
Eurographics Symposium on Parallel Graphics and Visualization (2008)
J. Favre, K. - L. Ma, and D. Weiskopf (Editors)

A Scalable Parallel Force-Directed Graph Layout Algorithm

Anna Tikhonova† and Kwan-Liu Ma‡

Visualization and Interface Design Innovation (VIDi) Lab
University of California at Davis, USA

Abstract

Understanding the structure, dynamics, and evolution of large graphs is becoming increasingly important in a

variety of fields. The demand for visual tools to aid in this process is rising accordingly. Yet, many algorithms that

create good representations of small and medium-sized graphs do not scale to larger graph sizes. The exploitation

of the massive computational power provided by parallel and distributed computing is a natural progression for

handling important problems such as large graph layout. In this paper, we present a scalable parallel graph

layout algorithm based on the force-directed model. Our algorithm requires minimal pre-processing and achieves

scalability by conducting the layout computation in stages - a portion of the graph at a time, and decreasing the

amount of inter-processor communication as the layout computation progresses. We provide the implementation

details of our algorithm, evaluate its performance and scalability, and compare the visual quality of the resulting

drawings against some of the classic and the fastest algorithms for the layout of general graphs.

Categories and Subject Descriptors (according to ACM CCS): G.2.2 [Discrete Mathematics]: Graph Theory: Graph
Algorithms; H.5.0 [Information Systems]: Information Interfaces and Presentation: General

1. Introduction

In many diverse fields, including software engineering, bio-
informatics, and social network analysis, graphs provide
a powerful visual notation for representing relationships
among data items. Such graphical representation is useful
only if it reveals global and local structures within the data
and provides a means of discovering patterns, which are of-
ten hidden. It is the goal of a graph layout algorithm to gen-
erate such a representation.

In the last few decades, the graph drawing community
proposed numerous algorithms for automatically computing
graph layouts. Refer to [DBETT99, KW01] for a compre-
hensive survey of the field. Although graph layout and vi-
sualization have often been the subject of research, most of
this research focuses on creating more aesthetically pleas-
ing layouts of relatively small graphs or special classes of
graphs, such as trees and planar graphs. There are fewer
general purpose graph drawing algorithms, and even fewer
systems that deal effectively with large graphs. Systems

† e-mail: tikhonov@cs.ucdavis.edu
‡ e-mail: ma@cs.udavis.edu

that can handle datasets with thousands of vertices include
NicheWorks [Wil99], H3Viewer [Mun98], LGL [LGL],
Tulip [Tul], and Royére [Roy] (built using GVF [MHM01]).

One reason for this discrepancy is that the running times
of many graph layout methods are too slow to accommodate
larger graph sizes. For this study, we looked at various ex-
isting approaches for decreasing the running time of graph
drawing algorithms. A reduction in running time is only the
first step to designing a scalable solution. The large size of a
graph can compromise the performance of an algorithm that
works reasonably well on small and medium-sized graphs.
If a layout algorithm produces nice drawings for graphs of
several hundred vertices, this is not a guarantee that it will
scale up to several hundred thousand vertices. We argue that
scalability should act as a guiding heuristic for the design of
graph visualization systems.

Parallel and distributed computing provide massive com-
putational power demanded by the coming generations of
scientific applications. It seems natural to exploit this power
to provide fast and scalable algorithms for important prob-
lems such as large graph layout. It is difficult to compute
graph layouts in parallel because we cannot simply use a
divide-and-conquer approach and expect the algorithm to

c© The Eurographics Association 2008.

Anna Tikhonova & Kwan-Liu Ma / A Scalable Parallel Force-Directed Graph Layout Algorithm

scale. A scalable solution must be able to use increasing
numbers of computing resources to process large datasets
more efficiently (i.e., it must minimize the communication
overhead relative to the amount of local computation).

In this paper, we use parallel processing to develop a scal-
able parallel algorithm that delivers an approximation to a
force-directed model. Our algorithm requires minimal pre-
processing and achieves scalability by conducting the lay-
out computation in stages - a portion of the graph at a time,
and decreasing the amount of inter-processor communica-
tion as the layout computation progresses. The criteria we
use for evaluating our graph layout algorithm is performance
(running time), scalability, and visual quality of the result-
ing drawings. The visual assessment task involves compar-
ing the aesthetic qualities of our layouts with the drawings
produced by the other graph drawing algorithms.

