three steps: selecting
important samples from the volume, prioritizing distance computa-
tion for sample pairs, and approximating volume-based correlation
with sample-based correlation. We classify sample voxels to pro-
duce static visualization that succinctly summarize the connection
among all correlation volumes with respect to various reference lo-
cations. We also investigate the error introduced by each step of
our sampling scheme in terms of classification accuracy. Domain
scientists participated in this work and helped us select samples and
evaluate results. Our approach is generally applicable to the analy-
sis of other scientific data where correlation study is relevant.

1 INTRODUCTION

In many scientific studies, a primary task is to find connection or
correlation among data. For example, much of climate science in-
volves identifying connections between two or more variables. The
variables of interest might represent ocean temperature and salin-
ity at a single point; ocean temperatures at two different spatial
points; or ocean temperature at one point and time-lagged ocean
salinity at a different point. One way to express such links is to
use a correlation matrix, which measures the strengths of linear
relationships among variables. For 3D atmospheric and oceanic
model data sets, however, the full correlation matrix can be very
large (1017 elements) and difficult or impossible to compute, store,
and visualize in its entirety. Thus, there is a great need for interac-
tive correlation visualization of the data produced from the coupled
ocean atmosphere models. Multivariate techniques such as princi-
pal component analysis (PCA) and canonical correlation analysis
(CCA) are frequently used in climate studies. However, they have
so far proved too cumbersome for use with global high-resolution
data sets in the day-to-day scientific workflow. As such, we focus
on pointwise techniques for cost-effective correlation analysis.

With the increasing power of graphics hardware, it is now pos-
sible for climate scientists to interactively visualize the correlation
for their large multidimensional data sets. For example, given a
user-specified reference location within the volume, the tempera-
ture time series at this location can be correlated with the tempera-
ture time series at all other locations in the volume using the Pear-
son product-moment correlation coefficient, producing a complete,
3D spatial map of correlation coefficients. In this paper, we refer to
such a spatial map as the correlation volume. A correlation volume
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has the same size as the original volume. Whenever the reference
location moves, the correlation volume changes as well.

This paper addresses the issue of creating a succinct volume
classification that summarizes the connection among all correlation
volumes with respect to various reference locations. Let us assume
that a reference location must correspond to a voxel position. Thus,
the number of correlation volumes equals the total number of vox-
els. A brute-force solution takes all correlation volumes as the input
and classifies their corresponding voxels according to their correla-
tion volumes’ distance. For large-scale time-varying multivariate
data, calculating all these correlation volumes and analyzing the
relationships among them is a daunting task. We thus advocate a
sampling-based approach for volume classification in order to re-
duce the computation cost. In particular, this is also the place that
domain knowledge is leveraged in selecting important samples. Our
design provides the scientists with a static view that captures the
essence of correlation relationships; i.e., for all voxels in the same
cluster, their corresponding correlation volumes are similar. This
sampling-based approach enables us to obtain an approximation of
correlation relations in a cost-effective manner, thus pointing out a
scalable solution to investigate large-scale data sets.

Throughout the paper, we place our focus on a climate data set
due to our close contact with the climate scientists. We experiment
with the climate data set to demonstrate the main steps of our cor-
relation sampling, clustering, and visualization. We have applied
our technique to another scientific data set produced from the com-
bustion domain and the results are also presented in this paper. Our
approach is general and may be used to investigate data correlation
in other scientific fields.

2 RELATED WORK

Previous work on multivariate data analysis placed a focus on cor-
relation study. Sauber et al. [16] analyzed correlations in 3D multi-
field scalar data using gradient similarity measure and local corre-
lation coefficient. Gosink et al. [6] performed a localized correla-
tion study where the correlation field is defined as the normalized
dot product between two gradient fields from two variables. Qu et
al. [14] adopted the standard correlation coefficient to calculate the
correlation strengths between different data attributes in weather
data analysis and visualization. Glatter et al. [4] used two-bit cor-
relation to study temporal patterns in large multivariate data. Gu
and Wang [7] studied hierarchical clustering of volumetric samples
based on the similarity of their correlation relation.

