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Fig. 1. Left: MRI of a meningionma. Transfer functions (TF) based on boundaries (insets on the left: top, 1D TF with gradient
modulation, bottom, 2D TF of intensity vs. gradient magnitude) cannot separate the tumor from the vessels (where gradients are also
strong). A transfer function based on occlusion separates the tumor from the vessels and the ventricular structures from skull and
skin. Right: CT dataset with contrast agent. Classification is difficult due to overlap between bone and vessel structures (see red
color in ribcage in the insets). An occlusion-based TF properly classifies bone and also highlights internal structures (blue).

Abstract—Despite the ever-growing improvements on graphics processing units and computational power, classifying 3D volume
data remains a challenge. In this paper, we present a new method for classifying volume data based on the ambient occlusion of
voxels. This information stems from the observation that most volumes of a certain type, e.g., CT, MRI or flow simulation, contain
occlusion patterns that reveal the spatial structure of their materials or features. Furthermore, these patterns appear to emerge
consistently for different data sets of the same type. We call this collection of patterns the occlusion spectrum of a dataset. We
show that using this occlusion spectrum leads to better two-dimensional transfer functions that can help classify complex data sets
in terms of the spatial relationships among features. In general, the ambient occlusion of a voxel can be interpreted as a weighted
average of the intensities in a spherical neighborhood around the voxel. Different weighting schemes determine the ability to separate
structures of interest in the occlusion spectrum. We present a general methodology for finding such a weighting. We show results
of our approach in 3D imaging for different applications, including brain and breast tumor detection and the visualization of turbulent
flow.

Index Terms—Transfer functions, Ambient Occlusion, Volume Rendering, Interactive Classification.

1 INTRODUCTION

One of the issues in classifying and visualizing 3D volumetric data
sets is the lack of explicit geometric information and limited seman-
tics. However, the reliance on 3D images to describe complex 3D
objects and processes is what permits scientists to quickly visualize
the results of MRI scans or flow simulations without time-consuming
pre-processing or segmentation. Due to the speed and parallelization
of texture processing, most visualization systems rely on classifica-
tion schemes that extract local information to better represent the ma-
terials in a volume data set. In the simplest case, the value at each
voxel suffices. In most cases, however, additional information, such
as gradient and higher order derivatives, are necessary for classifica-
tion [16, 11]. Nonetheless, the information required to compute these
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derivatives still can be categorized as local. In this paper, we advocate
for the use of more global metrics to characterize the structures in a
3D volumetric object. This global metric should encode enough infor-
mation to distinguish between features that appear coherently within a
certain spatial neighborhood.

In this work, we study the issue of using occlusion information to
classify volumetric objects. Specifically, we use the ambient occlu-
sion of a voxel as a metric for classification. Ambient occlusion has
the advantage of being viewpoint independent and encodes the aver-
age contribution of the surrounding neighborhood to the visibility of
every voxel in the volume. We noticed that the distribution of occlu-
sion for certain features varies coherently depending on the relation-
ship between these features and their surroundings. For example, in
medical images, bones have an occlusion distribution clearly differen-
tiated from skin tissue or contrast-enhanced vessels, which may have
the same intensity in the image modality. Therefore, we can charac-
terize some of these components more clearly when considering their
ambient occlusion contribution. Traditionally, ambient occlusion has
been used for improving the rendering of volumetric models, particu-
larly isosurfaces. In our paper, we use a more general notion of am-
bient occlusion, which includes the contribution of all voxels around
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a given point to its visibility. Rather than a rendering quantity, we
use the result as an independent variable that can be combined with
intensity value to provide more meaningful transfer functions.

We refer to the distribution of ambient occlusion in a data set as
the occlusion spectrum of the data set. When combined with the in-
tensity values, the 2D distribution provides a classification space that
separates features that are highly occluded, e.g., those at the interior
of objects, from those that are not occluded, such as the outer layers of
an object. For example, MR images often exhibit the same intensity
values for certain features that are clearly internal, e.g., bones, with
others that are at the boundaries, such as skin. An example is shown
in Figure 2, where we highlight some of the structures that appear
when we select different regions in the spectrum, such as ventricular
anatomy, skull, brain and skin. Analogously, flow simulations often
exhibit regions where the internal and external characteristics of flow
differ greatly. The occlusion spectrum of these data sets enables sci-
entists to separate regions of interest depending on their overall spatial
characteristics and formulate hypotheses about the spatial nature of the
quantity they are visualizing.

