
High Performance Heterogeneous Computing for Collaborative Visual Analysis

Jianping Li∗ Jia-Kai Chou† Kwan-Liu Ma‡

University of California, Davis

Abstract

Visual analysis of large and complex data often requires multiple
analysts with diverse expertise and different perspectives to collab-
orate in order to reveal hidden structures and gain insight in the
data. While collaborative visualization allows multiple users to col-
lectively work on the same analytic task, the user side computing
devices can be used to share the computation workload for demand-
ing data transformations and visualization calculations. In this pa-
per, we present a heterogeneous computing framework for effective
utilization of all the connected client devices to enhance the usabil-
ity of online visualization applications.

Keywords: heterogeneous computing, collaborative visualization,
information visualization, visual analytics, parallel data transfor-
mation

1 Introduction

Visualization is effective to extract useful information from large
data. Collaborative visualization allows analysts to combine their
effort to solve challenging problems [Isenberg et al. 2011]. Visual
analysis of large and complex data often requires statistical methods
to aggregate the data into meaningful overviews and visual sum-
maries. For exploratory visual analysis, the user can interactively
change the parameters of the underlying algorithms to generate dif-
ferent visualizations for discovering hidden structures and patterns
in the data. Due to the large size of datasets and high complexity
algorithms, the computations needed for data transformations and
visualizations require high performance computing to minimize the
wait time of the analysts.

While remote collaborative visualizations are done online and in a
synchronous fashion, the users are performing analysis on a shared
visualization using their own devices. Due to the recent advance-
ments in personal and mobile computing, devices such as laptops
and smartphones have multi-core processors and high bandwidth
network connections, which can be leveraged to accelerate com-
putations. In this paper, we present a heterogeneous computing
framework for building web-based collaborative visualization tools
that can utilize client devices to effectively perform data transfor-
mations and visualizations in parallel. To evaluate the applicability
and performance, we use our framework to build a prototype sys-
tem for collaborative visual analysis of massive time series. The
test results show that our framework can effectively improve the
performance of collaborative visualization systems.

∗lij@cs.ucdavis.edu
†jkchou@ucdavis.edu
‡ma@cs.ucdavis.edu

2 Related Work

Our work is related to research in collaborative visualization and
distributed computing for visual analytics applications.

2.1 Collaborative Visualization

Research on collaborative visualization has a long history and is
gaining more momentum recently. The recent advancements in
web technologies lead to more web-based tools are built for collab-
orative visualization. CoWebViz [Kaspar et al. 2013] is a clinical
visualization tool which supports synchronous collaboration with
real-time interactions, which it uses a central server to support mul-
tiple clients for viewing 3D stereoscopic volume data as 2D cross-
section images on web browsers. ManyEyes [Viegas et al. 2007]
is a social website for asynchronous collaborative visualization and
data analysis with commenting and annotation tools. [Mouton et al.
2011] reviewed many collaborative visualization systems and ex-
amined the trends in related technologies. The review showed that
the rapid and relentless advancement in web technologies and in-
ternet connections has made the web browser an ideal platform for
building collaborative visualization applications.

2.2 Distributed and Parallel Computing

Many work have been dedicated to improve the performance of vi-
sualization systems using distributed computing. [Chan et al. 2008]
built a system for analyzing massive time series data by distributing
data processing to a cluster of database servers and use predictive
caching mechanism to hide system latency. CBRAIN [Sherif et al.
2014] uses grid systems to distribute data and computations for sup-
porting collaborations on neuroimaging visualization. While these
approaches can scale to large data, they would require expensive in-
vestment for installing and maintaining multiple dedicated servers.
As an alternative, low-cost solution, we apply the idea of crowd
computing [Fernando et al. 2012] to collaborative visualization. By
combining the computing resources of the server and multiple client
devices, we leverage heterogeneous parallel computing to improve
the overall system performance.

