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Abstract� The visualization of complex 3D images remains a challenge, a fact that is magni ed by the dif culty to classify or
segment volume data. In this paper, we introduce size-based transfer functions, which map the local scale of features to color and
opacity. Features in a data set with similar or identical scalar values can be classi ed based on their relative size. We achieve
this with the use of scale elds, which are 3D elds that represent the relative size of the local feature at each voxel. We present
a mechanism for obtaining these scale elds at interactive rates, through a continuous scale-space analysis and a set of detection
lters. Through a number of examples, we show that size-based transfer functions can improve classi cation and enhance volume

rendering techniques, such as maximum intensity projection. The ability to classify objects based on local size at interactive rates
proves to be a powerful method for complex data exploration.

Index Terms�Transfer Functions, Interactive Visualization, Volume Rendering, Scale Space, GPU Techniques.

1 INTRODUCTION
One of the challenges visualizing volumetric data sets is the rendering
of features of interest so that they stand out from the inherent noise
and other less interesting features, which may occlude or add clut-
ter. A number of approaches have been proposed to deal with this
problem, including rendering operations, segmentation and manipu-
lation techniques. Despite the proliferation of rendering and manip-
ulation techniques, the use of transfer functions is still the predomi-
nant method. Transfer functions map scalar data values at each sam-
ple point to color and opacity. In many cases, rst and second order
derivatives of the scalar eld are used to improve classi cation or add
lighting to volume rendered data [14, 8]. In other cases, it is possible to
incorporate geometric or semantic information when applying transfer
functions, such as spatial coordinates, curvature, spatial frequency or
user-de ned tags. Some of these result in a multi-dimensional trans-
fer function space, and require ef cient manipulation mechanisms to
be properly deployed in visualization systems. In this paper, we pro-
pose a new dimension to de ne transfer functions: the relative size of
features. Size, understood as the magnitude of the spatial extents of a
given part of a volume, is an intuitive concept that can be manipulated
more easily than high-dimensional values.

With size-based transfer functions (SBTF), it is now possible to map
color and opacities based on the relative size of features. For example,
detection of aneurysms requires the visualization of convoluted vascu-
lar structures. Large and small features alike often appear with similar
or identical density in MR imaging or angiography. If we incorporate
size to derive a transfer function, large parts, such as an aneurysm, can
be mapped to different color and opacities than the normal vessels. An
example is shown in Fig. 1. Note how the aneurysm is clearly marked
in a different way than small vessels. In other cases, small features are
also important. For example, the detection of cancer cells requires the
analysis of small features on a mammograph, including veins, arteries
and cancer tumors. The ability to visualize the relative size of features
enhances the presence of these cells over other larger structures. A
similar need exists for detecting pores and cracks for non-destructive
testing in industrial CT. With a size-based transfer function, it is now
possible to highlight sizes of interest.

One of the desired properties of a size-based transfer function is
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that size, analogous to density in a volume data set, should be con-
tinuous. This is a natural assumption, since features usually exhibit
spatial coherence. For example, the color mapping used to classify
the aneurysm in Fig.1(middle) shows subtle changes in the width of
the vessels, which otherwise would be classi ed identically. With our
approach, we can now see these small variations in size, while still
visualizing global differences between large and small features.

This continuous representation of size is achieved with scale fields,
which are scalar elds where every voxel represents the local scale or
size of the feature containing that voxel. This idea contrasts with pre-
vious approaches to multi-scale analysis, which enhance classi cation
or segmentation using a pyramid representation of a volume. Pyramids
often result in discrete � and usually disperse � representation of scale,
and they seldom offer the possibility to detect small variations in size.
Instead, we derive a methodology for computing scale elds based
on continuous scale-space theory and a set of scale detection lters.
Scale-space theory was introduced by the computer vision community
to analyze and process 2D images [15, 33], and has been widely used
for diffusion-based smoothing of 3D volumes. In this paper, we show
how diffusion mechanisms can be derived to improve scale selection,
and how this information can be used to build a scale eld. Unlike
previous attempts for scale-space analysis of a volume, which were
mostly applied as off-line operations due to its computational cost,
our methodology allows the user to manipulate the parameters inter-
actively, which proves to be a powerful mechanism for visualizing and
exploring the complex structure of data volumes.