The rest of the paper is organized as follows. In Section 2,
we review existing work on sequential and parallel graph
layout algorithms. In Section 3, we provide the details of our
algorithm and discuss the compromises we made to design
an algorithm that scales to large problem sizes. We provide
a visual assessment of results and evaluate the algorithm’s
performance and scalability in Sections 4 and 5, respectively.
Finally, in Section 6, we provide some concluding remarks
and discuss future work.

2. Related Work

Because of their conceptual simplicity and ability to pro-
duce aesthetically pleasing layouts, force-directed algo-
rithms have become the methods of choice for drawing gen-
eral graphs. Many visualization tools employ classical force-
directed algorithms that start with a random placement of
graph vertices and apply optimization methods to find the
minimum of a chosen energy function. The minimum energy
is achieved when the magnitude of net force on every vertex
is zero, i.e. an equilibrium state is reached. A layout with
minimum energy represents the most aesthetically pleasing
drawing of a graph.

The first practical algorithms for graph drawing include
the force-directed placement algorithm of Quinn and Breur
[QB79] and the spring embedder of Eades [Ead84]. Some
other popular methods include the algorithms developed
by Kamada and Kawai [KK89], Fruchterman and Reingold
[FR91], Davidson and Harel [DH96], and Noack [Noa06].

The problem with force-directed layout algorithms is that
they do not scale to graphs of large size. Even some of the
best variants such as the algorithm developed by Frick et
al. [FLM94] are estimated to have complexity of O(|V |3),
where |V | is the number of vertices in a graph. Given a large
number of nodes, this running time is unacceptably slow.

To generate graph layouts in less time, one natural ap-
proach is to compute approximate solutions that employ

heuristics rather than use expensive optimal solutions. Some
algorithms employ partitioning of the spatial domain in
order to approximate or even ignore interactions between
graph vertices located far away from each other. For exam-
ple, the grid-variant algorithm (GVA) of Fruchterman and
Reingold [FR91] subdivides the rectangular drawing area
into a regular grid. The grid is used to determine whether
two vertices are located close enough to each other in or-
der to significantly influence each other’s positions in space.
The forces between the vertices located far enough apart
are ignored. An example of a force-directed graph layout
algorithm that uses a more complex hierarchical partition-
ing of the spatial domain is the FADE [QE01] algorithm by
Quigley and Eades, which is based on the well-known N-
body method by Barnes and Hut [BH86]. The recent sur-
vey paper by Hachul and Jünger [HJ05b] cites more highly-
efficient force-directed techniques. Their paper also cites
other very fast methods for drawing large graphs that are
based on techniques of linear algebra instead of physical
analogies, but strive for the similar esthetic drawing criteria.

Multi-level approaches such as the ones by Harel and
Koren [HK00] and Walshaw [Wal00] provide a heuristic
method that utilizes a coarsening technique to cluster a
graph. The coarsened graph is laid out in space and the other
vertices are reintroduced in un-coarsening steps until a fi-
nal drawing is produced. The recent work by Frishman and
Tal [FT07] proposes a multi-level force-directed graph lay-
out on the GPU. The authors employ geometrical spectral
partitioning to break the graphs into smaller, similarly-sized
pieces, based on graph connectivity. The partitioning strat-
egy is used both for the multi-level approach and for com-
puting the layouts in parallel using graphics hardware. Graph
partitioning has been an active field of research in the HPC
community. Refer to [KL70,FM82,DFF∗03] for information
on parallel partition refinement algorithms.

