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ABSTRACT

Visualization of multi-dimensional data is challenging due to the
number of complex correlations that may be present in the data but
that are difficult to be visually identified. One of the main causes
for this problem is the inherent loss of information that occurs when
high-dimensional data is projected into 2D or 3D. Although 2D
scatterplots are ubiquitous due to their simplicity and familiarity,
there are not a lot of variations on their basic metaphor.

In this paper, we present a new way of visualizing multi-
dimensional data using scatterplots. We extend 2D scatterplots us-
ing sensitivity coefficients to highlight local variation of one vari-
able with respect to another. When applied to a scatterplot, these
sensitivities can be understood as velocities, and the resulting visu-
alization resembles a flow field. We also present a number of oper-
ations, based on flow-field analysis, that help users navigate, select
and cluster points in an efficient manner. We show the flexibility
and generality of this approach using a number of multidimensional
data sets across different domains.

Keywords: Uncertainty, Data Transformations, Principal Compo-
nent Analysis, Model Fitting

Index Terms: K.6.1 [Management of Computing and Information
Systems]: Project and People Management—Life Cycle; K.7.m
[The Computing Profession]: Miscellaneous—Ethics

1 INTRODUCTION

Incorporating uncertainty and sensitivity analysis in visual analytics
tools is essential to improve the decision-making process. On one
hand, it provides the analysts a means to assign confidence levels
to the insight gained through the analysis. On the other hand, it
gives tool makers a methodology for measuring and comparing the
robustness of data and visual transformations.

To gain insight from complex multi-dimensional data, a num-
ber of data analysis approaches have been proposed, such as multi-
dimensional scaling, projections and sampling, which reduce either
the number of observations or the number of variables in a large
data set [31]. With the advent of interactive graphics, a number
of techniques have been made possible that alleviate the issues of
complexity, large size and multi-dimensionality, such as interactive
PCA [23], multi-dimensional navigation [14], among others.

The purpose of visual analytics, however, remains the same: to
gain insight on possible correlations and trends in a complex data
set. In this paper, we focus on a general strategy, sensitivity analysis
(SA), which is a common approach to understand the relationships
between variables and outputs.

Sensitivity analysis is the analysis of changes in the output of
a transformation as we vary the inputs. When we study pairwise
correlations, sensitivity analysis tells us the rate of change of one
variable Y with respect to another variable X. The variables can
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be input random variables, in which case sensitivity indicates the
variational relationship between the two, or one of them could be a
derived (dependent) variable, in which case sensitivity indicates the
sensitivity of the data transformation used to derive that variable.

Therefore, sensitivity analysis is essential for discovering the
factors that most contribute to output variability, finding stability
regions of various transformations over the data, and understanding
the interaction between variables, outputs and transformations. Al-
though numerous approaches have been proposed to find the sensi-
tivity coefficients of transformations, we focus on differential anal-
ysis, where sensitivities are defined as the partial derivatives of a
group of variables with respect to another group of variables. Dif-
ferential analysis is attractive when the data and visual transforma-
tion can be defined in closed form. When this is not possible, ap-
proximating them by exploring the parameter space becomes com-
putationally expensive. For this reason, approximations based on
sampling approaches are more appropriate.

In this paper, we present a novel augmentation of traditional scat-
terplots, which are useful for sensitivity analysis and general explo-
ration of multidimensional data. The key idea behind our augmen-
tation is the analogy of scatterplots with flow. In a XY scatterplot, if
the position of a data point is given by the coordinates (x,y), then the
derivative ∂y/∂x is analogous to a velocity measure at that point.
Therefore, one can understand a scatterplot as a scattered collec-
tion of position and velocity measures. Based on these derivatives,
one can predict the positions of interpolated points in the XY space
and extract a global sense of flow. This analogy has a number of
applications for visual analysis, which we explore in this paper:
(1) the explicit representation of sensitivity parameters as tangent
lines helps analysts discover local and global trends in a 2D pro-
jection. (2) sensitivity parameters can be quantified to measure the
complexity of a given 2D projection and find pair-wise correlations
between variables. For example, one can augment an xy scatter
plot with the derivatives of a third variable z with respect to, say x.
When the flow appears smooth, one can safely re-project the scat-
terplot in the axes zy and expect a smooth transition, which helps
understand how different variables are related. (3) One can cluster
and select data points based on the similarity of the flow properties
around each point.