Using our method for classification is advantageous because ambi-
ent occlusion: (1) encodes the contribution of the voxels in the neigh-
borhood of a given point with a single scalar value, rather than an
n-dimensional vector or histogram; (2) is easy to compute for sampled
volumetric data and can be implemented rather effortlessly in current
programmable hardware, and (3) exhibits spatial coherence, important
for identifying features and their spatial relationships.

At first, the occlusion spectrum leads easily to 2D transfer func-
tions, where one dimension is intensity value and the other is occlu-
sion. This type of classification proves very useful for a large number
of datasets from a variety of domains. We show that the occlusion
spectrum helps isolate regions that are spatially concentrated in re-
gions of varying occlusion, and represents a different classification
space. Instead of highlighting boundaries, as many current classifica-
tion methods do, they highlight structure. Nonetheless, 2D transfer
function editors may not be easy to understand for non-expert users.
For this reason, we also present a simpler editor that preserves the
simplicity of 1D transfer function editors with simple manipulations
to control the desired effect of occlusion. The issue of occlusion also
poses a question of what exactly makes a given intensity value to be
more occluding than another. In this paper, we present a method that
automatically finds a visibility mapping that results in the occlusion
spectrum that maximizes the variance along certain intensity intervals
of interest. This ensures that the features along those intensity val-
ues are more likely to be separated than others. Through a number of
examples, we show that the occlusion spectrum, when used for classi-
fication, is a powerful technique aimed at extracting features that share
certain spatial characteristics. Currently, this requires either segmen-
tation or cutaway views. We show that we can obtain similar or better
results without expensive data pre-processing.

2 RELATED WORK

The classification of volumetric models has been the focus of research
since the inception of visualization systems and volume graphics. The
ever-ubiquitous 1D transfer function seems still the most common ap-
proach, despite the advances made towards higher dimensional trans-
fer functions, such as those based on first (i.e., gradient) [16, 11] and
second derivatives (i.e., curvature) [8, 12]. Yet these methods are pop-
ular in visualization systems because they use mostly local informa-
tion, which makes them easy to implement and readily fit for paral-
lel computation in modern GPUs. Recently, a number of techniques,
which attempt to move towards gathering more global information,
have been proposed, leading to a continuous spectrum of techniques.
In one end, next to convolution-based approaches (e.g., gradient and
curvature) are lighting transfer functions [17] and shape detection fil-
ters [26]. These methods are still based on derivatives and highlight
material boundaries. The latter, however, uses the matrix of second
derivatives to better identify the local shape of tissues (i.e., line, thin
plate and blob). Several researchers have recognized the limitations
of these gradient-based approaches. For example, Pfister et al. [20]

Fig. 2. The Occlusion Spectrum for an MRI data set. Anatomical struc-
tures (e.g., skull, brain, ventricles) appear depending on how internal
they are.

and Lundstrom et al. [18] noted that noise usually distorts material
boundaries. Rottger et al. also recognized that spatial information is
inherently lost in traditional 1D or 2D histograms, and expanded these
with spatial information [23]. As a solution to the blurring of gradient-
based 2D histograms, Sereda et al. propose a different way of selecting
boundaries, searching for high and low values in paths that follow the
gradient near the voxels in a boundary [28].

Lundstrom et al. proposed the use of local histograms to better
represent the distribution of intensity values in a given neighborhood
[18]. This departs from convolution-based approaches in that it re-
quires a larger neighborhood. Their results show that the use of local
histograms greatly improves tissue separation for the case of overlap-
ping intensity ranges. The search for better tissue separation has mo-
tivated a series of more global approaches, which require additional
information about the entire data set to aid classification. These ap-
proaches rely more on finding structure than highlighting boundaries.
Takahashi uses topology to guide the transfer function design [4, 29].
In particular, Takahashi et al. use topological relationships between
structures to measure the inclusion of isosurfaces [30]. They propose
a similar dimension, called inclusion level, that focuses on structure
rather than boundaries. Their method requires finding critical points,
which may not be robust to noise, so they must rely on a threshold-
ing mechanism. Zhang and Bajaj follow a similar approach for the
visualization of protein pockets, using signed distance transforms to
quantify the inclusion of isosurfaces [34]. Due to the issue with noise,
they restrict their application to smooth free-form surfaces. In this pa-
per, our notion of occlusion is more general and not restricted to nested
structures. Correa and Ma use size-based transfer functions to classify
features based on their size [3]. Huang and Ma use region growing to
guide the definition of 2D transfer functions [9].