2 RELATED WORK

Despite the fact that volume rendering has become a commodity, trans-
fer function design is still a challenge. Many methods have been pro-
posed to that end, which can be broadly classi ed as image-centric and
data-centric [22]. Our work follows a data-centric approach, where a
transfer function is derived by analyzing the volume data. The pre-
dominant approach derives a 1D transfer function based on scalar data
values. Some have proposed higher-dimensional transfer functions
based on rst and second order derivatives of a volume, i.e., gradi-
ent information [14, 8] and curvature [6, 9]. These ideas have been
extended to include rendering parameters, leading to lighting transfer
functions [17] and illustration-inspired operators [23, 1]. Manual de-
sign of these high-dimensional transfer functions, however, remains
a dif cult task. To alleviate this problem, researchers have proposed
better interaction techniques, e.g., widgets [10] and user painting [28],
and semi-automatic methods that exploit additional properties of the
data. For example, Roettger et al. proposed spatialized transfer func-
tions [24], improving 2D histograms with spatial information. Fu-
jishiro et al. [4] and Takahashi et al. [27] extract topological struc-
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Fig. 1. Size-based classi cation of an aneurysm (250×250×125). (Left) 1D transfer function based on scalar value. (Middle) Size-based classi -
cation, where size maps to color and scalar value to opacity. (Right) Size-based classi cation, where opacity is the product of opacity mappings
from both scalar value and size, in this case emphasizing larger features. Color mapping is same as (left).

tures to derive transfer functions, while Correa and Silver use curve-
skeletons to de ne transfer functions along features [3]. Huang and
Ma use partial region growing to facilitate the generation of transfer
functions [7]. Enhancing transfer functions with computed or acquired
values often results in an even more complex feature space. For this
reason, we propose a new de nition of transfer functions that maps
the local size of features to color and opacity. Unlike other complex
spaces, size can be de ned in a single dimension and it complements
easily traditional transfer functions.

Our methodology for extracting size is based on scale-space anal-
ysis. Scale-space theory is a framework for multi-scale analysis of
images, developed by the image processing community [11, 15, 33].
At the core of this framework is the realization of a multi-scale repre-
sentation of images that exhibits certain axiomatic principles about its
uniqueness and invariant properties. The most common is the linear
scale space, obtained with progressive Gaussian smoothing. Applica-
tions abound, including diffusion [30, 21], feature detection and auto-
matic scale selection [16]. The study of scale-space in visualization
has been limited, partly due to the increased computational complex-
ity of 3D volumes. Previous alternatives to represent the scales of a
volume used Laplacian pyramids [5] or Wavelet transforms [20, 32].
Westermann and Ertl [32] use a hierarchical multiscale representation
to enhance structures such as edges and improve volume rendering.
Vincken et al. [29] and Lum et al. [18] use pyramid representations
to improve volume classi cation. These techniques re ne the classi -
cation of a given voxel based on its behavior across the scales in the
pyramid. Pyramid approaches, however, subsample the data in both
space and scale. Here, we use continuous scale-space to derive high-
quality scale maps, which are used to classify along a single dimen-
sion, size, orthogonal to scalar value. This property not only allows
to de ne transfer functions based on size, but also improves classi -
cation. Continuous scale-space analysis has been used to detect and
enhance vascular structures in medical images [19, 12], in segmen-
tation [26], and shape detection [25]. In the latter, multiscale lters
help detect features of varying shape, such as sheets, lines and blobs,
and allows them to design transfer functions based on shape. In a
similar fashion, we derive lters to detect size and use it as an extra
dimension in transfer function design. In that sense, our approach is
complementary to that of Sato et al [25]. In this paper, we propose a
novel formulation of nonlinear diffusion that improves scale detection,
and a mechanism to create a continuous representation of scale based
on scattered data interpolation.

3 CONTINUOUS SCALE SPACE
Continuous scale space is a framework developed by the computer
vision community to analyze the multi-scale nature of data. Given

a continuous N-dimensional signal f : RN �→ R, its linear continuous
scale space representation is a family of signals L : RN ×R+ �→ R that
satisfy the diffusion equation:

∂tL =
1
2

∇2L (1)

with initial condition L(x;0) = f (x). It has been shown that the solu-
tion to this equation is given by Gaussian smoothing of the signal with
kernels of size t:

g(x; t) =
1

2πt
e

−||x||2
2t (2)

The parameter t is therefore referred to as the scale parameter, and
the linear scale-space representation of the signal can be computed via
convolution:

L(x; t) = g(x, t)∗ f (x) (3)

This result comes from the assumption that Gaussian smoothing is
the only lter that satis es �reasonable� axioms for scale space. These
axioms include linearity, isotropy, shift and scale invariance, and non-
creation and non-enhancement of local extrema [15]. Some of these
axioms have been relaxed, which has led to nonlinear and anisotropic
scale spaces [30]. One of the most important axioms, which is the ba-
sis of scale detection, is that local extrema in scale space should not be
created or enhanced as the scale parameter grows. In other words, new
level surfaces are not created as we increase the scale parameter. In the
following section, we describe how some of these axioms translate in
desirable properties of our methodology for extracting local size.