To this end, we propose certain key operations on flow-based
scatterplots that are not possible using traditional means: (1) Simul-
taneous visualization of tri-variate correlations, using the deriva-
tive of a third variable, (2) smooth transitions and navigation of
multi-dimensional scatterplots, and (3) selection and clustering by
streamline, which groups data points together that lie closer to the
streamlines generated by a data point. We demonstrate the feasibil-
ity and potential uses of our approach through a number of exam-
ples in a variety of domains.

2 RELATED WORK

2.1 Multivariate Analysis

Multivariate analysis is at the core of visual analytics. Approaches
can be categorized as data-centered approaches, such as regres-
sion [13], generalized additive models [19] and response surface
analysis [5], or visual-centered approaches. Since data is often
large and complex, data-driven approaches often employ simplifi-
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cation techniques, which either reduce the number of observations,
such as binning, sampling [32] or clustering [4], or reduce the num-
ber of dimensions in the data, such as projections [27] and multi-
dimensional scaling. Visual-centered approaches follow a different
strategy, where correlations and trends emerge as salient structures
in the human visual system. Often times, these approaches are cou-
pled with interactive manipulation. For example, Jeong et al. pro-
pose to augment traditional data analysis tools such as Principal
Component Analysis with interactive manipulation for a better un-
derstanding of the transformation and the data itself [23]. Yang et
al. integrate analysis tools with visual exploration of multivariate
data [35] using the Nugget Management System, which incorpo-
rates user interest to guide the analysis. In this paper, we present
a combination of analysis and visualization tools that exploit sen-
sitivity analysis for effective exploration and navigation of multidi-
mensional data.

2.2 Sensitivity Analysis

Sensitivity analysis refers in general to the analysis of the variation
of the outputs in a model to small perturbation of their inputs. Nu-
merous approaches have been proposed to this end. A number of
methods fall into the class of local analysis, such as adjoint anal-
ysis [6] and automated differentiation [17], where the sensitivity
parameters are found by simply taking the derivatives of the output
with respect to the input, si j = ∂Yi/∂X j. Because this is usually
done in a small neighborhood of the data, they are usually called
local methods. Others have proposed global estimates of sensitiv-
ity, which use sampling or statistical techniques. The most common
statistical method is based on variance, which provides an estimate
of the sensitivity in terms of the probability distribution of the in-
puts [1,7,20,22,29]. Other approaches directly introduce perturba-
tion on the input data by manipulating certain parameters and com-
pute the ensuing variation on the output. Since it is computationally
expensive to try the entire parameter space, numerous approaches
use sampling-based methods as extensively surveyed by Helton et
al [20]. Different simulation strategies have been applied, including
random, importance and Latin hypercube sampling [21].

Frey and Patil also reviewed a number of sensitivity analysis
methods [16]. Tanaka surveyed the sensitivity analysis in the scope
of multivariate data analysis [30]. Specific analyses for certain
common data analysis tools have been proposed. Chan et al. pre-
sented a sensitivity analysis for variance-based methods in gen-
eral [7]. Cormode et al. [10], Chau et al. [8] and Ngai et al. [26]
proposed extensions to perform k-means clustering on uncertain
data. Similar studies have been carried out to quantify the sensi-
tivity and uncertainty of the principal components of multi-variate
data [33, 34]. Kurowicka and Cooke extended the issue of uncer-
tainty analysis with high dimensional dependence modeling, com-
bining both analytical tools with graphic representations [25].

Barlowe et al. [3] proposed the use of histograms and scatter-
plot matrices to visualize the partial derivatives of the dependent
variable over the independent variables and to reveal the positive
or the negative correlations between the output and the factors in
a multivariate visual analysis. Correa et al. [11] used sensitivity
analysis to propagate the uncertainty in a series of data transforma-
tions and propose a number of extensions to show this uncertainty
in 2D scatter plots. In this paper, we generalize the idea of sensi-
tivity visualization as flow-based scatterplots. Bachthaler et al. [2]
presented the continuous scatterplot, which generates a continuous
density function for a scatterplot and alleviates the issues with miss-
ing data. Our idea of flow-based scatterplots has a similar concept,
which attempts to find a continuous representation of the density
that explains the 2D plot. However, we use a local analysis based
on derivatives to find local trends in a scattered manner.