One issue with these approaches is the reliance on complex high
dimensional spaces for classification. A number of user interface (UI)
mechanisms have been proposed, including the contour spectrum [1],
which reduces classification to handling a series of curves, transfer
function widgets [14] and user painting [32]. Rezk-Salama et al. use
high-level semantics to define and adapt widgets from one data set to
another [21]. In this paper, we explore a novel dimension for classi-
fication, namely the ambient occlusion of individual voxels. Ambient
occlusion is a single dimension that summarizes the contribution of
voxels in a large neighborhood of a given point and is spatially coher-
ent.
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Fig. 3. Top: Ambient occlusion is obtained as the average of occlusion
contribution from samples around a voxel. It is equivalent to finding the
centroid of the weighted histogram of intensities around that voxel. Bot-
tom: An example of an occlusion spectrum for a simple 1D profile. Two
structures of intensity i are depicted, one surrounded by a low intensity,
the other by a medium intensity. The ambient occlusion is essentially an
averaging operation. As a result, the intensities for the first structure are
“smoothed” down to a low intensity in the range (i0, i1), while the other
structure is smoothed down to the range (i2, i). When we plot these
intervals in a 2D histogram, we see a clear separation of structures.

Ambient occlusion was introduced by Zhukov [35] as the notion
of obscurance to model the ambient illumination of an object without
costly global illumination operations. Since then, ambient occlusion
has become a fast technique for obtaining high quality renderings of
illuminated objects and has been successfully been implemented in
the GPU [27, 5, 2]. Since ambient occlusion requires evaluating the
visibility of a point with respect to a number of occluders, some have
proposed acceleration techniques such as occlusion fields [15] and the
use of pre-computed information such as local histograms [24] or mu-
tual probabilities [6]. For a complete survey on ambient occlusion
techniques, refer to Knecht [13], and Mendez and Sbert [19].

Recently, there has been a growing interest in improving volume
rendering with ambient occlusion and other approximation of global
illumination. Ritschel uses the GPU to compute the visibility of vol-
ume data sets and provide natural illumination effects such as soft
shadows and attenuation [22]. Wyman et al.[33] use precomputed il-
lumination volumes to incorporate global illumination of isosurfaces.
Ropinski et al. [24] present a system for dynamic ambient occlusion
that adapts to changes in visibility such as transfer function manipu-
lation. The use of ambient occlusion was exploited by Tarini et al. to
enhance the visualization of large molecules. They show that ambient
occlusion results in an enhanced perception of he 3D shape of large
proteins [31]. Ruiz et al. also use obscurances to generate high qual-
ity renderings of volumetric objects at a low cost. Coupled with color
bleeding, their framework results in realistic volume rendered images
effective for visualization [25]. For more details on ambient occlusion
for volume rendering, see the tutorial notes by Hadwiger et al. [7]. In
our work, although the process of constructing the occlusion spectrum
is borrowed from ambient occlusion computation, our focus is quite
different. Rather than using occlusion exclusively for rendering, we
use occlusion for classification. This implies a fundamental difference
with our predecessors, in that we do not rely on pre-classification of
tissue to determine visibility.

3 THE OCCLUSION SPECTRUM

The occlusion spectrum refers to the distribution of ambient occlusion
of a given intensity value in a 3D volumetric object. We can rep-
resent this as a 2D histogram, where one axis is the intensity value
and the other axis is the occlusion. Unlike 2D histograms based on

Linear Ramp M(x) = S(x)

Truncated Linear Ramp M(x) =

{
S(x) τ0 < S(x) < τ1

0 otherwise

Distance weighted M(x) = S(x)e−||x−xc ||
2

Opacity weighted M(x) = α(x)

Table 1. Visibility mappings for the computation of occlusion, where S(x)
is the intensity of a point x.

gradient magnitude, this spectrum does not highlight boundaries, but
structures. A concentration in the 2D spectrum towards the higher oc-
clusion values indicates structures that are more “internal” since they
are more likely to be occluded, whereas concentrations in the lower oc-
clusion values indicate more “external” structures. An example of the
occlusion spectrum of an MRI data set in shown in Figure 2. Here, we
see an intensity value interval where there are structures such as skin,
skull and lateral ventricles. Once they are plotted in terms of their oc-
clusion, they can be separated clearly. Similarly, brain intensities can
be separated from occluding skin tissue. As a result, we can obtain a
visualization that isolates the brain without the need for segmentation.