There are several other parallel graph layout algorithms
available. Monien et al. [MRS95] parallelized the simulated
annealing algorithm by Davidson and Harel [DH96]. Both of
these algorithms were developed in the mid nineties. Though
Coleman and Parker improved the sequential method, as de-
scribed in [CP96], the parallelized algorithm has not been
altered. Mueller et al. [MGL06] address the problem of large
graph layout and visualization using larger display areas
(e.g., display walls). In their force-directed algorithm, each
processor is assigned its own visual sub-domain and the ver-
tices are divided evenly among the processors. Similarly to
the N-body method by Barnes and Hut, their algorithm com-
putes repulsion forces only between neighboring vertices.
For that purpose, each local sub-domain is divided into a grid
of cells, and the repulsion forces are computed only between
neighboring cells. In their paper, Mueller et al. demonstrate
scalability for problems containing up to eight thousand ver-
tices, run on up to eight processors.

Our research is aimed at developing a scheme that re-

c© The Eurographics Association 2008.

Anna Tikhonova & Kwan-Liu Ma / A Scalable Parallel Force-Directed Graph Layout Algorithm

quires minimal pre-processing and computes layouts for
graphs of up to a several hundred thousand vertices, using
a significantly larger number of processors.

3. Naive Approach

In this section, we describe a naive approach to designing
a parallel graph layout algorithm that approximates a force-
directed model. The following subsections delve into greater
detail about specific steps of the algorithm and discuss the
design challenges we faced to develop an algorithm that
scales to large problem sizes.

Before the computation of a graph layout can take place,
the graph vertices have to be distributed among processors.
In our method, the number of vertices assigned to each pro-
cessor does not depend solely on the total number of vertices
in a graph, but also on vertex degrees, i.e. the number of ver-
tex neighbors. We provide a more detailed explanation of our
vertex distribution strategy in Section 3.1.

As in the classic force-directed methods, the new position
of a vertex in a graph is determined by iteratively comput-
ing local and inter-processor (global) attractive and repulsive
forces during each iteration of the algorithm. Vertices that
are connected via an edge (neighbors) attract each other and
all vertices repel. The basic idea is that neighboring vertices
need to be placed close (but not too close) to each other, and
clusters must be separated from other clusters to avoid clut-
ter. The equilibrium state is reached when the attractive and
repulsive forces for each vertex cancel each other out and no
further movement of vertices is possible.

We evaluated the performance of this approach using sev-
eral test graphs of varying size and complexity. The sizes and
descriptions of the test graphs are provided in Table 1. The
performance results, provided in Table 2, do not demonstrate
the desired scalability. Subsection 3.3 provides an overview
of our optimized scalable parallel algorithm.

3.1. Vertex Distribution Scheme

Many parallel methods employ a simple strategy for dis-
tributing data elements among processors: given two param-
eters n and p, where n is the number of data elements and p

is the number of processors, each processor is assigned ⌊ n
p⌋

elements. This approach works well in cases where all the
elements are equivalent/independent.

Albert and Barabási [RB02] have shown that the degree
distribution of vertices in many graph models of real-world
systems has high variance. Examples of such models in-
clude social and neural networks, citations of scientific ar-
ticles, hyperlink structures, etc. For instance, in one of the
real-world graphs we used in our experiments the minimum
vertex degree is 1 and the maximum vertex degree is 105.
Using a strategy where every processor is assigned an ap-
proximately equal number of graph vertices, but which does

not account for the number of vertex neighbors, may lead to
poor load balancing. Imagine a graph that contains only a
few vertices of high degree that share edges with many low
degree vertices that have been distributed to other proces-
sors. If all the higher degree vertices are assigned to a single
processor, that processor might have to conduct more inter-
processor communication than other processors.

Load balancing is especially important for a scheme that
does not employ vertex migration. In such a scheme, the ver-
tices and their neighbors are always located on the same pro-
cessors they were assigned to during the initial distribution.
Our arguments against vertex migration are provided in Sec-
tion 3.2. In our algorithm, we employ a distribution strat-
egy that takes into account the number of edges each vertex
shares with its neighbors.

Figure 1: An illustrative example of two different vertex dis-

tribution strategies. The vertices (n = 11) are represented

as points, edges - as line segments, and processors (p = 4)
- as boxes. The first strategy shown is distribution that de-

pends solely on the number of vertices. Each processor is

assigned ⌊ n
p⌋ vertices. The use of this strategy might result

in one processor being assigned a large number of high de-

gree vertices, thus having to conduct more inter-processor

communication than other processors. The second strategy

shown tries to alleviate this situation by taking into account

vertex degrees. This strategy guarantees that the sums of de-

grees of the vertices assigned to each processor are approx-

imately equal, thus providing a more balanced distribution.