Visualizing multivariate relationships is critical for understand-
ing high-dimensional, complex and dynamic multivariate data.
Wong and Bergeron [19] provided an excellent overview of the
work in multidimensional multivariate visualization. Popular vi-
sualization techniques include scatterplot matrix and parallel coor-
dinates. For visualizing multivariate scientific data, Woodring and
Shen [20] presented an interface that uses boolean set operations
for the user to select voxels of interest and combine different vari-
ables together into a single volume for visualization. Sauber et al.
[16] developed the multifield-graph for a complete visualization of
scalar fields and their correlations so that features associated with
multiple fields can be discovered. Qu et al. [14] created a weighted
complete graph to reveal the overall correlation of all data attributes
where the node represents the data attribute and the weight of the
edge between two nodes encodes the strength of correlation. Blaas
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Figure 1: The major steps of our sampling-based correlation classification. Domain knowledge about important regions is utilized for sample
selection. A succinct visualization is achieved through data classification based on correlation distance.

Figure 2: Our sampling scheme consists of (1) selecting important
samples from the volume, (2) choosing sample pairs for distance
matrix computation, and (3) approximating volume-based correlation
with sample-based correlation. The three images on the right are the
sample selection and correlation classification results on a synthe-
sized time-varying data set.

et al. [2] used scatterplots in the high-dimensional multifield feature
space and enabled arbitrary projection where each axis of the re-
sultant scatterplot represents a user-specified feature combination.
Jänicke et al. [9] transformed multivariate data from their attribute
space to a 2D attribute cloud so that points with similar attributes
are located close to each other, which allows intuitive brushing and
making connections to the spatial data. Kehrer et al. [11] lever-
aged interactive climate data exploration techniques to help the user
identify promising hypotheses and narrow down parameters that are
required in the analysis. Sukharev et al. [17] developed interactive
techniques that enable climate scientists to explore correlation rela-
tionships. Their correlation browser permits a scientist to visualize
correlations of a user-selected time series with a gridded data field,
for example, temperatures throughout the world ocean. Such a cor-
relation browser is helpful, but we have to rely on our memory and
cognitive abilities to tie together these relationships similar to how
we view time-varying data [21].

Researchers have leveraged high-performance computing (HPC)
for analyzing the ever-growing multivariate data sets. For example,
Glatter et al. [5] developed a parallel system that supports efficient
visualization of an arbitrary subset of a large multivariate time-
varying data set. The scalability is achieved by using external sort-
ing according to a high-dimensional space-filling curve order in the
attribute space and an efficient M-ary search tree to skip irrelevant
voxels. Hoffman et al. [8] implemented a scalable k-means clus-
tering algorithm in parallel HPC environment for multivariate clus-
ter analysis. Their multivariate spatio-temporal clustering (MSTC)
method was applied across space and through time. Bennett et al.
[1] derived a series of formulas that allow for single-pass, yet nu-
merically robust, pairwise parallel and incremental updates of arbi-

(a) probability distribution

(b) Hilbert curve order

Figure 3: Sample selection and ordering for the climate data set.
(a) the probability functions used for latitude and depth are plat (a
Gaussian function) and pdep (an exponential function), respectively.
The probability assigned to a voxel is plat × pdep. (b) the 1D Hilbert
curve traversal order for 2,000 selected samples (long edges across
oceans are because continents are not sampled). We order 3D sam-
ples along the two axes of the distance matrix so that spatially close
3D samples are likewise close along the 1D axis.

trary order centered statistical moments and comoments. Kendall
et al. [12] developed a system that alleviates I/O bottlenecks in
full-range analysis through advanced I/O methods and enables scale
parallel extraction of salient space-time data features.