To compute the occlusion spectrum, we turn to the ambient occlu-
sion of a point, which represents the obscurance of the point due to
the neighboring voxels in a volume. Unlike traditional ambient occlu-
sion, which only computes this quantity for visible points, we define
an adaptive visibility mapping that considers every voxel in a neigh-
borhood around the voxel. We show that this quantity is equivalent to
computing the centroid of the weighted histogram of intensities around
the voxel. We then construct the spectrum as the 2D histogram of in-
tensity vs. occlusion. One of the key properties of this histogram is
the ability to separate structures of interest. Depending on the visibil-
ity mapping function, this separation may be impaired. For this reason,
we present a general methodology that finds the best parameters for the
visibility function that maximizes the likelihood of separation. These
steps are detailed in the following sections.

3.1 Ambient Occlusion

To quantify and measure the occlusion of a voxel, we turn to ambient
occlusion, used widely to approximate the ambient attenuation of a
point given the surrounding scene. This can be expressed as:

AO(x) =
1

π

∫
Ω
(1−V (x,ω))(ω ·n)dω (1)

where x is the location of a point or voxel, n represents the normal of
the surface through this point and V (x,ω) is the visibility of x along
a direction ω . The directions ω are taken to cover the hemisphere
Ω defined by the normal of the point. When AO(x) = 0, the point is
unoccluded.

In this paper, we use a more general notion of occlusion, which also
takes into account the intensities in the other hemisphere. Therefore,
we define occlusion as the weighted average of the visibility of a point
along directions in a sphere (Fig. 3a):

O(x)≈
1

N

π

∑
φ=0

2π

∑
θ=0

A(x,ω(θ ,φ)) (2)

where N is the number of neighbors and A(x,ω) is the directional
occlusion of a point along direction ω , defined as:

A(x,ω) =
T

∑
t=0

M(x+ tω) (3)

where T is the number of samples along direction ω and M(x) is a
visibility mapping function of a sample x. In the case of traditional
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(a) Phantom (b) Shape and Size (c) Noise (d) Bias

Fig. 4. Properties of the occlusion spectrum. (a) Phantom data set.
Note the separation of structures even though they share the same in-
tensity.(b) Structures of different shape and size. (c) Gaussian noise of
σ = 1.0. (d) Multiplicative bias.

ambient occlusion on isosurfaces, the mapping function is a binary
function that is 0 when the intensity is the isovalue of interest and the
point is in the hemisphere defined by the gradient of the central voxel.
Here, we define more general visibility mappings, which should re-
tain as much information as possible about the distribution of intensi-
ties in the neighborhood of a voxel. Table 1 summarizes some of the
mappings we have explored, including data-centric approaches such
as linear ramps and Gaussian weighted neighborhoods, and rendering-
centric approaches such as user-defined opacity mappings.

3.2 Rationale

This concept of occlusion can be considered as a weighted average of
the neighborhood surrounding a voxel. The rationale behind this clas-
sification space is that occlusion can be considered as the convolution
of the volume with a low pass filter. As long as the filter has a size
larger than the structures we want to classify, the average is affected
by the distribution of voxels surrounding this structure. Consider Fig-
ure 3, where we plot a 1D intensity profile, composed of two structures
of intensity i, one of which is surrounded by a low intensity and the
other surrounded by a medium intensity. When we convolve the pro-
file with a low-pass filter, i.e., we compute the average response, the
intensity of the first structure decreases to interval (i0, i1) and the sec-
ond structure decreases to interval (i2, i), where i1 < i2. When we plot
these in a 2D histogram, the two regions with the same intensity can
be separated.

It can be seen that the occlusion is the centroid of the weighted his-
togram of the neighborhood of a voxel. Let fi denote the frequency of
occurrence of M(x) = i. Therefore, ∑i fi = N, where N is the number
of voxels in the spherical neighborhood NR(x) of voxel x and radius
R.

O(x0) =
1

N
∑

x∈NR(x0)

M(x) =
∑i i fi

∑i fi
(4)

3.3 Occlusion Properties

The occlusion spectrum has a series of properties essential for robust
classification.

Coherence. The occlusion spectrum is coherent. That is, for a
pair of neighboring points in the volume, it is expected that occlusion
varies smoothly. This is achieved by its definition, since occlusion is
essentially a convolution. Let G be a convolution filter describing the

Fig. 5. Top: Adaptive Mapping Selection is computed in a series of
steps: (1) Obtain local histograms (2) compute the occlusion spectrum
for a set of mapping parameters and clustering (3) obtain variance of
means (4) repeat for next set of parameters. The mapping is the one
with maximum variance of means. Middle: A data set consisting of
two sets of nested structures, the first of high intensity surrounded by
medium intensity (left), the other medium surrounded by low intensity
(right). Mapping selection that maximizes variance for the high intensity
(left) fails to separate the other. Conversely, a mapping that maximizes
for the medium intensity (right) fails to separate the high intensities. Bot-
tom: An adaptive mapping separates the structures for both high and
medium intensities, as seen in the occlusion spectrum.

occlusion operation. The occlusion can be described as the convolu-
tion: O(x) = G◦S(x). The spatial derivative of the occlusion is then:

∂O(x)

∂x
=

∂G◦S(x)

∂x
= G◦

∂S(x)

∂x
(5)

Thus, the occlusion retains the coherence properties of the volume, as
long as the convolution filter (G), determined by the mapping function
M, is continuous.