3.1 Feature Detectors in Scale Space
Lindeberg noted that feature detectors can be obtained by looking at
the behavior of the derivatives of the scale space along the scale di-
mension [16]. This has been widely exploited to extract edges, ridges,
blobs and corners from 2D images. In our approach, we are interested
in detecting blobs as Laplacian maxima in both scale and space. The
scale at which the blob is detected, i.e., the t parameter, is the repre-
sentative scale of the blob. This means that a Gaussian blob of width t,
and centered around the detected point, can be used to �describe� both
the size and location of the structure of the image at that location.

Scale-space representations are intrinsically different than pyramid
representations. Pyramids are constructed by subsampling in both
scale and space. Due to the the space subsampling, it is dif cult to ac-
curately locate Laplacian maxima for higher scales. Due to scale sub-
sampling, maxima points can only detected at discrete scales, which
are usually small compared to a uniform discretization of the scale-
space. Fig.2 plots the response of the scale detection lter for two
different points. On the left, the maximum is detected at scale 40.
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Fig. 2. Comparison of continuous scale-space vs. pyramids for scale
selection. We plot the response of a scale detection lter for two points
along multiple scales. Maximum points (circled) represent the intrinsic
scale of the voxel. In the left, a pyramid representation (dashed line)
incorrectly detects a maximum at scale 32, where it should be at scale
40. In the right, the pyramid results in a monotonically increasing curve
and no maximum is detected, where it should be detected at scale 48.

However, if we use a pyramid (dashed line), the maximum appears
to be at scale 32, due to the poor sampling of higher scales. On the
right, the maximum detected at scale 48 is not detected at all using a
pyramid, which seems to grow monotonically. A continuous approxi-
mation can be built from pyramids, assuming a reconstruction model,
at the cost of computational complexity.

Scale-space representations, on the contrary, can be tuned to detect
scales at varying degrees of granularity. This gives us the possibility to
create scale elds with varying degrees of precision, as described in the
following sections. Later on, we compare the result of our approach
based on continuous scale-space vs. a pyramid representation.

4 SCALE FIELD
The rst step towards applying size-based transfer functions is the es-
timation of a 3D scalar eld to encode size information, called the
scale field. The scale eld is a mapping S : RN �→ R, such that S(x) = t
represents the local scale of the feature containing the point x. We can
de ne this eld more formally as the tting of a continuous function S
to a set of points {xi; ti}, such that S(xi) = ti, and it exhibits certain de-
gree of continuity, where {xi; ti} ⊆ L represent the most salient points
in scale-space, according to a given detection lter. The process of
computing scale elds can then be decomposed into several steps, as
depicted in Fig.3:

Scale-space computation, which generates a multi-scale repre-
sentation of the 3D image, given an interval of �interesting scales�
[tmin, tmax].

Scale detection, which outputs a set of points {xi; ti}, which we
refer to as the scale abstraction of the 3D image, and nally

Backprojection, which ts a continuous function � the scale eld
� to the scale abstraction.

These steps are described in the following section. Because we are
interested in generating scale elds for the visualization of discrete 3D
images, we derive its computation for the discrete case. Therefore, we
use the terms scale field and discrete scale field (which is a discretiza-
tion of a continuous scale eld) interchangeably, unless speci cally
noted. We assume that the discretization occurs in a regular grid.

4.1 Scale-space Computation
Instead of costly convolution, we compute the scale space of a data set
iteratively, using forward Euler integration of the diffusion equation
(Eq. 1). Using a discretization stencil around a given point (typically
a 6-, 18- or 26-point neighborhood), we compute the representation at
a scale t +Δt iteratively,

L(x; t +Δt) = L(x; t)+Δt ∑
i jk∈N

αi jkΦ(L(xi jk; t)−L(x; t)) (4)

where N is a set of indices that point to the neighbors of a given point
x, αi jk are normalizing coef cients, and L(x;0) is the original image.
Φ is a ow function,

Φ(x) = x ·C(x) (5)

Diffusion

Scale Detection

SCALE ABSTRACTIONFIELDSCALE

VOLUME SCALE SPACE

Backprojection

Fig. 3. Overview of the process of obtaining scale elds.

where C is a conductivity function. For the linear case, the conduc-
tivity is constant and it is equal to 1. Perona and Malik introduced a
non-linear conductivity function based on gradient magnitude, which
preserves edges [21],

C(||∇L||) =
λ 2

λ 2 + ||∇L||2
(6)

where λ is a sensitivity parameter. As λ grows, C approaches 1 and
the result is linear diffusion. This function favors large regions with
certain degree of homogeneity and preserves edges.