Instead of seeking a parallel solution, we take a sampling-based
approach to studying the correlation relationships in large-scale
time-varying data sets by utilizing the fact that the correlation pat-
tern is usually similar for neighboring reference locations. The in-
teractive correlation browser [17] helps the user understand the cor-
relation structure, but it is very difficult for one to detect connec-
tions among all the correlation volumes due to human perception
limitations such as short-term visual memory and the inability to
make precise quantified reasoning. Therefore, we compute correla-
tion volumes at selective sample locations and present a static clas-
sification that summarizes the correlation connections in the data.
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3 OUR APPROACH

3.1 Overview

The major steps of our data classification based on correlation sam-
pling are shown in Figure 1. First of all, we sample voxels from the
volume data in a non-uniform way, taking into account the domain
knowledge provided by the scientists. The sampling is conducted in
a way such that more samples are drawn from regions with higher
importance values. Then, we compute the distance between corre-
lation volumes with respect to different sampling locations. This
corresponds to the steps of sample ordering and distance calcula-
tion in Figure 1. Specifically, we build a 2D distance matrix that
records the correlation distance between all sample pairs. The dis-
tance matrix requires the mapping from 3D locations in the volume
to 1D indices for the matrix’s axis. We utilize the space-filling curve
traversal to order samples so that a better spatial locality can be pre-
served compared with the ordinary scanline order. We also advo-
cate a sampling-based strategy for distance calculation by drawing
more sample pairs from the places that are closer to entries with a
larger distance in the distance matrix. Finally, we perform volume
data classification based on the information stored in the distance
matrix and analyze the errors introduced by our sampling scheme.
Visualizing the classification results yields a static view that sum-
marizes the relations among all correlation samples. In Figure 2, we
sketch the three sampling steps we propose to speed up correlation
computation and classification.

3.2 Sample Selection

We observe that in general, the correlation fields with respect to
close neighboring reference locations are similar. This means that
it is legitimate to subsample the volume and select representative
reference locations in order to achieve cost-effective computation
for the entire domain. For example, for the climate data set, sci-
entists provide us with the following knowledge for correlation ex-
ploration. First, voxels belong to the continents are not consid-
ered (they are filled with dummy values). Second, voxels near the
Earth’s equator are more important than voxels farther away. As
such, the simulation grid along the latitude is actually non-uniform:
it is denser near the equator than farther away. Third, voxels near
the sea surface are more important than voxels farther away.

We incorporate such knowledge into sample selection. As shown
in Figure 3, we use a Gaussian function for the latitude (the y axis)
and an exponential function for the depth (the z axis). Let us de-
note the probabilities along the y and z axes as plat and pdep, re-
spectively. We define the probability of a voxel being selected as
p = plat × pdep. This treatment allows us to sample more voxels
from important regions. It also agrees well with the computational
grid used in simulation. The resulting samples are then ordered to
build the distance matrix for correlation classification.

3.3 Sample Ordering

For the distance matrix we build, both the horizontal and vertical
axes need to follow a 1D ordering of the 3D samples selected. Due
to the large number of matrix entries we have, we calculate the
distances for matrix entries on a sampling basis. As such, we need
to satisfy that in general, the closer two samples are along the 1D
distance matrix axis, the closer they are in the 3D volume space.
Therefore, we shall apply an ordering that preserves spatial locality
well. In this paper, we utilize space-filling curves [15] for sample
ordering. Due to their good locality-preserving behavior, space-
filling curves are used for mapping multidimensional data to one
dimension. Either the Z curve or the Hilbert curve can be used to
determine the order of 3D samples. Figure 3 (b) shows the sample
ordering result using the Hilbert curve traversal.

3.4 Distance Calculation

3.4.1 Distance Measure

In the distance matrix D, let us denote the value at the ith row and
the jth column as D(i, j). That is, D(i, j) indicates the dissimilarity
of two correlation volumes corresponding to samples i and j. Our
distance calculation considers the distortion of histogram distribu-
tions between the two correlation volumes.