Noise and bias. Occlusion is also inherently robust to additive
noise and multiplicative bias, because of the averaging performed by
the convolution. Let use consider a transformed scalar field S′(x) =
β (x)S(x)+E, where β is a multiplicative bias and E ∼ N(0,σ2) is an

additive noise of mean 0 and variance σ2. Therefore, the occlusion on
the transformed scalar field is

G◦S′(x)≤ βmaxG◦S(x) (6)

for a maximum bias βmax in the neighborhood of a point, which means
that the occlusion distribution is not transformed by the additive noise
but is scaled due to bias. As long as the variance of the bias does not
exceed the size of the largest structure we can separate, this scaling
does not affect the separability in the occlusion space. An example is
shown in Figure 4.

Shape and Size. Occlusion is also robust to changes in shape
and size, as shown in Figure 4, as long as the neighborhood is larger
than the size of structures we wish to detect. That is, for larger struc-
tures, they voxels become self-occluded and the neighborhood inten-
sities have little effect in the occlusion value.

To understand the effect of size, we ran a sensitivity plot of the oc-
clusion computation for different neighborhood sizes. Figure 6 shows
four sensitivity plots for datasets of two modalities. The horizontal
axes represent the intensity value and radius of the occlusion sphere,
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(a) MRI

(b) CT

Fig. 6. Sensitivity plots of the occlusion spectrum for two MRI and two
CT datasets with respect to radius of occlusion sphere. The horizontal
axes show intensity values vs. radius of the occlusion sphere. The ver-
tical axis shows the variance of occlusion. Notice the consistent peaks
around radii of 50−100 voxels, for a volume of diameter 256.

and the vertical shows the (normalized) variance of the occlusion spec-
trum. The larger the area under a curve is, the larger the overall vari-
ance of the occlusion spectrum becomes, and therefore, so the like-
lihood of separating features. As expected, small neighborhoods do
not provide enough variance. Large neighborhoods, on the other hand,
also drop variance when they are much larger than the structures we
want to detect. Therefore, we consistently see a shape in these plots
that indicates the best radius towards the middle of the pltted interval.

3.4 Adaptive Mapping Selection

One of the key advantages of the occlusion spectrum is its ability to
separate structures with the same intensity based on the data distribu-
tion in its neighborhood. Because the occlusion depends on a visibility
mapping function, the effectiveness of the spectrum depends on the pa-
rameters of this mapping function. For example, when we consider a
truncated ramp function, the cutoff values τ0 and τ1 affect the average
intensity of the local neighborhood. Furthermore, a given mapping
can maximize the separability of certain structures in one intensity,
but hinders it for another intensity. Let us consider a phantom data
set consisting of two spheres surrounded by a hollowed structure. One
of the spheres is a high intensity surrounded by a medium intensity,
and the other is of medium intensity surrounded by low intensity, as
shown in Figure 5. A mapping function is found that separates the
sphere from the outer layer for the high intensity, but fails to separate
the one for the medium intensity. Another mapping function works for
the medium intensity but fails for the high one. Therefore, it becomes
necessary to select a mapping adaptively, depending on the intensities
of interest the user wishes to classify. In general, this can be accom-
plished by finding the best parameters that maximize the variance of
means of the occlusion spectrum for the intensity interval of interest.
This, however, requires to compute the occlusion for each combina-
tion of parameters, which is computationally expensive. Instead, we
present a faster mechanism based on local histograms, depicted in Fig-
ure 5(Top). For each intensity interval of interest we compute the local
histogram for each voxel. The occlusion can be found as the centroid
of each of these histograms. Next, we compute the distribution of oc-
clusion for the intensity intervals and cluster them. Finally, we find
the variance of the means. We repeat this process for each parameter
in the mapping function. The mapping is the one that maximizes the
variance of means of the occlusion distribution. A result of such an
adaptive mapping is seen in Figure 5, where we can clearly see the

Fig. 7. Occlusion-based Classification of a meningioma. Left: A 2D
transfer function based on boundaries highlights the tumor and vessels
from noise and other structures, but these intensities overlap and have
similar gradient magnitude. The result is a commingled visualization of
tumor and vessels. Right: An occlusion-based transfer function gives
higher visibility to the tumor, and it is clearly separated from the vessels.
Note also that it removes some of the noise in the forehead.

structures of interest clearly separated in the occlusion spectrum.