Projection is a commonly used dimension reduction technique
for multi-variate data sets, useful when visualizing high dimen-

sional data in 2D or 3D spaces. Scatter plots are intuitive to under-
stand when studying the relationship between two variables. How-
ever, projected points may result in clutter and overlap for large and
high dimensional data sets. To solve this problem, Keim et al. [24]
proposed generalized scatter plots to augment the degree of over-
lap and the distortion. Other augmentations have been proposed by
Collins et al. [9], that enhance the spatial layout of plots with clus-
tering information, and Shneiderman et al., [28], that link multiple
substrate plots to superimpose the cross-substrate relationships.

Another issue of scatter plots is that we can only see a limited
number of variables after projection. It is common to show a scat-
terplot matrix to enumerate all possible combinations of projections
of variables, but we need an effective navigation between these dif-
ferent projections. Scatter dice [14] is an alternative that exploits
interactive capabilities to navigate a large scatter matrix and help
visual analytics. However, the evaluation and the effectiveness of
a projection is a topic often overlooked in visualization. In our pa-
per, we propose a novel mechanism for navigating the dimensions
of a multidimensional dataset, based on the sensitivity of variables
to one another.

3 FLOW-BASED SCATTERPLOTS

2D scatterplots are a commonly used visual representation that help
see the relationship between two variables in a multidimensional
data set. As shown in Figure 1(a), a 2D scatter plot is only able
to show a limited number of variables as the number of visual at-
tributes, such as position, size, color and transparency, can only
be used sparingly. In certain cases, the overuse of these attributes
makes it difficult to understand correlations between variables due
to visual clutter.

In this paper, we propose a new type of scatterplot, called flow-
based scatterplot, which augments the traditional metaphor using
sensitivity information. Sensitivity refers to the change in an output
variable in terms of a change in the input. In the case of a 2D
scatterplot, the simplest representation of sensitivity is through an
explicit depiction of the derivative of the variable in the y axis with
respect to the derivative of the variable in the x axis.

To illustrate our technique, let us consider the Boston housing
price data set. This data set is a collection of environmental, geo-
graphic, economic and social variables to predict the median value
of housing in the Boston metropolitan area [18], which contains
506 records and fifteen continuous variables. Some variables in-
clude geographic information, such as DIS, the weighted distances
to five Boston employment centers, LSTAT, the percentage of the
lower status of the population, CRIM, per capita crime rate by town,
and RM, the average number of rooms per dwelling, among others.

Figure 1 shows a scatterplot of two variables named DIS and
LSTAT, with color encoding the median housing price. Without
augmentation, this scatterplot shows the same information as in
Figure 1(a). After adding the sensitivity information, we obtain
a sense of the flow of the data. This can be seen in Figure 1(b)
as a collection of line segments. The slope of that segment indi-
cates how sensitive is the Y variable in a local neighborhood and
whether that sensitivity is positive or negative. For example, we
can clearly see global trends indicated by dotted lines. Moreover,
it gives us an idea of more localized trends. For example, points in
regions A, B and C exhibit different behavior in the LSTAT vari-
able as we increase the DIS variable. For data points in region A,
LSTAT decreases rapidly as DIS increases, while data points in re-
gion C do not change dramatically. Conversely, data points in B
increase in LSTAT as DIS increases. Therefore, such sensitivity vi-
sualization not only helps users understand how variables behave
toward changes in another, but also recognizes whether data points
have differed locally in terms of sensitivity.

One of the advantages of plotting sensitivity is that now we can
represent more dimensions in a single plot. Therefore, we are less
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(a) (b) (c)

Figure 1: (a) Traditional scatter plot between two variables (b) Sensitivity visualization of the same two variables, where data points are aug-
mented with derivatives. (c) Sensitivity visualization for a third variable, useful for analyzing tri-variate correlations.