Given two histograms Hi and H j derived from the two correlation
volumes corresponding to samples i and j, we use the Kullback-
Leibler divergence (KLD) (or the relative entropy) to evaluate their
distortion

dKL(Hi||H j) =
M

∑
k=1

hi(k) log
hi(k)

h j(k)
, (1)

where hi(k) and h j(k) are the normalized heights of the kth his-
togram bin, and M is the number of bins in the histogram.

The KLD is not a true metric, i.e., dKL(Hi||H j) 6= dKL(H j||Hi).
There are some issues with this measure that make it not ideal for
our usage: if h j(k) = 0 and hi(k) 6= 0 for any k, then dKL(Hi||H j)
is undefined. Moreover, dKL(Hi||H j) does not offer any nice upper
bound. To overcome these problems, we instead use the symmetric
Jensen-Shannon divergence (JSD) measure [13]:

dJS(Hi,H j) = dJS(H j,Hi) =
1

2

(

dKL(Hi||Hm)+dKL(H j||Hm)
)

,

(2)
where Hm is the average of the two histograms

Hm =
1

2

(

Hi +H j

)

. (3)

Note that when we use global histograms to derive the JSD be-
tween two correlation volumes, we lose their spatial information.
Two volumes can have the same histogram but very different value
distribution over the space. To remedy this, we actually partition the
volume into blocks and get the average of JSDs between all pairs of
corresponding blocks as the JSD between the two correlation vol-
umes. That is, we define D(i, j) as follows

D(i, j) =
1

B

B

∑
k=1

dJS(Hi,k,H j,k), (4)

where B is the number of blocks in the volume. Hi,k and H j,k are the
histograms of the kth block in the correlation volumes correspond-
ing to samples i and j, respectively. In this paper, we partition the
volume into ten blocks using one xy plane and four xz planes. We
adjust those planes such that the number of samples in each block
is nearly equal. The resulting distance matrix D(i, j) is symmetric.

3.4.2 Visual Feedback

To provide visual feedback of the process of distance calculation,
we draw the distance map by mapping distance values to colors.
We apply another subsampling scheme here so that the sample pairs
drawn on the map are a subset of the entries in the distance matrix.
This process is illustrated in Figure 4. At the beginning, the sam-
ple pairs in the distance map are picked randomly from the distance
matrix where every pair has an equal probability. Whenever we se-
lect a sample pair, we draw in the distance map an influence region
(e.g., a disk) centering at that sample pair. The radius of the in-
fluence region is determined by the distance value. The larger the
distance, the larger the radius. The color of the disk is determined
by the distance value of its corresponding sample pair. The satura-
tion is gradually reduced as we move away from the disk’s center.
As two or more sample pairs’ disks intersect each other, the color
of a point in the overlap region is determined by their largest D(i, j)
value, which corresponds to the least similar case. This conserva-
tive way of color assignment ensures that we do not miss dissimilar
sample pairs. At the end of each iteration, the probabilities of sam-
ple pairs are updated according to the current distance map and their
probability values become different. This solution allows us to get
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Figure 4: Iterative update of the distance map. The radius of a disk ri j for the sample pair (i, j) is proportional to their distance D(i, j). This
solution allows us to select more sample pairs from regions closer to dissimilar pairs and less from regions closer to similar pairs. After distance
calculation, we use the Delauney triangulation to interpolate the distance values for all the sample pairs.