When we consider variable conductivity for the diffusion problem,
it becomes equivalent to solving the non-linear diffusion equation,

∂tL =
1
2

∇ ·C(x)∇L (7)

This problem, however, is known to be ill-posed in the continuous case
and requires regularization factors [2]. Weickert also noted that, in the
discrete case, a nite difference discretization acts as a regularizer and
stable results can be obtained for certain values of Δt (typically ≤ 1).
Alternatively, Weickert suggests to de ne conductivity as a tensor in-
stead of a scalar [30]. We derive our own variation of non-linear con-
ductivity that improves scale detection, as described in the following
section.

The user can control the diffusion process with two parameters: the
number of iterations n of Eq.4 and the scale sampling distance Δt.
These parameters indicate the minimum and maximum sizes that can
be detected. One can automate the selection of the parameters, assum-
ing the user wants to detect all possible sizes, by setting n = Dim/Δt,
where Dim is the dimensions of the volume. Setting Δt = 1 de nes the
minimum detectable size as the size of a voxel. Sub-voxel sizes can be
detected by setting Δt < 1.

4.2 Scale Detection
A number of detection lters can be obtained from the scale-space of
a volume by looking at the rst and second derivatives. In particular,
blobs can be detected at multiple scales whenever the normalized sec-
ond derivative ∇2L assumes a local maxima. This is obtained as the
normalized Laplacian,

t∇2L = t(Lxx +Lyy +Lzz) = tTr(H(x)) (8)

where H(x) is the Hessian matrix at a point x. The set of these points
which are maxima in both space and scale � here denoted as Laplacian
of Gaussian (LoG) extrema � together with the scale parameter t at
which they were found, constitute the scale abstraction of the data
set. Fig.3 shows the scale abstraction for an aneurysm data set where
spheres are used to indicate the location and size of the detected blobs.
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Fig. 4. Pyramid vs. Scale-space. On the left, scale maps constructed
from a pyramid exhibit poor granularity of the scales and poor localiza-
tion. Note the discrepancy between the largest scale (red circle) and
the aneurism. On the right, scale map based on our approach leads
to a continuous representation of scale with better localization. The
aneurism is correctly detected as the largest feature.

Using linear diffusion to detect scales may result in two or more
nearby objects merging in a single blob before they are detected as
individual features. In such cases, the scale maxima are not local-
ized accurately. For this reason, we seek to develop a lter that favors
diffusion in regions of a given homogeneity, but prevents diffusion
over edges. The original Perona-Malik lter does not seem of interest
since diffusion stops at the edges. This generates a lot of false max-
ima responses that need to be pruned. Instead, we want to control the
direction of diffusion, so that it only crosses boundaries in the direc-
tion towards the medial axis of a feature. In our discretization stencil,
this can be achieved by considering the signed forward differences as
an approximation of the gradient, instead of using the unsigned gradi-
ent magnitude. Assuming the discretization in Eq.(4), we construct a
different conductivity function,

C(L(xi jk)−L(x)) =

{
λ 2

λ 2+(L(xi jk)−L(x))2 L(xi jk)−L(x) > 0

1 otherwise
(9)

where λ is a sensitivity parameter controlled by the user to de ne pos-
sible boundaries between features. Small values (λ ∈ (0.01,0.1)) lead
to better localized scale maxima (useful for convoluted structures),
while large values (λ > 1) makes diffusion linear. Although it results
in slight deviations of the scale maxima, it is in general more robust to
noise. The effect of our lter is similar to that of progressively apply-
ing smoothing and erosion lters.

Previous approaches based on pyramids follow the linear diffusion
formulation, with the additional subsampling in both scale and space.
Subsampling in scale results in a limited number of detected sizes,
which underestimate or overestimate the representative scales of fea-
tures. Subsampling in space compounds the localization problem. Fig-
ure 4 shows a comparison of an SBTF applied to an aneurism data set.
On the left, the scale abstraction is computed via a Laplacian pyramid.
The scale abstraction is depicted on the lower left corner as a series of
spheres. When we superimpose the largest spheres onto the original
image, we see that this method greatly mislocates the largest feature.
In addition, the granularity of the detected scales does not capture the
subtle variations of the different features. This result is representa-
tive of previous multi-scale classi cation methods, such as the one by
Lum et al. [18]. On the right, we show the results of our approach.
Note that the distribution of scales is smoother and they are correctly
localized in space. Now the aneurism, highlighted in red, is clearly
extracted from the nearby structures. One can improve the results of
the pyramid by adding interpolation between different levels. To avoid
the problems described in Fig.2, one can approximate the scale-space
with higher order interpolation, as suggested by Kothe [13]. This will
improve the granularity of the scales. Localization, however, may not
be improved, since it is the product of our nonlinear diffusion lter.
In that case, one could construct an anisotropic diffusion pyramid, and
this is the focus of our future research.