3 Methods and Technologies

Our framework is aimed to provide high performance comput-
ing to web-based collaborative visualization applications that are
computation-intensive. By leveraging standard modern web tech-
nologies, users can easily get connected with their collaborators us-
ing web browsers without any client side software or plug-in. By
utilizing user devices to accelerate computations, our framework
can effectively improve system performance when multiple users
are connected to explore and analyze the same dataset.

3.1 Architecture

In our framework, the server node manages all the status and peer-
to-peer(P2P) connections of the client nodes. When a new client
is connected, the server distributes the data and creates P2P con-
nections from all the existing client nodes to the new client node.



For reducing the overhead of HTTP communication, WebSocket1

is used for faster server-client communications and efficient distri-
butions of data. To leverage all the computing power of the per-
sonal and mobile computing devices in the client side, WebWork-
ers2 is used for multi-threading and parallel computing. In addition,
a newly standardized web technology, WebRTC3, is used for client-
to-client communications between the web browsers. Without We-
bRTC, the server needs to handle every network communication,
which results in higher latency for client-to-client message pass-
ings and data transfers. Therefore, enabling direct communications
between clients can greatly reduce the communication overhead.
Figure 1 shows how the server and clients are connected to form a
cluster of heterogeneous systems for accelerating the computations
for a collaborative visualization application. The application server
is built using NodeJS, a server-side JavaScript framework for build-
ing server side applications. By using the same language in both the
server and client sides, the server and the client nodes can share a
computing task together seamlessly. For rendering, HTML5 SVG4

is used for generating visualizations on the web browser. In the
process of distributed parallel computing, the results in the form of
SVG elements are exchanged between the clients nodes, and the
final visualization is assembled from the SVG elements.

Figure 1: The server and the client nodes are connected to form a
heterogeneous cluster to accelerate data transformations and visu-
alizations.

3.2 Distribution of Computations

To achieve high performance computing with a heterogeneous clus-
ter, a gating factor is to properly distribute the computations to bal-
ance the running time of each node. The nodes with more com-
puting power and higher network bandwidth should perform more
computations. [Beaumont et al. 2001] provide a simple algorithm
for ensuring optimal distribution of n independent units of compu-
tation to p heterogeneous processors. For processor Pi with speed
si, the algorithm finds the optimal distribution, ni, by first dis-
tributes n units of computations evenly to each processor and then
iteratively distributes one of the remaining units to the processor k,
where nk+1

sk
has the minimum value for 1 ≤ k ≤ p. To use this al-

gorithm for distributing computations to multiple client nodes, we
need to know the computing speed of each client device. However,
hardware information of the client devices, such as the speed of the
processor, is unknown to web applications due to the limitation of
the browser. In addition, the heterogeneity in the software stack and
network connections makes acquiring the actual computing speed
of each client device nontrivial.

1http://www.w3.org/TR/websockets
2http://www.w3.org/TR/workers
3http://www.w3.org/TR/webrtc
4http://www.w3.org/TR/SVG

In our framework, we use a test program to estimate the computing
speed of each client device. As a client is connected to the server,
the test program distributes an equal amount of computations to
each client, and the client devices perform the computations with
the optimal number of threads according to the number of proces-
sor cores. Based on the completion time of each client, the relative
computing speeds including communication overhead can be esti-
mated. Because each client can initiate computations to the cluster,
each client node has a different estimation of the relative speeds.
For example, the client node that requests the computation would
have zero communication overhead, so it should be responsible for
relatively more workload while the remote nodes should receive
relatively less workload due to the network latency. As illustrated
in Figure 1, every node in the heterogeneous cluster uses its own
estimation of relative computing speeds to distribute computations.
With s′i denoting the normalized relative computing speeds, Algo-
rithm 1 is used to distribute computations to the server and client
devices in our framework.

ni = bs′i × nc, for 1 ≤ i ≤ p;
while (

∑p
i=1 ni < n) do

if nk+1
s′
k

= minp
i=1

ni+1
s′i

then
nk = nk + 1;

end
end
Algorithm 1: Algorithm to determine the optimal distribution of
computations to each node in a heterogeneous cluster.