(a) 893 pairs, 0.04% (b) 8,772 pairs, 0.43% (c) 23,102 pairs, 1.15% (d) 102,165 pairs, 5.10%

Figure 5: (a) to (d) show the distance map with increasing numbers of sample pairs selected. The map is 2,0002 and there are 2,001,000
pairs in total. As more sample pairs are selected, new pairs would be more likely selected from regions closer to dissimilar pairs. The distance
calculation is based on the entire temperature self-correlation volumes given a pair of reference locations. To generate the distance map, we first
apply the Delaunay triangulation to the selected sample pairs, then interpolate the distance values within each triangle.

more sample pairs from regions closer to dissimilar pairs and less
from regions closer to similar pairs in the following iterations.

In Figure 5, we show the distance map for the climate data set’s
temperature correlation volumes with an increasing number of sam-
ple pairs calculated. As illustrated in Figure 4, we apply the Delau-
nay triangulation to the computed sample pairs (where each pair
corresponds to a vertex on the map) and interpolate the distance
values within each triangle. The resulting distance map provides
an overview of the distance of correlation volumes. Visualizing the
distance map on the fly serves two purposes. First, it allows us to
observe and monitor the iterative computing process. Second, it
provides feedback as to when the sampling and calculation can be
terminated. In general, we may stop the computation when adding
more sample pairs does not change the distance map significantly.
Essentially, the distance map allows us to subsample the distance
matrix with visual feedback. The stopping condition for distance
computation can also be linked to the error analysis described in
Sections 3.6 and 4.1. That is, we want to make sure that enough
sample pairs are computed so that the error can be controlled within
a reasonable range.

3.4.3 Sample Voxel Based Correlation Approximation

There are two different ways to feed the input to the distance calcu-
lation. One way is to use the entire correlation volumes correspond-
ing to reference locations at samples i and j, respectively. Another
way is to use only the correlation of all samples with respective to
reference locations. It is clear that the first solution is accurate since
all voxels in the volume are considered. The second solution only
considers voxel samples and can be advantageous when the data
set is fairly large in spatial and/or temporal dimensions such that
calculating correlation volumes becomes expensive. In Section 4,

we experiment both ways of correlation computation and compare
their performance.

3.5 Correlation Classification and Visualization

We utilize a k-means clustering algorithm for correlation classifi-
cation. Common k-means algorithms, such as Lloyd’s algorithm,
could get stuck in local minima that are far from the optimal. For
this reason, we also consider heuristics based on local search, in
which centroids are swapped in and out of an existing solution ran-
domly (i.e., removing some centroids and replacing them with other
candidates). Such a swap is accepted if it decreases the average dis-
tortion; otherwise it is ignored. The distortion between a centroid
and a point is defined as their squared Euclidean distance. This hy-
brid k-means clustering algorithm [10] combines Lloyd’s algorithm
and local search by performing some number of swaps followed by
some number of iterations of Lloyd’s algorithm. Furthermore, an
approach similar to simulated annealing is included to avoid get-
ting trapped in the local minima.

The input to the k-means clustering algorithm is all samples se-
lected from the volume. Each sample contains a 1D vector of dis-
tance values with respect to other samples. At runtime, the user
picks the number of clusters. Alternatively, we can utilize the “el-
bow criterion” to suggest the number of clusters that gives the best
inter-cluster separation. This is achieved by computing the average
distortions for different numbers of clusters and choosing one num-
ber from them so that adding another cluster does not give much
gain in reducing the average distortion.

To visualize the results of correlation classification, we can dis-
play sample voxels as particles in the volume and color them ac-
cordingly to highlight different clusters. For 3D volume data, this
may create visual clutter as the number of samples could be large.
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(a) combustion, 2D slice, volume-based vs. sample-based (b) combustion, 3D volume, # samples vs. error

(c) climate, # sample pairs vs. error (d) climate, # samples vs. error

Figure 6: Timing and error comparison for the combustion and climate data sets with different numbers of samples selected. (a) and (b) are
based on the computation of mixture fraction self-correlation, and (c) and (d) are base on the computation of salinity self-correlation. The
“ground-truth” references in error comparison for (a)-(d) are 10,000, 4,000, 2,000, and 4,000 sample voxels, respectively. Furthermore, (a) uses
volume-based calculation while (b)-(d) use sample-based calculation as the reference.