4 OCCLUSION TRANSFER FUNCTION (OTF)

The most immediate application of the occlusion spectrum is the clas-
sification based on occlusion. An occlusion transfer function is there-
fore a mapping from the space spanned by the scalar values S and the
occlusion O into color and opacity, S×O �→ [0,1]4. By tagging dif-
ferent regions of the resulting 2D histogram and assigning color and
opacity, users can select regions with similar intensity values but in
rather different locations within the data set.

An OTF differs from other gradient-based transfer functions in that
material boundaries are not the main criteria for deciding what to clas-
sify. Although regions of certain homogeneity might exhibit different
occlusion signatures than those on the boundary of materials, the main
factor remains the degree of occlusion, independent (for most part) of
whether they have large or small gradients. An example is shown in
Figure 7, which depicts a meningioma or brain tumor. On the left,
we show the result of classifying based on intensity and gradient mag-
nitude using a 2D transfer function. A gradient-based transfer func-
tion does not help identification much, since the overlapping intensi-
ties also exhibit large gradients. With an OTF (right), we can isolate
the tumor from the arteries and veins, and the occluding tissue due
to noise and overlapping intensities. This works robustly for tumors
and similar structures because these are features that are consistently
surrounded by a certain intensity range (e.g., brain tissue), that is dif-
ferent from other structures of similar intensity (e.g., air in the case
of the occluding tissue on the skull). Although tumors may appear in
different locations (thereby changing the occlusion values), they are
still separable from low occluded structures such as skin.

4.1 Occlusion Transfer Function Editor

One of the issues of high-dimensional transfer functions is the reliance
on complex widgets and spaces to specify the color and opacity map-
pings. Even for 2D transfer functions, the detection of material bound-
aries as arcs in the resulting histogram may not be straightforward as
affected by noise and bias. It is no surprise that most medical systems
still rely on simple 1D editors to highlight features of interest, despite
the obvious and well-studied limitations of such approach. The 2D
occlusion transfer function is no exception. Effective classification re-
quires the user to control widgets in 2D space, while keeping track of
an elusive third dimension that tacitly represents opacity. Represent-
ing these in a 3D space would only complicate the matter. However,
we have found that the idea of occlusion fits well the idea of a sep-
arable 2D space. This is mainly due to the intrinsic orthogonality of
these two dimensions. Any intensity value can potentially exhibit any
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degree of occlusion, so that the y-dimension can be grasped intuitively
as the interiority of a material.

Nonetheless, we believe that our approach can better serve the gen-
eral users of visualizations with a simpler interface. To achieve this,
we make the following observations: (1) The 1D classification is ubiq-
uitous and easy to understand. (2) Assigning different colors to the
same intensity value at different occlusion levels may be misleading
whenever color is used to indicate the magnitude of a given quantity.

In our interface, we decouple the 2D classification space into two
1D spaces. This is motivated by the notion of improving the likelihood
of a point being part of a given structure one dimension at a time. The
opacity function of a sample point is the defined as:

α(x) = αS(S(x))αO(S(x),O(x)) (7)

where αS is an opacity mapping based on intensity, and αO is an
opacity mapping based on occlusion. In our case, we define αS(s) =
∑i Gμi,σi

(s) as a sum of Gaussians. The first space (Figure 8) retains
the characteristics of a typical 1D classification based on intensity val-
ues, including color selection. The X dimension denotes the intensity
values, while the Y dimension denotes opacity. In the second space
(bottom), we retain the X dimension as the intensity values and add
the occlusion spectrum as a plot. The Y dimension corresponds to oc-
clusion. To change the opacity based on occlusion, we use occlusion
curves, which span the entire domain, but can be adjusted in the Y-
dimension (occlusion). These curves represent the means of Gaussian
bells and the size of the area around the curve represents the standard
deviation of the Gaussian. Therefore, the opacity mapping is defined
as: αO(s,o) = Gμs,σs

(o) for an intensity value s and an occlusion o.
Interacting with these curves simplifies much of the complexity

added by dimensional transfer functions, although it is limited to a
single extra variable, in this case opacity. Figure 8 depicts the classi-
fication process. On top, the intensity intervals in red and orange are
associated with high occlusion, isolating the meningioma. Next, the
user highlights a different intensity interval corresponding to brain,
but also to occluding tissue such as skin. Therefore, at the bottom, the
user moves the curve towards the upper end, selecting the structures
with high occlusion for that intensity interval, namely the brain tissue.