(a) Original (b) Intensity (c) Gaussian (d) S&P

Fig. 5. Robustness to intensity variation and noise. (a) Original data
set consisting of spheres of random size, (b) intensity variation (no-
tice the change in opacity and color), (c) Gaussian and (d) Salt-and-
pepper noise. Bottom: Size-based classi cation. Color is mapped to
size so that blue and white indicate smallest features, while yellow and
red larger sizes. Classi cation is robust to both intensity variation and
noise. Modulating the opacity based on size, so that smallest features
are more transparent, results in noise suppression.

4.3 Backprojection
The previous stage outputs a set of discrete points that represent the
most salient scales of the volume. For a continuous and smooth trans-
fer function, we need to t a continuous representation. One option is
to de ne a local descriptor as the maximum response of the normal-
ized LoG at every single voxel. This, however, does not result in an
intuitive representation of size, since this function decreases for voxels
away from the LoG extrema. Instead, it is reasonable to assume that
all voxels within a radius t of a LoG extrema (x; t), can be described
with a size t.

Because these blobs may intersect, we must t a scale so that
it exhibits certain degree of continuity. This can be accomplished
with scattered data interpolation. A fast method can be obtained
with Shepard�s interpolation. Given a scattered set of LoG extrema
N = {(xi; ti)}, the scale eld S can be obtained as

S(x) = ∑
xi∈N

Θ(||x−xi||)ti (10)

where Θ(d) is a basis function. Common basis functions are Gaussian
kernels and Wendland polynomials [31]. In our approach, we use the
fourth degree Wendland polynomial, due to its compact support:

Θ(d) =
(
[1−d/h]10

)4
(4d/h+1) (11)

where [·]10 is a clamping function between 0 and 1, and h is a pa-
rameter that controls the local support of the basis function. As h
increases, more overlap among kernels is obtained, which increases
the smoothness of the eld, at the cost of less distinction between the
different scales. One can set h = kti, i.e., proportional to the repre-
sentative scale, where k is usually 1. The user may adjust above and
below this value to explore scale elds of varying smoothness. Al-
ternatively, one can blend the scale blobs with the maximum operator,
instead of a sum, in which case the resulting scale eld is given by
S(x) = maxxi∈N{Θ(||x−xi)ti}. This is useful when we must give pri-
ority to larger features and avoid smoothing away the scale variation.
Our results in Fig.7 and 8 use this operator. In Section 6, we show
that this method can be implemented in the GPU, using hardware-
supported blending methods. Because this interpolation is based en-
tirely on the scale abstraction, bleeding of a scale into a small feature
may happen. This occurs when a small feature gets embedded in the
blob surrounding a large feature. In this case, we can improve the con-
struction of the scale eld with a visibility test. The visibility test is
used to modulate the weight of the LoG extrema at a given point. If a
sample point is not �visible� from the LoG extrema, then its weight Θ

1383CORREA AND MA: SIZE-BASED TRANSFER FUNCTIONS: A NEW VOLUME EXPLORATION TECHNIQUE



Opacity

Scalar
value

Scalar
value

Color

x
Color
Opacity

Gradient

Value 
Scalar

OpacityScalar
Value

Size Color

Opacity

Scalar
Value

ColorSize

Size

(a) (b) (c) (d)

Fig. 6. Size-based classi cation of an unsegmented hand data set. (a) Traditional transfer functions make it dif cult to emphasize the vessels as
opposed to bones, where the difference in density is little (as is the case with many contrast-enhanced data sets). (b) 2D transfer functions only
improve classi cation marginally (c) With a size-based transfer functions, the user can now assign colors based on size. In this case, the opacity
mapping is maintained from (a). (d) By using size to map color and also opacity, it is now possible to highlight certain parts, e.g., veins and small
vessels, while hiding other parts, e.g., skin. Note that results are comparable to those of rendering a segmented data set.

becomes 0. A visibility parameter τ is used to control the sensitivity
of this test. This parameter is essentially a thresholding value, and can
be based on scalar value or gradient magnitude. A voxel is not visi-
ble from the LoG extrema if at some point in the ray connecting the
two positions the intensity is below a threshold. Alternatively, one can
threshold based on gradient magnitude. An example is shown in Fig.7.
The scale eld allows us to classify the brain tissue together with the
neighboring vessels. With a visibility threshold, we prevent the scale
to be backprojected to those voxels that correspond to vessels, giving
a better classi cation of the brain. It must be noted that this is a fast
approximation that works well for scale elds, and that more accu-
rate results can be obtained with a region growing approach. This can
be added into our methodology as a post-process based on our initial
size-based classi cation.

4.4 Properties
The use of diffusion-based scale-space has interesting properties,
which prove important for visualization.