Figure 2: Smoothness ranking view. Next to each augmented scat-
terplot, we show the smoothness ranking of other variables.

bound by the inherent loss of information that occurs when project-
ing high dimensional data into a 2D space. In our case, we can plot
the sensitivity of another variable with respect to one of the scatter-
plot axes. If we show the derivatives of a variable with respect to
another variable (different from the ones used in projection), then
we can begin making queries and formulating hypotheses about tri-
variate correlations, instead of bi-variate queries that are typical of
2D scatterplots. An example is shown in Figure 1(c), where we
show the same data points as before, using two variables named
LSTAT and DIS, but we plot the sensitivity of the variable in Y
(LSTAT) with respect to another variable named CRIM. Note that,
although the data points have the same location in the X-Y plane,
the sensitivities differ. We immediately have a different sense of
flow, which changes the way we begin to formulate hypotheses
about the three variables. For example, we see that, for points in
region D in Figure 1(c), variable CRIM increases as DIS increases,
but the same cannot be said about LSTAT, which only seems to
increase when LSTAT is larger and decreases when LSTAT is low.
Therefore, we may regard sensitivity derivatives as another attribute
of nodes that represents relationships between two particular vari-
ables. Sensitivity derivatives of U with respect to V shows the re-
lationship between U and V for each data point, and the projection
variables (X, Y) decide where to locate these nodes of such deriva-
tive attribute. Some particular projections might place these nodes
in a way that show global trends and correlations between variables
U and V, which helps us understand the relationship between both U
and V, and X and Y. In this paper, we show a number of operations,
based on flow analysis, to help us identify these relationships.

3.1 Computing Sensitivities

As described before, there are different ways to compute the sen-
sitivity of one variable with respect to another. In this paper, we
follow a variational approach, where the sensitivity can be approx-
imated by the partial derivative of one variable with respect to an-
other. Since we do not know the analytic closed form of the func-
tion between two variables in the general case, we approximate the
partial derivatives using linear regression. Because we do this in
different neighborhoods around each point, we employ the method
of moving least squares. We obtain the partial derivatives of a vari-
able y with respect to x considering the Taylor approximation of y
around a given point (x0,y0):

yi = y0 +
∂y

∂x
(xi − x0) (1)

Then, we approximate the partial derivatives for point (x0,y0) in a
neighborhood of N points, as:

∂y

∂x
≈

∑
N
i=0(yi − y0)(xi − x0)

∑
N
i=0(xi − x0)2

(2)

With this information, we augment the scatterplot using tangent
line segments on each data point. Each tangent line is com-
puted as follows. For a given point (x0,y0), we trace a line be-
tween points (x0 − δvx,y0 − δvy) and (x0 + δvx,y0 + δvy), where

(vx,vy) = normalize(1, ∂y
∂x

) and δ is a parameter that controls the
length of the tangent lines.

In our experiments, we compute the neighborhood of N points
as an isotropic region around each point of a radius W . This radius
controls how local or global is the flow. When W is small, the
derivatives capture the local variability of data and reveal localized
trends. On the other hand, when W is large, the flow represents
the global trend in the data. An example is shown in Section 5.2.
The variable width helps us reveal local trends where the global
correlation is low. Instead of making an automatic decision in terms
of correlation, flow-based scatterplots offer the option to the analyst
to explore the spectrum of trends and correlations interactively.

3.2 The Smoothness of a Flow Scatterplot

As can be seen from Figures 1(b-c), sensitivities provide a sense
of flow of the data points in the projection space. This flow helps
reveal overall trends. For some projections, these sensitivities show
certain critical regions, where linear trends coincide at some point
but then diverge. This means that data points in that region can ei-
ther go up or down, possibly depending on other variables. This
suggests that this particular projection is hiding a lot of complex-
ity that may be identified through a different projection. To mea-
sure the complexity of a flow-based scatterplot, we turn to second
derivatives, which tell us how fast the tangent lines change in a
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Figure 3: Navigation between a projection LSTAT-DIS (a) to a projection CRIM-DIS (c). Since the derivative of LSTAT with respect to CRIM in
the projection is detected by the system as one of the smoothest, the user changes the projection according to this derivative. We see a smooth
transition in the x-axis from LSTAT to CRIM (b) which helps users maintaining the context of the transformation. Most of the data points move
forward left in this linear transformation.

given neighborhood. If the tangent lines do not change much, the
scatterplot has a maximum smoothness, or a small second deriva-
tive. On the other hand, if the tangent lines vary drastically in small
neighborhoods, the scatterplot has low smoothness, or a high sec-
ond derivative.