Our approach not only optimizes the system response time for the
client node that initiates the computation, which is most sensitive
to latency, but also improves the synchronization performance for
all client nodes. Comparing to the conventional approach where
all results are first sent back to be merged in the server and then
broadcast to all clients, our framework leverages WebRTC to en-
able effective P2P data transfers, so the results can be efficiently
exchanged among the client nodes without the need of round trips
to the server for synchronizations.

3.3 Data Partition and Distribution

To use the client devices for accelerating computations, partitions
of the raw data need to be distributed to the clients when they con-
nect to the server. Ideally, each client should only receive the part of
data that is required for its own computation based on the comput-
ing speeds and the relationship between the computation complex-
ity and the data size. Because the relative computing speed ratios
are different at each client node, the server needs to check all the
relative computing speed ratios and properly distribute the needed
portion of data to each client. In addition, dynamically distribut-
ing the data partitions to different client nodes is challenging as the
clients may connect or disconnect at any time. We can make the dis-
tribution of data to be run as a background task. When a client node
connects to the server, it cannot be used for computing before the
server completes the rearrangement of the data distribution, while
the new client can still see the visualizations and participate in the
collaborative analysis. When a client node disconnects, the server
needs to temporarily take over the workload of the disconnected
node until the rearrangement of the data distribution is completed.
To simplify the implementation for our preliminary study, currently
we distribute the whole dataset to every client node when the client
connects to the server for the first time. Dynamic and optimal dis-
tributions of data will be studied in our future work.



4 Evaluation

To experimentally study our framework design, we have built a pro-
totype system for collaborative visual analysis of massive time se-
ries data. Time series data are commonly found in many applica-
tions such as finance, healthcare, and movement tracking. The test
data we have used is compose of electronic health records. Each
item in the time series represents the health history of a person over
a twenty year period with a 30-day time interval. Each data point
contains logs of the diseases and medications for the corresponding
time interval.

4.1 Parallel Transformation and Visualization of Mas-
sive Time Series

When analyzing time series data, data operations such as segment-
ing, aligning, filtering and clustering are needed to extract trends,
correlations, and causalities from the data. To visualize the data,
view transformations are performed to encode and map the aggre-
gated data into visual structures. In our study, we use Sankey dia-
gram to visualize trends of clusters and patterns of transitions. With
x-axis representing the time, each node(i.e. the vertical bar) in the
Sankey diagram represents a cluster of the time series at a specific
discrete time, and the curve edge shows how the time series move
from one cluster to another over time. Figure 2 shows how our sys-
tem distributes the time series data and the associated computations
to the server and the connected client devices. Because the edges
in the Sankey diagram are computed by finding the difference be-
tween the clusters at a previous time and the clusters at a latter time,
the data and computations distributed to the computing devices are
overlapped by one time interval in order to compute all the edges in
the Sankey diagram.

Figure 2: The computations for data transformations and visual-
ization calculations are distributed to the server and client devices
according to their relative computing speeds.

4.2 Performance

For evaluating performance, we test how our system performs as
we increase the number of client nodes and the size of the dataset.
The devices that we used in this performance test are listed in Ta-
ble 1. The web browser used in all the devices is Chrome version
42. Figure 3 (a) and (b) show the completion time of each client for
300K and 750K number of records, respectively. The completion
time is measured from the time when the first client node (C1) re-
quests a new computation task to the time when it receives all the
results from other nodes. The test results show that our method for
distributing the computation is effective in balancing the comput-
ing time on each node in a heterogeneous cluster. Since the system
performance depends on the worst completion time of the client
nodes, balancing the computation time is important to achieving
the best performance with parallel computing using heterogeneous

devices. In addition, larger problem sizes would have more per-
formance gain due to the overhead of communications between the
client nodes. As we note in Figure 3 (a) and (b), the performance
gain is significantly larger for the data size of 750K records than the
data size of 300K records.