Figure 1 illustrates the two distribution strategies. The ver-
tices are represented as points (n = 11), edges - as line seg-
ments, and processors - as boxes (p = 4). The first strategy
shown is the simple distribution scheme that depends only
on the number of vertices. In this example each processor is
assigned ⌊ 114 ⌋ vertices. In a case where the neighbors of ver-
tices assigned to processor 0 have been distributed mostly to
other processors, processor 0 would have to conduct more
inter-processor communication than other processors. The
second vertex distribution scheme alleviates this possible

c© The Eurographics Association 2008.

Anna Tikhonova & Kwan-Liu Ma / A Scalable Parallel Force-Directed Graph Layout Algorithm

imbalance by distributing the vertices in a way that guar-
antees that the sums of degrees of the vertices assigned to
each processor are approximately equal.

3.2. Data Locality

As we mentioned previously, most graph layout algorithms
assign random initial positions to the vertices (i.e., positions
that do not depend on graph properties such as connectivity)
before the computation takes place. Then, the vertices are al-
lowed to move around until an equilibrium state is reached.
One challenge is to decide whether to implement vertex mi-
gration (move vertices from one processor to another when
they leave their processor’s spatial sub-domain or coordinate
range into another processor’s sub-domain) or to allow the
processor to keep its vertices throughout the entire computa-
tion even though their positions in space are changing. This
decision depends on the possible communication overhead
associated with each of the two schemes.

A naive vertex migration strategy, in which the vertices
are not regularly re-distributed, may lead to situations in
which the clustered vertices are gathered on just a few
processors. These processors might not only have to per-
form more local computation, but also conduct more inter-
processor communication than other processors. Our goal
for the design of this algorithm is to minimize the amount of
pre-processing and inter-processor communication. There-
fore, we decided against vertex migration. In our algo-
rithm, each processor keeps the original number of vertices
throughout the entire execution.

When the local force computation takes place, no com-
munication is necessary, because all the data required for
the computation is local. On the other hand, when the inter-
processor forces need to be computed, each processor needs
to knowwith which processors it has to communicate to con-
duct its own force calculations. Note that this process has
to be performed only once, since we do not implement ver-
tex migration. All the vertices with non-local neighbors, as-
signed to a particular processor, are grouped together, and an
aggregated list of their coordinates is sent to that processor.
The receiving processor computes the forces between the re-
ceived vertices and its own vertices. Then, it sends back the
list of computed forces.

3.3. Optimized Algorithm

Our optimized algorithm uses a preprocessing step that em-
ploys an importance metric to assign a level of importance to
each graph vertex. Then, the vertices are divided into groups
according to their importance. In our experiments, we ob-
served that clusters generally form around vertices of high
degree. Therefore, we use vertex degree as a measure of im-
portance and initially sort all the vertices by degree.

Then, we take a certain percentage of the vertices of high-
est importance and compute a good layout using our parallel

force-directed method. We call the resulting layout the core
of the graph. Then, in each stage of the algorithm, we add
another group of vertices in order of their importance, until
all the graph vertices are included.

The most important aspect of this technique is that once
a layout is computed for the newly introduced group of ver-
tices, these vertices are made static, i.e. the positions of these
vertices do not change in the future iterations of the algo-
rithm. Note that no further force computations are performed
for the stationary vertices as the algorithm progresses. When
the vertices belonging to the next group in the queue are
added to the graph, the algorithm computes the positions of
the newly added vertices taking into account the edge con-
nections to static vertices. In the later stages of the algo-
rithm, the number of these connections decreases (vertices
introduced later have lower degrees). Once the new layout is
computed, all the vertices in the layout are also made static.