4.2 Implementation

The occlusion spectrum is the 2D histogram resulting from two vol-
umes, the original intensity volume, and the ambient occlusion vol-
ume. In our implementation, since ambient occlusion is used for clas-
sification, we pre-compute it as a separate volume. This makes the
rendering stage of our technique computationally comparable to that
of 2D transfer functions based on gradient magnitude. The occlusion
volume, since it is essentially an average, can be of lower resolution
than the original data. To compute the ambient occlusion volume we
use the programmability of current GPUs and the render-to-3D-texture
capabilities. We render a number of quadrilaterals corresponding to
the different slices of the ambient occlusion volume. Each of these
quadrilaterals is processed in parallel in a fragment shader that com-
putes the occlusion at every voxel by explicitly encoding Eq. 2. After
all slices are processed, the result is a 3D volume containing the oc-
clusion at every voxel. Finally, classification is incorporated into a
GPU-based ray casting shader that uses a 2D texture look-up to obtain
the color and opacity of each sample point according to their intensity
and occlusion values.

5 CASE STUDIES

5.1 Cancer Diagnosis on Breast CT

According to the National Cancer Institute in the U.S [10], breast can-
cer incidence in women in the United States is 1 to 8, or about 13%.
The need to diagnose early a breast cancer tumor is becoming increas-
ingly pressing as the imaging modalities improve and their costs are
reduced. The goal of screening exams is to find cancers before they
start to cause symptoms. Since cancers at this stage are usually small,
the ability to extract the right information from the different imag-
ing modalities becomes crucial. Current imaging methods include ul-
trasound, digital mammography, MRI, positron emission tomography

Fig. 8. Example of 1D editors for occlusion. Top: the user highlights the
skin intensities (on the left, low opacity), vessels (red) and the menin-
gioma (orange). The occlusion curve appears towards the top, high-
lighting only internal structures (the tumor). Middle: the user increases
the opacity of brain intensities. Fatty tissue and other structures share
the same intensity and occlude the brain. Bottom: The user moves the
occlusion curve towards the top, so that only the internal structure (the
brain) is shown while the outer layers are left transparent.

(PET) and CT scans [10]. We used the occlusion spectrum to classify
tumors at varying stages from a set of patients obtained using breast
CT scans. Figure 9 shows a series of images from three different pa-
tients with different characteristics. In our experiments, we found that
the occlusion spectra of these data sets are very similar, even with dra-
matic changes in the visibility. For example, Figure 9(middle) shows a
patient with a breast implant. Due to the quantitative nature of CT, the
implant shares the same intensity values of the tumor and glandular
tissue. In Figure 9 we see zoomed-in views of regions of interest, pre-
sumably containing cancerous tissue, for traditional (using intensity
and gradient modulation) and occlusion-based classification, on the
left and right insets, respectively. In general, intensity and gradient-
based classification of the 3D volume can only focus on the glandular
tissue and requires low opacity to gain sufficient visibility. The result
is a rather homogeneous collection of fuzzy blobs, often obscured by
other non glandular tissue. If the radiologist requires to add other tis-
sue for context, the tumor would not be seen unless a cutting plane
is introduced. With occlusion-based classification, on the other hand,
the results are more clearly segmented from the surrounding tissue and
can even show some of the vascular structures that feed the growing
tumor. In our preliminary evaluation of our technique, an expert in
breast cancer imaging found the results of our classification most use-
ful since we show, for the first time, a clear view of the tumor and
the surrounding blood vessels. In traditional imaging, the radiologist
goes back and forth between a set of 2D images, and, depending on
the size and orientation of certain features, determines whether a par-
ticular blob is a vessel or a tumor.

We have also discussed our results with a surgeon specialized in
cancer treatment. As suggested by the expert, one important implica-
tion of occlusion-based classification is the extraction of layers, essen-
tial for the planning of surgical procedures, especially for the treatment
of cancer. Although radiologists are still used to 2D medical visualiza-
tion metaphors, the use of 3D imaging often lets them see new struc-
tures that may imply updates in a planned surgical procedure. The
ability to depict the different layers surrounding a tumor lets surgeons
determine the best course of action and whether a particular surgical
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Fig. 9. Occlusion-based classification of CT scans for breast cancer detection. For each data set, we show at the bottom the result of classification
based on intensity and gradient magnitude modulation vs. occlusion-based classification, for regions containing tumors. Boundary-based transfer
functions get visibility of the tumor at the expense of reducing the opacity and clarity of the image. With an occlusion transfer function, we can
render a more defined surface of the tumor, as well as the nearby vessels and skin for context.

procedure is warranted. For example, certain tumors can be treated
with thermal ablation as an alternative to open surgery, reducing the
health risks of the patient.