As such, we give the user the option to observe in the slice view
where an axis-aligned slice is chosen and a certain range of neigh-
boring slices are projected to the current slice for viewing. This
presents a less cluttered view for clearer examination.

3.6 Error Analysis

To investigate the errors introduced by each sampling step we take
for correlation classification, we assume some ground truth results
can be obtained. We compute the error by comparing the classi-
fication results after using a certain sampling scheme with the re-
sults obtained from the ground truth (assuming both produce the
same number of clusters). By calculating the percentage of sam-
ples misclassified, we can analyze the errors in a quantitative man-
ner. Note that the classification step itself could also introduce some
error due to the randomness of the hybrid k-means clustering algo-
rithm. Therefore, the error we get actually includes both the errors
introduced by a certain sampling step and by the clustering algo-
rithm itself. Such an error analysis is crucial as it can validate our
sampling-based approach through showing how much error is in-
troduced step by step.

4 RESULTS

We have conducted our study by using the tropical oceanic data
simulated with the National Oceanic and Atmospheric Administra-
tion Geophysical Fluid Dynamics Laboratory CM2.1 global cou-
pled general circulation model [3, 18]. The equatorial upper-ocean
climate data set covers a period of 100 years, which is sufficient
for our correlation study. The data represent monthly averages and
there are 1,200 time steps in total. The spatial dimension of the
data set is 360×66×27, with the x axis for longitude (covering the
entire range), the y axis for latitude (from 20◦S to 20◦N), and the z
axis for depth (from 0 to 300 meters). For illustration, we show a
labeled volume of the temperature field in Figure 3 (a).

We also studied is a turbulent combustion data set from the
Sandia National Laboratories. Sandia scientists performed three-
dimensional fully resolved direct numerical simulation (DNS) of

turbulent combustion. Unlike physical experiments where it is often
difficult or impossible to isolate particular phenomena, these unique
numerical experiments are specifically designed to expose and em-
phasize the role of these phenomena, allowing relationships to be
revealed. In our experiment, we studied the mixture fraction field of
the combustion data set, which has a dimension of 506×400×100
with 20 time steps. To analyze the error introduced in our sampling
steps with the actual ground truth, we also used a slice of the vol-
ume for our analysis. Figure 9 (a) shows a rendering of a slice of
the mixture fraction field at a certain time step.

4.1 Timing and Error Analysis

Figure 6 shows the timing and error analysis result for the two data
sets. The timing was measured on a MacPro with 2× 2.66 GHz
dual-core Intel Xeon CPUs and 8GB 667MHz DDR2 main mem-
ory. The timing includes computing the JSD for the distance ma-
trix and clustering sample voxels. For the combustion slice, we
also conducted an additional comparison between volume-based
and sample-based correlation calculation. As we can see from Fig-
ure 6 (a), the sample-based correlation calculation can effectively
reduce the computation cost when the number of samples is 4,000
or more, while keeping the error (i.e., the sample misclassification
rate) within a reasonable range (less than around 10%). When the
number of samples is 1,000, the error increases to about 15%. In
(b) and (d), we can observe that using 2,000 samples provides a
good tradeoff between the computation time (within a few minutes)
and the error (less than 5%). In (c), we can see that for the climate
data set, choosing around 75% of sample pairs in the correlation
calculation is reasonable as the error is below 10%.