The number of stages in the process of layout construc-
tion can vary depending on the graph structure. The percent-
age of vertices to be inserted at each stage may also vary.
This percentage should depend on the distribution of graph
degrees. For example, if the goal is to see the clustering of
high degree vertices and most of the nodes in a graph have
low degrees, a smaller number of stages may yield a result
of sufficient quality. In our experiments, we observed that
the randomly placed vertices of low degree do not obscure
the clusters formed by vertices of high degree. On the other
hand, given a very balanced distribution of vertex degrees, a
larger number of stages is necessary to produce a meaningful
representation of the graph structure.

To improve the performance of the algorithm, the inter-
processor attractive and repulsive forces are computed be-
tween all pairs of vertices only during the first stage of the
algorithm, when the core layout is computed. This is done
because the vertices are more volatile in the first few iter-
ations of the force-directed algorithm and are expected to
move longer distances. Afterwards, all the local attractive
and repulsive forces are still computed between the local ver-
tices, but the global forces are computed only between the
neighboring processors. The remaining vertices are consid-
ered too far away to significantly influence the minimum en-
ergy computation and are not used in the force calculations.
This modification greatly reduces the amount of necessary
intra-processor communication in the successive stages of
the algorithm. The size of the processor neighborhood de-
pends on the total number of processors used in the layout
computation. In the last stage of the algorithm, the size of
the neighborhood is eight processors (the closest neighbors),
unless the total number of processors is less than eight.

In Section 5, we discuss the performance of our optimized
algorithm and demonstrate that it is a scalable solution for
computing layouts of large graphs.

c© The Eurographics Association 2008.

Anna Tikhonova & Kwan-Liu Ma / A Scalable Parallel Force-Directed Graph Layout Algorithm

graph |V| |E| Description

coauthor 200 664 Bibliography dataset

kazaa288 1550 8028 P2P network

add32 4960 9462 32-bit adder

4elt 15606 45878 2D FE mesh

gcc-fail 71991 81764 Memory graph

0109 209581 260385 Internet map

Table 1: Test graph sizes and descriptions.

4. Visual Assessment

A formal visual assessment of a graph drawing might in-
clude the calculation of the total energy in an underlying
force model or the measurement of a desired esthetic crite-
ria, for example, the crossing number. In practice, the quality
evaluation of a graph drawing is a highly subjective process.
A graph representation may be useful to an individual user
only if he or she is satisfied with it.

To assess the visual quality of the drawings produced by
our algorithms, we compare them to the layouts produced
by the classic and the fastest force-directed layout methods.
For our experiments, we chose some of the most popular
and widely accessible graphs commonly used to evaluate
graph layout algorithms. We tested both connected graphs
and graphs that have multiple unconnected components. We
tested only unweighted graphs. The graph sizes and descrip-
tions are provided in Table 1.

The first graph we used for our visual assessment task
is the coauthor graph, which is a bibliography dataset with
multiple unconnected components. Figure 2 shows drawings
of this graph produced using different numbers of proces-
sors. The coauthor graph is small yet interesting enough
to demonstrate the visual quality of our algorithm as the
number of processors increases. This graph was used as
one of the experimental graphs in the paper by Shen et
al. [SOTM06], where they present BiblioViz - a system for
visualizing bibliography information. The layout produced
by our algorithm shows the overall shape of the graph with
the largest connected component in the middle, encircled
by smaller unconnected components. The results presented
in Figure 2 demonstrate that our algorithm handles discon-
nected components well and that the layout quality remains
acceptable when the number of processors increases. Fig-
ure 4 also shows that the larger the number of processors
used in the computation, the fewer iterations of the algorithm
are required to generate a similar quality of layout.

The second graph we used for our experimental evaluation
is add32, which is a representation of an electronic circuit, a
32-bit adder. It has a tree-like structure with many outlying
branches. The progression and the final result of our opti-
mized algorithm can be seen in Figure 3. This graph was
used as one of the experimental graphs in the paper by Wal-
shaw [Wal00]. It was also used in the survey paper by Hachul

(a) p = 1, iter = 200 (b) p = 4, iter = 50

(c) p = 8, iter = 25 (d) p = 16, iter = 12

Figure 2: Drawings of the coauthor graph produced using

different numbers of processors (p). Also shown are the num-

bers of iterations (iter) required to generate each particular

drawing. Naturally, the larger the number of processors, the

fewer iterations of the algorithm are required to generate a

similar quality of layout.

and Jünger [HJ05b]. In the survey paper, the drawing pro-
duced by our algorithm is similar in quality to the one pro-
duced by the FM3 algorithm by Hachul and Jünger [HJ05a].
Our optimized algorithm is able to show the overall structure
of the graph much better than the classic algorithm and the
more efficient force-directed techniques.