4.4.1 Robustness to Noise
Because this method is based on diffusion, it is inherently robust to
noise. To illustrate this, Fig.5(c-d) shows a series of synthetic data
sets consisting of randomly sized spheres in a volumetric domain with
Gaussian and salt-and-pepper (S&P) noise. In the bottom, we show
the classi cation of the spheres based on their size (red is the largest).
We can see that the classi cation does not suffer from the levels of
noise (compare to Fig.5(a)). Furthermore, noise is represented in the
smallest scales of the scale eld for both Gaussian and S&P noise. A
size-based transfer function that vanishes for small values can be used
to suppress the noisy voxels, as shown in Fig.5.

4.4.2 Invariance to Intensity
Another interesting property is its invariance to intensity changes. De-
tection of extrema in the Laplacian is independent of the local inten-
sity contrast. This means that features of different density but similar
size will be represented similarly in the scale eld, as shown in Fig.
5(b). This is important for size-based classi cation, as it provides or-
thogonality. Now, it is possible to create 2D transfer functions with
scalar-value on one dimension and scale in the other.

4.4.3 Progressive Construction
This is a consequence of two of the scale-space axioms, scale invari-
ance and non-enhancement of local extrema. These state that the oper-
ations that compute scale space are used in the same way for any given
scale, and also, that the transformation from the original image to any
scale is the same from a ner scale to any coarser scale. This implies

that the scale-space can be constructed progressively, and intermediate
results are valid approximations. That is, the scale eld at a given scale
is the same whether it is obtained from the original volume, or from an
already smoothed version of the data set. This also has an important
implication for interactivity, since large data sets (> 5123) do not need
to be analyzed at their full resolution. The scale eld can be of a lower
resolution, and the resulting scales (except for the granularity of which
they are obtained) are the same.

5 SIZE-BASED CLASSIFICATION
With a scale eld, we have obtained the necessary information to apply
a size-based transfer function. An SBTF can be de ned as a mapping
S �→ O, where S is the scale eld, and O is a set of optical proper-
ties, typically a four dimensional tuple containing color and opacity
attributes. In general, we want to combine the scale eld with the
original scalar data values to improve classi cation. The resulting
transfer function is then obtained from a Cartesian product of elds,
S×F1 × ...×Fn �→ O , where F1, . . . ,Fn are scalar elds. In most of
our examples, the opacity is both the product of size S and the original
scalar values F .

Fig.1 shows a visualization of an aneurysm. Fig.1(left) and (mid-
dle) use the same opacity values, but in Fig.1 (middle), color values are
obtained from an SBTF. The global differences in size become imme-
diately apparent. On further inspection of the image, subtle variations
on the width of the vessels also become apparent. In Fig.1(right), the
SBTF is used also to de ne opacity, enabling the user to highlight au-
tomatically large features.

Fig.6 shows the classi cation of an unsegmented CT scan of a hu-
man hand. With 1D transfer functions, it becomes dif cult to separate
voxels belonging to vessels and those in bone tissue. A 2D transfer
function, although improves classi cation, cannot properly separate
the two. The difference, however, can be resolved via an SBTF. In
Fig.6(c), we map size to colors, while scalar value is mapped to opac-
ity (the same transfer function as in Fig.6(a). We can see a consid-
erable improvement in classi cation. Further, small vessels are also
classi ed based on their width. In Fig.6(d), opacity is mapped as the
product of two opacity functions, based on scalar value and size, re-
spectively. Now the skin tissue can be de-emphasized, while vessels
and bone are emphasized.

Fig.9(a) shows an MR angiogram of a human head. Fig.9(b) shows
the size-based classi cation of the same data set. When analyzing vas-
cular data sets, maximum intensity projection (MIP) (Fig.9(c)) is often
more effective than direct volume rendering. One of the problems is
the dif culty to emphasize structures of interest, due to the accumu-
lation of intensity. With an SBTF, we can map opacity directly to the
rendered samples, to obtain a size-adapted MIP rendering of the an-
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giogram. Figures 9(d) and (e) show a rendering where we highlight
and suppress the large features, respectively.

5.1 Applications to Volume Rendering and Exploration
Similar to previous multiscale approaches, an SBTF helps classify and
segment complex data sets. Fig.7 shows an MRI of a brain. Classify-
ing the brain is dif cult, since other occluding tissue, such as skin, is
represented in the same density interval. However, when applying an
SBTF, skin and skull tissue appear as small features, since they are
relatively thin in comparison to brain tissue. By setting high opacity
to the large features, now we can clearly separate the brain tissue, as
shown in Fig.7(b). Note that some vessels and surrounding tissue is
part of this large feature. In Fig.7(c), we set the visibility parameter
to prune voxels that do not correspond to brain tissue, which results
in a clear view of the brain. The rendering results are comparable to
lengthy segmentation, but at higher speeds. Furthermore, the scale ab-
straction already provides a set of points that can be used as seeds for
segmentation. Fig.8 shows a classi cation of an MRI knee, a noisy
complex data set. Transfer functions based on scalar value cannot sep-
arate muscle, skin and bone properly. With an SBTF, we can now
clearly classify the different tissues. Note that even bones of differ-
ent size are assigned slightly different colors. The spatial relationship
between the different overlapping structures is now clear.