To compute the second derivative in a neighborhood around a
data point (xi,yi), we follow the same moving least squares ap-
proach. Let Ci denote the local complexity (or unsmoothness)
around a point, computed as the linear regression of the first deriva-
tives or sensitivities:

Ci ≈
∑

Neighborhood
j=0 ( ∂y

∂x
|x j ,y j

− ∂y
∂x
|xi,yi

)(x j − xi)

∑
Neighborhood
j=0 (x j − xi)2

(3)

Then, the total smoothness of the plot can be computed as an
inverse sum of the local complexity for all N data points:

S =
1

∑
N
i=0 Ci

(4)

Note that the unsmoothness of nodei in Equation 3 has the same
form as the sensitivity derivative in Equation 2. This Equation 3
measures how this node differs from its neighbors in terms of its

sensitivity
∂y
∂x

. The larger the difference from it to its neighboring
nodes,the less smooth the trend around this neighborhood is, since
this node has drastic change in slope from others. In Section 4,
we show that this measure is useful for ranking the variables in a
high-dimensional data set and provide an intelligent way to navigate
between different dimensions.

3.3 Scatterplot Streamlines

One of the contributions of our paper is a different way of look-
ing at scatterplots that uses flow as a metaphor. According to this
metaphor, if the location of a data point in an XY plot represents po-
sition, then the sensitivity coefficient, shown as a small tangent line,
can be understood as a velocity. In 2D flow visualization, it is com-
mon to represent the stationary directions of flow using streamlines,
which integrate the velocities to simulate the path that a particle
would take if placed in this flow. To show more global trends, we
employ the same scheme. Since we have a scattered collection of
points, we use a scattered integration scheme, which computes new
directions based on the local velocity (or derivative), in terms of the
neighboring elements. To integrate the derivatives along the stream-
line, we used second order Runge-Kutta. A streamline spanned by
a point p0 in the 2D domain is a series of connected points found

using the following recursive method. For a point pk, the next point
in the streamline pk+1 is found as:

p′k = pk +hv(pk) (5)

pk+1 = pk +hv(p′k) (6)

where h is the discretization distance between consecutive points in
the streamline and v(p) is the derivative evaluated at point p. We
apply this mechanism forwards and backwards in time (with posi-
tive and negative h, respectively) and stop a line at the boundaries
of the scatterplot. Note that we only compute streamlines for the
derivatives of the Y variable with respect to X. For a third variable,
using sensitivity as segments is useful, but the use of streamlines
may be misleading, as the evolution of data points is no longer de-
fined in the 2D space. Computing and drawing a single streamline
of a data node of interest is real-time and highly interactive, as the
dark blue line of the selected node in green in Figure 4(a). There-
fore we can hover over different data points to examine the stream-
line of the node, and augment the streamline with different length
and selection distance. Computing streamlines takes in the worst
case O(N) time, but with the use of spatial data structures, it can be
done in O(logN) time. During the computation of all streamlines of
a plot, users can interact with the smoothness ranking view, such as
changing to another projection, hovering over the node of interest to
show its streamline, and selecting node by the selecting streamline.

4 OPERATIONS ON FLOW-BASED SCATTERPLOTS

In the previous section, we have shown a number of metaphors
based on 2D flow visualization, such as tangent lines and stream-
lines, that help us augment traditional scatterplots to highlight the
sensitivity and possible correlations in multi-dimensional data. In
this section, we describe how we can exploit this metaphor to en-
able novel operations on 2D scatterplots.

4.1 Multi-dimensional navigation

As mentioned in the previous subsection, flow-based scatterplots
allow us to depict information of other variables than the ones used
in the two main axes of the plot, in the form of sensitivity lines.
However, trial-and-error exploration of all combinations of vari-
ables in the search for insightful correlations proves impractical.
For a data set of M variables, the number of combinations of aug-
mented plots can be up to M4. Although scatterplot matrices are
common to depict all pairwise correlations in a multidimensional
data set, a similar matrix for augmented scatterplots proves imprac-
tical. Therefore, we need a systematic way to evaluate the flow-
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(a) (b) (c)

Figure 4: Selection by a streamline allows us to group neighboring data points by a particular trend pattern of interest, with different selection
distance d. (a) A streamline in blue of a selected data pointed in green (b) Selection of a small d = 0.03 (c) Selection of a larger d = 0.10. Note
that the line segments of sensitivity and the background streamlines are computed with a larger neighborhood parameter W=10.0, and thus they
depict the vertical patterrn of the overall data distribution.

based scatterplots, in the search for the salient combinations that
help reveal correlations and patterns.