The third graph we used for our evaluation is the gcc-fail
graph, a memory graph depicting the state of GCC 2.95.2. It
represents a faulty program state - one single pointer points
to the wrong element, causing GCC to crash. Figure 5 shows
a drawing of this graph produced by our optimized algorithm
using 32 processors. The important feature of the graph (in-
correct pointer) is clearly revealed by our algorithm.

5. Performance and Scalability Evaluation

Our primary goal was to design a graph layout algorithm that
scales to large graph sizes. We evaluated the performance
and scalability of our algorithm on a variety of real-world
graphs of sizes up to approximately 200,000 vertices.

Table 3 provides the performance results achieved by
our optimized algorithm for eight graphs of varying size
and complexity. Figure 6 contains plots showing the per-
formance results of our algorithm on three different graphs.
These experiments were performed on the PSC’s BigBen

c© The Eurographics Association 2008.

Anna Tikhonova & Kwan-Liu Ma / A Scalable Parallel Force-Directed Graph Layout Algorithm

(a) (b)

(c) (d)

(e)

Figure 3: Layout progression of add32, using 4 processors.

p kazaa288 add32 4elt gcc-fail

4 21.78 154.37 1777.95 N/A

8 12.38 87.06 1004.62 18989.61

16 6.95 49.07 549.37 9817.32

32 5.08 28.89 291.530 4940.71

64 3.56 16.23 157.08 2850.63

Table 2: Performance results (in seconds) for the naive al-

gorithm on a variety of graphs. Graph sizes and descriptions

are provided in Table 1.

Cray XT3 cluster. All the measurements were conducted for
100 iterations of the algorithm.

As Table 3 and Figure 6 show, our optimized algorithm
scales well. The kazaa288 graph demonstrates poorer scal-
ability because this problem is too small to benefit signif-
icantly from parallel processing. For 512 processors, each
processor is conducting the layout computation on just a few
(3 - 4) vertices. In this case, the amount of communication
overhead outweighs the almost insignificant amount of local
computation. The larger two graphs show very good scala-
bility achieved through the combination of two factors: con-
ducting layout computation on only a portion of the graph
vertices in each stage of the algorithm and incrementally re-
ducing the amount of inter-processor communication as the
layout computation progresses.

(a) (b)

(c) (d)

(e)
Figure 4: Layout progression of 4elt, using 32 processors.

p kazaa288 add32 4elt gcc-fail 0109

4 14.53 74.76 440.57 9309.18 N/A

8 6.10 19.91 169.80 3518.41 26533.60

16 2.28 5.06 69.87 1099.88 6845.16

32 0.95 1.33 31.14 638.34 2567.89

64 0.47 0.39 7.89 299.40 694.24

128 0.18 0.14 2.66 84.12 228.89

256 0.12 0.08 0.81 27.45 77.07

512 0.09 0.06 0.38 9.91 29.09

Table 3: Performance results (in seconds) for the optimized

algorithm on a variety of graphs. Graph sizes and descrip-

tions are provided in Table 1.

6. Discussion and Future Work

Layout and navigation of extremely large graphs can be
computed using our algorithm in conjunction with a fisheye
view [Fur86, SB94] or the multi-level display algorithms of
Eades and Feng [EF96]. Utilizing these approaches would
allow us to accommodate graphs with more vertices than the
number of pixels of our display device.

c© The Eurographics Association 2008.

Anna Tikhonova & Kwan-Liu Ma / A Scalable Parallel Force-Directed Graph Layout Algorithm

Figure 5: Drawing of the gcc-fail graph produced by our

optimized algorithm using 32 processors.