Fig.11 shows a CT scan of multiple objects in a backpack. The dif-
culty to isolate features is lessened with an SBTF. This data set con-

tains a number of objects of varying size, which can be identi ed now
based on size. However, as we explore the entire scale-space, smaller
sizes cannot be distinguished. For this reason, we can apply SBTF se-
lectively, by considering sub-regions of the data. Fig.11 shows three
stages of zooming into the data. At each stage, a new SBTF reveals a
higher granularity of sizes. Towards the right, we can detect and high-
light the differences in size of the small parts of an object, impossible
to detect at the full resolution. Compare to the image on the right,
where classi cation based solely on scalar value does not help isolate
each part.

6 GPU IMPLEMENTATION
Our GPU implementation uses widely available features such as pro-
grammable shaders and framebuffer objects. The different stages de-
scribed in section 4 are implemented using pixel shaders over multiple
passes. In previous multi-scale approaches, a Laplacian or Gaussian
pyramid is stored in GPU memory. However, storing a full scale-space
in GPU memory is prohibitive. For example, a 2563 volume would
need 1GB of memory to store up to 64 scales at 8-bit resolution, or up
to 16 at 32-bit resolution. For this reason, we compute the scale elds
on a per-iteration basis, which only requires one temporary volume
at a time. Therefore, the stages of scale-space computation and scale
detection are merged into a single pass:

Scale detection: We solve the diffusion equation by imple-
menting Eq. 4 in a pixel shader. The shader uses as an input
a slice of the 3D texture and the output is written also to a 3D
texture slice, which is subsequently used in the next iteration.
To avoid simultaneous reads and writes, we use a ping-pong
approach. To speed up the process of scale detection, we com-
pute the second derivatives in the same pass. We also keep the
derivatives of the previous two steps in order to nd scale-space
maxima. We encode this so that we use the four channels of a pixel[
R : L(x; t +1),G : ∇2L(x; t +1),B : ∇2L(x; t),A : ∇2L(x; t −1)

]
,

where t is increased at each iteration. The scale maxima is then
found by writing out a pixel when the value of the Laplacian at a
given iteration (here stored in the blue channel) is the maximum of
the Laplacian of the neighbors in iterations t − 1, t and t + 1 (here
stored in the GBA channels, respectively, for each iteration). As we
increment our iterations, those pixels denoting scale maxima are read
back to the CPU and stored as the scale abstraction.

Backprojection: To implement backprojection, we generate a se-
ries of small slices for each scale-space blob, with sides proportional to
their radii. Each pixel generated by these slices compute the weighted
contribution of the blob. We then use blending to implement the sum.

In another pass, we normalize the result by dividing by the sum of
weights, which is stored in a different channel . To evaluate our ap-
proach, we implemented a comparable CPU version and obtained tim-
ing results. We used an Intel Core 2 Duo 2.4 GHz with 2GB of RAM
and an nVidia GeForce 8800 GTX with 768 MB of texture memory.
Figs. 10(a) and 10(b) show the timing for the scale-space computation
and backprojection stages, respectively, in seconds, for three data set
sizes (643, 1283 and 2563). We can see an improvement of about two
orders of magnitude in both cases. A CPU implementation then proves
to be impractical for interactive visualization. In Fig.10(c) a stacked
line diagram compares the timing between the two stages in the GPU.
Since most of the cost is required to compute the scale abstraction, we
can decouple this stage from backprojection. Scale-space computation
is done once, and re-computed only as the user changes the diffusion
parameters, while backprojection can be done more frequently, as the
user changes the smoothness and visibility parameters.

6.1 Limitations and Future Work
One of the limitations of our approach is the reliance of a temporary
volume to compute the scale eld. As GPUs improve, we believe that
parts of our methodology will be implemented in real-time and embed-
ded in the volume rendering process. However, since interesting sizes
can be detected with a lower resolution scale eld, we believe that our
approach is still valid for larger data sets. Although a 5123 full pre-
cision scale eld cannot be accommodated in current GPU hardware,
we can still create an interesting scale eld at a lower resolution, re-
stricting the detectable sizes to the resolution of the scale eld. If we
subsample by a factor of 4, features of sizes from 1 to 4 voxels wide
cannot be discerned (they will be collectively detected as the small-
est size). However, detection of sub-voxel sizes can be obtained by
analyzing sub-regions at a time (so that each of them can fully t in
texture memory), as shown in Fig.11. We believe that this is a prac-
tical solution to limited texture memory, and encourages multi-scale
exploration of large data sets.