Here, we present a method that evaluates a scatterplot to find
the variables that are interesting, in terms of the smoothness of the
sensitivity derivatives in the projection, and that should be used
in subsequent projections and enable intelligent navigation of the
multi-dimensional space.

Our approach is as follows: for a given projection XY, we mea-
sure the smoothness of the flow-based scatterplot with derivatives
dZ/dX with respect to every variable Z. We then rank the variables
Z in terms of their smoothness. The rationale for the ranking is
quite simple. Let us assume that a projection XY with derivatives
dZ/dX has a maximal smoothness, i.e., its second derivative is 0.

Therefore, if ∂ 2Z/∂X2 = 0, then the derivative ∂Z/∂X is a constant
and variables Z and X are related linearly. Therefore, if we repro-
ject the points in axes ZY , we expect data points to move smoothly
in the new x-direction, by a linear factor, which is easy to follow
and comprehend while doing the re-projection. Now, as the com-
plexity of the scatter plot increases (i.e., it becomes less smooth),
the relationship between the transition variables Z and X increases
in complexity and is more difficult to understand when we repro-
ject along these variables. For this reason, the ranking provides a
mechanism to intelligently navigate the data.

Figure 2 shows the visual design of the ranking view using the
Boston housing price data set. On the left, we show a list of dif-
ferent projections of the data. In this case, we show a multidimen-
sional data set of Boston housing prices and the variables that affect
them. In this view, we plot a variable called NOX (pollution) vs.
LSTAT (A socio-economical variable). On the left, we see a rank-
ing of other candidate variables that the user can explore, namely
AGE, DIS, PCA2, etc. Hovering over each of these variables shows
the corresponding derivatives on the XY projection. Once a vari-
able is selected, the scatterplot smoothly changes the projection to
ZY, where Z is the new selected variable. The ranking provides a
way for the analyst to pick the variables that have the smoothest
re-projection. We believe this method of guided navigation is more
intuitive than arbitrary re-projection, even if we alleviate the issues
of re-projection with rotation and 3D projection, as obtained in sys-
tems like scatter dice [14]. An example is shown in Figure 3. In
this ranking view, we found that the projection (LSTAT,DIS) with
derivatives ∂LSTAT/∂CRIM has the maximal smoothness, and the
derivative indicates that variables CRIM and LSTAT are closely
related. The second figure shows an example of the reprojection
halfway between LSTAT and CRIM. We can see the smooth linear
transition at this time. The third figure shows the newly reprojected
image in the LSTAT-CRIM plane.

4.2 Selection by streamline

Another issue with scatterplots is the selection of meaningful
groups. A number of ways have been proposed to select groups
of data points. The simplest one is by dragging a rectangular region
in the scatterplot and selecting all points that fall inside that region.
Unfortunately, this method often groups data points that may not
be related or that are projected together in that particular view. An-
other mechanism is brushing, which allows the user to select an
arbitrary region by “painting” the regions in the 2D plot. In this
paper, we present another method, which uses streamlines. Stream-
lines, as described before, are lines that represent the imaginary
flow of a particle in a given XY plot, by following the sensitivities
of the corresponding points along that path. In a sense, a streamline
represents the predicted change in the variable Y as we increase the
variable X. Therefore, it is intuitive to select elements that are near
a streamline, since those points locally exhibit a similar trend along
the selected streamline. This trend, in turn, may help discover in-
teresting correlations between the variables in the scatterplot that
cannot be identified from the projection itself.

To select points based on a streamline, we allow the user to ex-
plore the streamlines interactively. When the user hovers over a
data point, we show the streamline that emanates from this point,
both forward and backwards in time (i.e., the streamline represents
the trend for values of X before and after the data point). Then, we
can select points in the 2D plot that have a distance d to the stream-
line less than a given threshold. An example is shown in Figure 4
for the Boston data set. Here, we show a scatterplot of LSTAT vs
RM (average number of rooms per dwelling). As we increase the
distance d of selection, we can pick data points that locally share a
similar trend to the one selected. This is a good alternative to brush-
ing and rectangular selection that highlights the linear relationship
between the two variables.