To verify the effectiveness of our sampling-based approach, we
also conducted a test on a synthesized data set for error analysis,
shown in Figure 2. The synthesized data set has a dimension of 30×
10×10 and consists of three equal-size regions of uniform values.
Over the time series, the value in the red region increases from 0.0
to 1.0; the value in the white region remains 0.5; while the value in
the blue region decreases from 1.0 to 0.0. 200 samples are randomly
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(a) salinity self-correlation, 20 time steps (b) salinity self-correlation, 100 time steps

(c) temperature & salinity cross-correlation, 20 time steps (d) temperature & salinity cross-correlation, 100 time steps

Figure 7: Clustering of the sample voxels of the climate data set based on the correlation distance. All use five clusters. Notice that for correlation
classification, the salinity self-correlation is more sensitive to the number of time steps chosen than the temperature and salinity cross-correlation.

picked and the samples are classified into three clusters based on
their correlation relationships. As we can see, the clustering result
match well with the actual data set. The error is below 3%.

4.2 Results with Climate Data Set

For the climate data set, we only took a subset of time steps from
the original time series to reduce the computation cost. On the
other hand, we need at least 20 years to cope with the serial cor-
relation in the climate data. As such, we stride in time to reduce
the data volumes with fairly independent samples. Specifically,
we took the first time step, then chose every 12th time step (i.e.,
we pick the volumes corresponding to the same month). Figure 7
shows the clustering of the sample voxels based on the distance of
correlation samples. In (a), we also show a front view similar to
Figure 3 (a) for a better orientation. The results with the salinity
self-correlation and temperature and salinity cross-correlation are
displayed with two different time spans selected: 20 time steps (a
20-year span) and 100 time steps (the entire 100-year span). For
the cross-correlation, we computed the correlation of the tempera-
ture at varying locations with the salinity at all other locations. Our
experiment shows that using five clusters gives the best inter-cluster
separation. The results with salinity field are more sensitive to the
time spans used as we can see more difference between (a) and (b)
than between (c) and (d). The cross-correlation of temperature and
salinity is less sensitive due to the low variability of the temperature
field. Note that such results would be difficult to obtain if we do not
classify the data based on their correlation distance.

Our classification result yields a volume partitioning that sum-
marizes the connection among all correlation volumes with respect
to various reference locations. For example, Figure 8 shows four
reference locations in the classification of the temperature self-
correlation samples. References A and B are from the same clus-
ter while references C and D are from different clusters. We can
observe that for the corresponding correlation volumes, A and B
are similar while C and D are dissimilar. Thus, our classification
method provides a meaningful visual summary of the correlation
relations in the data.

4.3 Results with Combustion Data Set

For the combustion data set, the scientists are interested in the main
flame structure, which is denoted by the two curvy white boundary

lines shown in the slice view in Figure 9 (a). Instead of finding the
exact flame surface for every time step, we simplify the main flame
structure as the two planes forming the V-shape in the volume. In
the slice view, they correspond to the two dashed sidelines denoted
in (a). We therefore decreased the voxel sampling rate accordingly
as the voxel’s distance to the lifted flame structure increases. That
is, the regions closer to the V-shape planes (3D) or the V-shape lines
(2D) are sampled denser while the regions farther away are sampled
sparser. The regions outside of the flame boundary are not sampled.
A total of 1,000 samples were selected for correlation classification
and their Z-curve order is shown in Figure 9 (b). In Figure 10, we
show the clustering of the sample voxels based on the distance of
correlation samples for a 2D slice and the 3D volume. Assuming
the “ground truth” 2D result is with 10,000 samples in Figure 10 (a),
the error (i.e., misclassification rate) for a subset of 1,000 sample
voxels is 9.4%. If we pay close attention to (a) and (b), we can
observe that the misclassification normally happens at the boundary
between clusters. In (c), we show the 3D classification results with
4,000 samples. This result is interesting as the clustering pattern
matches well with the spatial locality of the samples.

Sandia scientists helped us interpret the results as follows. In the
turbulent lifted jet flame simulation, the mixture fraction is a pas-
sive scalar and hence its spatio-temporal evolution is determined
entirely by the turbulence fluid dynamics and not by the chemical
reactions. For two samples close by in space, the fluctuations of the
mixture fraction about the time-averaged value are likely to be well
correlated as long as the distance between the samples is not larger
than the integral length scale. The integral length scale is an esti-
mate of the largest length scale of fluctuating velocity correlations.
Consequently, the correlation coefficient value will be 1.0 for two
samples that are closer than the integral length scale and lower for
points that are farther away. This is evident in the field values of the
slice view shown in Figure 9 (a).