Additional structural information about a graph is some-
times known in advance. For example, it may be known that
the graph has a tree-like structure or that it is bipartite. With
this knowledge, an algorithm designed to perform well on a
specific type of graph can be used to produce more aestheti-
cally pleasing layouts and result in better running times.

A better vertex distribution approach would also improve
the quality of our layouts. One option is to ensure that ev-
ery processor receives a collection of vertices with similar
degree distribution. We could also ensure that the number of
other processors each processor has to communicate with is
minimal and approximately equal for each processor. A par-
allel graph partitioning scheme may be used to achieve this
result. Karypis and Kumar [KK96] demonstrate good scala-
bility for their parallel multilevel graph partitioning method.
This method can be used as a pre-processing step for a par-
allel graph layout algorithm.

We use an importance metric to assign importance to
graph vertices. Vertex degree is our measure of importance,
because in our experiments, we observed that clusters gen-
erally form around vertices of high degree. Other possible
choices for an importance metric include vertex weights,
vertex connectedness, or a combination of the above.

7. Conclusion

We presented a scalable parallel graph layout algorithm that
delivers an approximation to a force-directed model. We
compared the performance and visual quality of our method
against the classic and the fastest force-directed techniques
for layout of general graphs. We have shown that the per-
formance of our optimized algorithm and the quality of the
produced graph drawings are comparable to the classic and
the more efficient force-directed techniques. We have shown
that our algorithm is scalable to moderate numbers of ver-
tices and processors.

(a)

(b)
Figure 6:Graphs of performance results (in seconds) for the

optimized algorithm on the graphs shown in Table 3.

8. Acknowledgments

This research was supported in part by the U.S. National
Science Foundation through grants CNS-0551727, OCI-
0325934, OCI-0749227, and OCI-0749217, and the U.S.
Department of Energy through the SciDAC program with
Agreement No. DE-FC02-06ER25777.

Datasets provided by the University of Greenwich Graph
Partitioning Archive, the Internet Mapping Project, and
Adriana Iamnitchi. We would also like to thank Fekete, J.-
D. et al. for making available the IEEE InfoVis 2004 Contest
dataset.

References

[BH86] BARNES J., HUT P.: A hierarchical O(N log N)
force-calculation algorithm. Nature 324, 6096 (1986),
446–449.

[CP96] COLEMAN M. K., PARKER D. S.: Aesthetics-

c© The Eurographics Association 2008.

Anna Tikhonova & Kwan-Liu Ma / A Scalable Parallel Force-Directed Graph Layout Algorithm

based graph layout for human consumption. Software:

Practice and Experience 26, 12 (1996), 1415–1438.

[DBETT99] DI BATTISTA G., EADES P., TAMASSIA R.,
TOLLIS I. G.: Graph Drawing: Algorithms for the Visu-

alization of Graphs. Prentice Hall, 1999.

[DFF∗03] DONGARRA J., FOSTER I., FOX G., GROPP

W., KENNEDY K., TORCZON L., WHITE A.: Source-

book of Parallel Computing. Morgan Kaufmann Publish-
ers Inc., 2003.

[DH96] DAVIDSON R., HAREL D.: Drawing graphs
nicely using simulated annealing. ACM Transactions on

Graphics 15, 4 (1996), 301–331.

[Ead84] EADES P.: A heuristic for graph drawing. Con-

gressus Numerantium, 42 (1984), 149–160.

[EF96] EADES P., FENG Q.-W.: Multilevel visualization
of clustered graphs. In Graph Drawing (1996), pp. 101–
112.

[FLM94] FRICK A., LUDWIG A., MEHLDAU H.: A fast
adaptive layout algorithm for undirected graphs. InGraph
Drawing (1994), pp. 388–403.

[FM82] FIDUCCIA C. M., MATTHEYSES R. M.: A
linear-time heuristic for improving network partitions. In
Design Automation (1982), pp. 175–181.

[FR91] FRUCHTERMAN T. M. J., REINGOLD E. M.:
Graph drawing by force-directed placement. Software:

Practice and Experience 21, 11 (1991), 1129–1164.