4.3 Clustering by streamline

Finally, we see that, depending on the streamline we select, we
get different groupings of data, all of which highlight certain de-
gree of similarity between the local trends of each data point. This
prompted us to try a more automatic approach, which clusters data
together based on streamline. This clustering is in fact a classifica-
tion of data points by their local trend and vicinity. If two points
produce similar streamlines, we expect them to be related, since
they predict a similar behavior as we vary the variable in the x-axis.
Once we identify clusters, the classification may hint at different
critical regions, where the local trends change dramatically. Since
the streamlines represent trends, we hypothesize that the cluster-
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Figure 5: Clustering by streamlines. By applying streamlines to the
flow, we can now classify data points based on similar trends. When
we do that, we obtain a classification that may help identify salient
data points or critical regions. In this case, we classify the Boston
housing dataset in terms of the sensitivity of variable TRACT with
respect to LSTAT. These ten groups are not linearly separable in this
(LSTAT, TRACT) projection. In the bottom figure we show that these
groups are in another projection (MEDV, TRACT).

ing based on streamlines provides a more robust classification of
data. To classify streamlines, we follow a bottom-up hierarchical
approach where each streamline is considered as its own cluster
initially, and then clusters are merged hierarchically based on their
similarity. We use Euclidean distance to compute the similarity of
two streamlines.

An example is shown in Figure 5. In this projection
(LSTAT,TRACT), we cluster those streamlines constructed from
sensitivity measured by the derivative of TRACT with respect to
LSTAT, which results in six main clusters (numbered as No.346,
268, 241, 1, 392, and 370 respectively) whose centroids lie diago-
nally in the plot, suggesting an inverse relationship between LSTAT
and TRACT. Nodes are colored by such streamline clustering re-
sults. This clustering helps identify groups when used in another
projection, such as when looking at classes in the median housing
value (MEDV) in the scatterplot below.

5 RESULTS

In addition to the Boston housing price dataset, we explored differ-
ent aspects on three multidimensional datasets.

5.1 Iris

The iris data set consists of 150 records and 4 variables regarding
the classification of a number of species of the iris plant, including
the length and width of the sepal and petal of the plant [15]. One
of the challenges of this data set is that two of the classes, namely
Iris-virginica and Iris-versicolor, cannot be linearly separated. In
Figure 6 we illustrate the use of clustering by streamline to find the

variables involved in this classification. On top, we see the three
classes in terms of the Petal and Sepal length of the iris plant. One
of the two classes is clearly separated. In the middle, we show the
result of applying clustering by streamline using three clusters. We
see that this clustering gets close to the actual classification of the
plants, except for five points, highlighted in circles. Compare to
the image at the bottom, where we classify the data using k-means
based on the 2D proximity in this projection. Clearly, clustering
by streamline behaves better, which indicates that the classification
can be explained not in terms of the variables themselves, but in
terms of their derivatives.

5.2 Forest Fires

The forest fires data set comprises 517 records of forest fires in
Portugal, to predict the occurrence and size of forest fires in terms
of environmental and meteorological properties, such as tempera-
ture and wind [12]. We use this example to illustrate the effects
of neighborhood size when computing the derivative to reveal local
and global trends. In Figure 7, we show a scatterplot of two vari-
ables, DMC (Duff Moisture Code) and DC (Drought Code), which
are both indexes used by the Fire Weather Index to measure the dan-
ger involved in a fire. We see some local linear trends in the midst
of a more global linear trend. In Figures 7(b-d), the color shows the
result of clustering by streamline for varying neighborhoods with
W = 0.1,2.5 and 10.0, respectively. When W is small, the stream-
lines follow individual linear trends. For W = 2.5, the clustering
now reveals that data has a rather horizontal trend when data points
are grouped together in larger neighborhoods, indicating increas-
ingly large variance in the X dimension. When the variance is low,
such as in the cluster in blue, the streamlines follow a similar trend
to the local one. However, for the purple group, where the variance
is large, a different trend emerges. For a large W , on the other hand,
we are able to extract the global trend, which, in this case, happens
to align to the local trends nicely. This is usually the case for corre-
lated variables. Choosing a right neighborhood depends on the size
of features the analyst wants to identify and whether correlations in
the data can be explained locally or globally. In our experiments,
W is a free parameter tuned by the user.