4.4 Discussion

A further observation we get from Figure 8 is that the clusters re-
semble the correlation volumes. This can be explained as follows:
When two locations P1 and P2 are highly correlated, their time se-
ries are similar (to within a scaling factor). Therefore, any other lo-
cations highly correlated with P1 also have a high correlation with
P2, and locations uncorrelated with P1 also have a low correlation
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Figure 8: Clustering of the sample voxels based on the correlation distance. The temperature self-correlation is computed over 100 time steps.
Four reference locations near the equator are highlighted in the spatial view. Their corresponding correlation volumes are displayed. A is on
100◦W, B is on 140◦W, C is on 150◦E, and D is on 120◦E. A and B are drawn from the same cluster, while C and D are drawn from different
clusters. We can observe that the correlation volumes of A and B are similar, while the correlation volumes of C and D are dissimilar.

with P2. Geometrically, the correlation is simply the cosine of the
angle between the 1D time-series vectors P1 and P2. So, if vec-
tors P1 and P2 subtend a small angle (correlation near 1.0), then
vector P3 must subtend similar angles (similar correlations) relative
to each of them. With this observation, it seems that we can sim-
ply cluster the original time series to identify the correlation rela-
tionships. We point out that our classification procedure, however,
gives a more intuitive solution. It is certainly not an exact solution
as we do perform sampling, but it should be more precise in char-
acterizing the correlation relationships. Besides, it is more natural
to cluster correlation data instead of the original data. The clas-
sification results obtained can be further utilized to guide the user
in the interaction as she is informed of the correlation connections
from the beginning. Our visualization thus enables the user to eas-
ily keep track of the huge amount of correlation information during
their visual exploration.

5 CONCLUSIONS AND FUTURE WORK

We have devised a sampling-based approach to correlation classi-
fication for time-varying multivariate data. Leveraging the domain
knowledge provided by the scientists, we select important samples
and derive correlation connections among the samples. Interactive
control of the sampling properties and cluster size allows one to
test statistical robustness, and to move from coarse-grained to fine-
grained analysis as needed. The error analysis we have conducted
shows the feasibility of performing the sampling-based correlation
classification as a tradeoff between computation efficiency and clas-
sification accuracy. Our method aims to summarize what the user
would learn from exploring data with the correlation browser by
identifying clusters of points that exhibit similar correlation vol-
umes. This new insight is utilized in the subsequent visualiza-
tion. Instead of browsing through a large number of correlation
volumes and finding connections manually, our approach automates

this analysis process and presents a static view as the summary, thus
enabling a more effective data viewing and understanding.

In the future, we would like to investigate other distance mea-
sures and sampling methods to study the tradeoff between effec-
tiveness and efficiency. Thanks to the sampling method (i.e., selec-
tion of sample voxels and selective sample pairs calculation) and the
approximation strategy (i.e., sample voxel based correlation instead
of volume based correlation) we adopt, our solution is scalable and
is applicable to larger data sets. The focus of subsampling is es-
sential as we move to higher resolution and longer time series. In
fact, finding a way to automatically identify a representative sam-
ple size—i.e., the smallest sample for which the inter-sample vari-
ability lies below some threshold—would be a very helpful addi-
tion. We would like to explore other subsampling schemes such as
uniform stride, or decimation (averaging) to a coarser spatial grid.
Another direction is to add a feedback loop from visualization to
sampling so that we can improve the subsampling scheme accord-
ingly towards a more effective classification. We believe that this
solution can be applied to other scientific fields where correlation
study plays an important role in the analysis and discovery.
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