One of the aspects of our approach, being based in diffusion, is g-
ure/ground separation. Our approach works best when features can be
clearly separated from the background. In other cases, such as in ow
simulation, density may vary smoothly across the entire domain. In
this case, similar to other classi cation approaches, a thresholding is
needed to clearly de ne the features of interest. Similarly, detecting
holes and cracks in industrial CT implies the classi cation of back-
ground as opposed to gure voxels. Since diffusion tends to move
from high intensity to low intensity values, holes will not be detected.
In that case, a gure/ground reversal solves the problem.

Another aspect of our approach is that our diffusion lter is still
isotropic. This means that features are tagged according to the small-
est size of their local structure. For large narrow structures, the inher-
ent scale is the width rather than the length. Although this has proved
to be a very useful descriptor, this can be extended to multiple types
of structures to reveal different sizes according to the shape of a fea-
ture, e.g., planar, tubular or blob-like. This can be accomplished with
locally adapted lters and it is currently ongoing research. This may
become a complement to shape-based classi cation approaches such
as the one introduced by Sato et al. [25].

7 CONCLUSION
We have introduced the concept of size-based transfer functions,
which maps the relative size of local features in a volume to color
and opacity. Now it is possible to visualize complex data sets such
that features can be classi ed based on their relative size. Therefore,
small features can be clearly separated from large ones, especially
important when these features have similar scalar value. Size-based
transfer functions can be achieved with the use of scale fields, which
are 3D elds where every voxel represents the representative scale at
that point. We compute these scale elds via scale-space analysis and
a set of detection lters. While being prohibitive in the CPU, our
GPU implementation enables interactive exploration and can be easily
deployed in visualization systems. Through a number of examples,
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(a) (b) (c)

Fig. 7. Volume classi cation of the MRI brain data set (256×256×156) (a) Direct
volume rendering (DVR) using a 1D transfer function, and detected scales (b)
Size-based classi cation. Only large regions are highlighted, which correspond
to brain tissue (τ = 0, i.e. no visibility test is performed). Note how the brain is
clearly seen, together with some small vessels. (c) With the visibility test (τ = 0.3),
we obtain a better classi cation of the brain tissue. Note that small veins have
been removed.

(a) (b)

Fig. 8. Volume classi cation of an MRI knee data set (512×
512 × 87) (a) Original data set with a 1D transfer function,
and detected scales. (b) Size-based classi cation. Note that
bones, muscle and skin can now be separated. Furthermore,
individual bones van be classi ed differently due to their dif-
ference in size.

(a) (b) (c) (d) (e)

Fig. 9. Size-adapted visualization of angiograms (512×512×128). (a) Original DVR of angiogram (b) DVR of angiogram with a size-based transfer
function (c) MIP rendering of angiogram (d) Size-adapted MIP, where only the large features are highlighted (e) Size-adapted MIP, where the large
features are suppressed.

(a) (b) (c)

Fig. 10. (a) Timing of scale-space computation and detection for CPU vs. GPU implementations, for three data sets (643, 1283 and 2563) in seconds
(log scale). (b) Timing of the backprojection stage. Note that the GPU implementation is two orders of magnitude faster. The CPU implementation
is prohibitive for interactive exploration, while the GPU implementation approaches real-time for the smallest data sets. (c) Timing comparison
for scale-space computation and backprojection using a stacked line diagram. Backprojection is considerably faster compared to scale-space
computation, which enables us to decouple the stages of our methodology.
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Fig. 11. Volume rendering of the backpack data set (512× 512× 373). From left to right: (1) Traditional transfer function based on data values (2)
SBTF on the entire data set. Note that differences in size become immediately apparent. (3) Selective SBTF on a small region. At this scale, we
can now visualize more sizes of interest. (4) In a smaller region, we can nd differences in size undetectable from the entire dataset. In this case,
we are able to decompose the parts of an object based on size. Compare to classi cation based on scalar value on the right.

we have shown that classi cation of complex data sets is made eas-
ier. Rendering of vascular data sets, such as MRIs of aneurysms, can
now present to the user the subtle variations between different vessel
sizes. Size-based transfer functions also improve the way occlusion is
handled in volume rendering, and we have shown a number of exam-
ples where our approach achieves results comparable to those of time-
consuming segmentation. Furthermore, our approach readily provides
an abstraction, which can be used as a seed to more sophisticated seg-
mentation algorithms. Size-based transfer functions provide a novel
exploration technique that can be extended in a number of ways to-
wards a more intuitive visualization of complex data sets.
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