5.3 Wine

The wine data set comprises 13 variables of 178 observations of
the chemical composition of wines growing in a particular region
in Italy and the relationship to color intensity and hue. Figure 8
shows that we have found a smooth flow-based scatterplot of (Al-
cohol,Color) and examined this in the smoothness ranking. We see
a rather simple distribution of sensitivities, as shown in Figure 8(a).
From this view we would like to know which variable is a good
reprojection to navigate next. By viewing the scatterplot of the
same Y (Color) axis but different X axis, we found that AlcAsh
variable may be a good candidate for x-axis in the new projection.
Therefore, we examined the relationship between the previous x-
axis Alcohol and the new x-axis candidate AlcAsh by computing
the streamline-augmented scatterplots of each. Figure 8(b) is a scat-
terplot of (Alcohol, AlcAsh) with the derivative of AlcAsh over
Alcohol, while Figure 8(c) it is a scatterplot of (AlcAsh, Alcohol)
with the derivative of Alcohol over Alcash. Both the scatterplots
have smooth streamlines, which means that the change in one of
these two variables does not cause a dramatic change in the other,
and suggests that they are interchangeable. Thus we changed the x
axis from Alcohol to AlcAsh, as shown in Figure 8 (a) and (d). We
see that this transition is indeed smooth as verified by the smooth
animation. Also, we compare the clustering by streamlines for the
two views (a) and (d), as shown in (f) and (d) respectively. We
can see that the clustering results of these two views are very simi-
lar. They both contain a large main cluster at the bottom, a smaller
cluster at the top of the main cluster, and the rest of data points at
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Figure 6: Visual exploration and streamline-based classification of the Iris data set. Although two of the classes are not linearly separable,
the streamline classification helps identify the two groups visually in terms of their trend. Now the difference between the two classes can be
explained in terms of, not only the two variables, but also the partial derivatives.

(a) Scatter plot (b) W = 0.1 (c) W = 2.5 (d) W = 10.0

Figure 7: Flow-based clustering for the Forest fire data set. Clustering helps identify groups regarding the relationship between the two indexes,
DC and DMC, that are used by the FIre Weather Index to meature the danger involved in a fire. We change the neighborhood size parameter W

to show how local and global trend can be revealed by streamlines and clusters.

(a) (b) (c)

(d) (e) (f)

Figure 8: Example navigation using a Wine dataset. The sensitivity ranking view suggests smooth transition between projections from Alcohol
to Alcalinity of Ash (AlcAsh).
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the top are classified to eight different clusters because these nodes
have very different local trends.

6 CONCLUSIONS AND FUTURE WORK

We have presented a novel visual representation of scatterplots use-
ful for sensitivity analysis. Analogous to traditional scatterplots,
which help elucidate pairwise correlations between two variables,
flow-based scatterplots help us understand correlations between the
change in one variable with the change in another. In addition, they
help us understand tri-variate correlations, and we can formulate
hypotheses of the relationship between two variables and the rate
of change of another. In our proof of concept we have introduced
visual analysis methods that help discover patterns in the data diffi-
cult to obtain through linear analysis. For example, we have shown
that selection by streamline helps group points in a non-linear man-
ner, often aligned with the boundaries of classes. The ranking of
sensitivities is a novel way of navigating multidimensional data sets
that combines automated analysis with visual and interactive con-
trol. We envision that, as data sets become larger and more com-
plex, a combination of both analysis and visualization is critical. In
our future work, we will explore the use of flow-based analysis to
improve the classification of complex data, and also extend it to vi-
sualize the workings of parameterized models from machine learn-
ing. Moreover, we would like to conduct a thorough user study to
verify whether users can interpret flow-based scatterplots and draw
correct conclusions.
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[33] Václav Šmı́dl and Anthony Quinn. On bayesian principal component

analysis. Comput. Stat. Data Anal., 51(9):4101–4123, 2007.

[34] Yoshihiro Yamanishi and Yutaka Tanaka. Sensitivity analysis in

functional principal component analysis. Computational Statistics,

20(2):311–326, 2005.

[35] Di Yang, E. A. Rundensteiner, and M. O. Ward. Analysis guided

visual exploration of multivariate data. In Visual Analytics Science

and Technology, 2007. VAST 2007. IEEE Symposium on, pages 83–

90, 2007.

50