[FT07] FRISHMAN Y., TAL A.: Multi-level graph lay-
out on the GPU. IEEE Transactions on Visualization and

Computer Graphics 13, 6 (2007), 1310–1319.

[Fur86] FURNAS G. W.: Generalized fisheye views. In
SIGCHI Bulletin (1986), vol. 17, pp. 16–23.

[HJ05a] HACHUL S., JÜNGER M.: Drawing large graphs
with a potential-field-based multilevel algorithm. In
Graph Drawing (2005), pp. 285–295.

[HJ05b] HACHUL S., JÜNGER M.: An experimental
comparison of fast algorithms for drawing general large
graphs. In Graph Drawing (2005), pp. 235–250.

[HK00] HAREL D., KOREN Y.: A fast multi-scale method
for drawing large graphs. In Graph Drawing (2000),
pp. 183–196.

[KK89] KAMADA T., KAWAI S.: An algorithm for draw-
ing general undirected graphs. Information Processing

Letters 31, 1 (1989), 7–15.

[KK96] KARYPIS G., KUMAR V.: Parallel multilevel
graph partitioning. In International Parallel Processing

Symposium (1996), pp. 314–319.

[KL70] KERNIGHAN B. W., LIN S.: An efficient heuristic
procedure for partitioning graphs. The Bell system techni-

cal journal 49, 2 (1970), 291–307.

[KW01] KAUFMANN M., WAGNER D.: Drawing

Graphs: Methods and Models. Springer-Verlag, 2001.

[LGL] LGL, available at http://bioinformatics.

icmb.utexas.edu/lgl.

[MGL06] MUELLER C., GREGOR D., LUMSDAINE A.:
Distributed force-directed graph layout and visualization.
In Eurographics Symposium on Parallel Graphics and Vi-

sualization (2006), pp. 83–90.

[MHM01] MARSHALL M. S., HERMAN I., MELANÇON

G.: An object-oriented design for graph visualization.
Software: Practice and Experience 31, 8 (2001), 739–
756.

[MRS95] MONIEN B., RAMME F., SALMEN H.: A paral-
lel simulated annealing algorithm for generating 3D lay-
outs of undirected graphs. In Graph Drawing (1995),
pp. 396–408.

[Mun98] MUNZNER T.: Drawing large graphs with
H3Viewer and Site Manager. In Graph Drawing (1998),
pp. 384–393.

[Noa06] NOACK A.: Energy-based clustering of graphs
with nonuniform degrees. In Graph Drawing (2006),
pp. 309–320.

[QB79] QUINN N., BREUR M.: A force directed com-
ponent placement procedure for printed circuit boards.
In IEEE Transactions on Circuits and Systems (1979),
vol. 26, pp. 377–388.

[QE01] QUIGLEY A., EADES P.: FADE: Graph draw-
ing, clustering, and visual abstraction. In Graph Drawing
(2001), pp. 197–210.

[RB02] RÉKA A., BARABÁSI A.-L.: Statistical mecha-
nisms of complex networks. Reviews of Modern Physics

74, 1 (2002), 47–97.

[Roy] Royére, available at http://sourceforge.net/

projects/gvf.

[SB94] SARKAR M., BROWN M. H.: Graphical fisheye
views. Communications of the ACM 37, 12 (1994), 73–
84.

[SOTM06] SHEN Z., OGAWA M., TEOH S. T., MA K.-
L.: BiblioViz: A system for visualizing bibliography in-
formation. In Asia-Pacific Symposium on Information Vi-

sualization (2006), pp. 93–102.

[Tul] Tulip, available at http://www.labri.fr/perso/
auber/projects/tulip.

[Wal00] WALSHAW C.: A multilevel algorithm for force-
directed graph drawing. In Graph Drawing (2000),
pp. 171–182.

[Wil99] WILLS G. J.: NicheWorks - interactive visualiza-
tion of very large graphs. Journal of Computational and

Graphical Statistics 8, 2 (1999), 190–212.

c© The Eurographics Association 2008.

http://bioinformatics.icmb.utexas.edu/lgl
http://sourceforge.net/projects/gvf
http://www.labri.fr/perso/auber/projects/tulip