5.2 Simulation of 3D Phenomena

Another interesting domain is the visualization of simulation data sets.
Although the occlusion spectrum for anatomical data sets seems to
correlate to specific organs and tissues, there is no evident analogy in
simulation data sets. However, the occlusion spectrum tells us about
the relative spatial distribution of quantities of interest. The occlusion
transfer function therefore enables the scientist to formulate questions
such as what is the distribution of a given range of values, e.g., ve-
locity or vorticity, in the interior of the volume as compared to its
exterior. For example, in combustion simulations, regions of weakly
burning flames are often obscured by strongly burning regions. These
obscured regions, however, are of most interest to scientists interested
in understanding processes such as reignition.

A similar problem occurs in hydrodynamic simulations such as the
simulation of core collapse supernovae. The scientists are interested in
visualizing the interplay of different quantities such as pressure, den-
sity and energy that result in shock waves and the ensuing explosion.
The direct visualization of entropy has been a common way of under-
standing the formation and behavior of these shockwaves. However,
these shockwaves are often formed in both the internal regions near
the core and the outermost regions. Therefore, visualizing these quan-
tities near the core becomes difficult. An example is shown in Fig-
ure 10, where the visualization of entropy at the interior is obscured
by the outer shells of entropy. As an alternative, most visualization
systems let the user define a cutaway, which provides visibility of the
core and the surrounding entropy (Figure 10(middle)) However, this
results in the formation of structures due to the cut that are not in
the original data set and may be misleading. Here we can classify
in terms of occlusion. In this transfer function, we maintain the same
color mapping and intensity opacity, but modulate opacity with respect
to occlusion, so that innermost regions are assigned a higher opacity.
The result is shown in Figure 10(right). Note that the same internal
structures are shown, but without the misleading issues introduced by
a cutaway. An important consideration when applying occlusion to
simulation datasets is their temporal nature. From time step to time
step, the occlusion spectrum varies. Therefore, an occlusion transfer
function that highlights certain region may not be as effective for the
next transfer function. This, however, is not exclusive of the occlu-
sion spectrum but also to general 1D and 2D histograms, and general

solutions to both must be sought after.

6 CONCLUSION

We have presented a novel technique for classifying volumetric ob-
jects based on occlusion. The issue of occlusion has been the focus of
numerous efforts, mostly in an attempt to minimize it and provide vis-
ibility of otherwise obscured structures. In this paper, we have shown
that we can understand occlusion in a rather different way, which is a
scalar field that encodes, in a single dimension, the spatial structure of
complex datasets. We presented the occlusion spectrum of a volumet-
ric dataset, which encodes the 2D distribution of intensity values and
occlusion. This space separates structures based on the distribution of
intensities in their neighborhood. Therefore, the occlusion dimension
directly maps, in most cases, to the internality of a structure. Features
that appear isolated or at the exterior of larger structures can be clearly
separated from those at the interior.

In our validation with medical imaging experts we found that oc-
clusion (1) is an easily grasped concept that relates directly to the way
they interact with anatomical data and that helps decide certain proce-
dures such as surgical planning, and (2) leads to better quantification
of cancer tumors due to the ability to isolate them without the need for
segmentation. One of the issues of 2D transfer functions is the higher
dimensionality of the classification space, which implies a number of
user interface challenges. In our experiments, we found that the oc-
clusion spectra of data sets of certain type maintain some similarity.
Therefore, it is possible to generate classification templates that can
be re-targeted across data sets without much user intervention. Since
ambient occlusion is spatially coherent and easy to implement in con-
temporary graphics hardware, we believe it can be deployed in most
visualization systems without much effort. Combined with other ca-
pabilities, such as cutaway planes and advanced lighting, occlusion-
based volume rendering can be used to obtain images with unprece-
dented clarity and quality.
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Fig. 10. Occlusion-based classification of a supernova simulation. Left: traditional classification via a 1D transfer function based on intensity value
(entropy) enhanced with gradient magnitude modulation. Middle: To visualize internal dynamics, scientists often use cutaways, which introduce
additional structure due to the cut. Right: an occlusion TF lets scientists see internal dynamics without losing information due to cuts.
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