Figure 4 shows the system performance for different data sizes with
different number of client nodes used in computations. As the test
results show, the completion time for transforming and visualizing
that data can be significantly reduced as more client nodes are used
for computations. The speedup depends on the number of client
nodes and their computing power. Note that C4 is a smartphone,
and we can see that it only provides a very small performance gain
in test case of S,C1-4. If we compare the performance for the case
which only the server was used for computing versus the case which
the server and 3 client nodes(C1,2,3) are all used for computing, the
results show that the speedup is more than 2X for the data size of
600K records and about 3X for 1M records. As we test with more
client nodes, the performance gain is only noticeable for larger data
size. For the test cases with 5 and 6 client nodes, the speedup is
3.1X and 3.2X, respectively, for 600K records, and the speedup is
3.4X and 3.9X, respectively, for 1M records.

Node Type Processor Speed cores / threads
S server AMD FX-8320 3.2 GHz 8 / 8
C1 laptop Intel Core i5 1.4 GHz 2 / 4
C2 desktop Intel Core i7 3.6 GHz 4 / 8
C3 desktop Intel Core i7 2.4 GHz 4 / 8
C4 phone Qualcomm Snapdragon 2.5 GHz 4 / 4
C5 desktop Intel Core i7 3.5 GHz 4 / 8
C6 desktop Intel Core i7 4.0 GHz 4 / 8

Table 1: A list of devices used for performance testing.

(a) 300K records

(b) 750K records

Figure 3: Completion time of each client when different number of
client nodes are involved in the computation.

5 Discussion

Our preliminary study allows us to identify both limitations of our
current implementation and opportunities for further work.

5.1 Limitations

Our approach may only suitable for applications with moderate data
size and computational requirements that can be handled by a small



Figure 4: Performance evaluation of increasing data size for dif-
ferent number of client nodes.

number of personal computing devices. For larger data size and
more intensive computation, server side scaling is required. When
there are multiple servers, our approach still can be used to com-
bine the computing power of multiple servers and client devices
to accelerate computations. For problem sizes that can be handled
efficiently by a small number of personal computing devices, all
demanding computations can be completely offloaded to the client
nodes without consuming any computing resources of the server,
which allows the server to host multiple services and support mul-
tiple groups of users.

A consideration with our approach is that the computing resources
and network bandwidths of the client nodes may change at any time
due to other user activities. This makes the initial estimation of
computing speeds inaccurate and may result in poor system perfor-
mance due to uneven completion time among the client nodes. To
minimize the negative effect of this problem, we can periodically
adjust the workloads of the client nodes using the new completion
time.

5.2 Future Work

In future work, we plan to use our framework in more collaborative
visualization applications. We will also look for ways to improve
performance. Currently, we only use the CPU on the client nodes
for computing. By using WebGL or WebCL for data processing,
web application can also use the GPU on the client node for general
purpose computing [Liu et al. 2013]. We can extend our framework
to not only use the CPU but also the GPU on the client nodes for
parallel data transformation and visualization.

For dynamic data distribution as we discussed in Section 3.3, we
will conduct further research to optimally distribute data to the
client devices as the clients may join or leave the cluster at any time.
Each client node should only receive the part of data that is needed
to perform its own computation. Dynamically and optimally dis-
tributing data would reduce the network traffics of the server for
transferring data.

Another future step is to support collaborative systems with many
users analyzing different data sets. This requires an effective task
scheduling to manage multiple computation tasks requested by dif-
ferent users simultaneously. With this extension, it would be pos-
sible to use our framework for supporting data analysis and visual-
ization in social websites where many users are exploring different
data sets [Viegas et al. 2007].

6 Conclusion

High performance computing is crucial to an interactive visual-
ization system to enable effective data exploration. While tradi-
tional collaborative visualization tools rely on centralized servers
for processing complex computation and neglect the potential use
of client devices for computation acceleration, we contribute a web
based framework for high performance heterogeneous computing
through effective utilization of capable personal computing devices.
We have built a prototype system using our framework for visual
collaborative analysis of massive time series data. The test results
show that our framework can effectively improve system perfor-
mance and reduce user wait time on computation intensive opera-
tions. As more collaborative tools will be web based in the future,
our framework is expected to help improve the performance and
enhance the usability of collaborative visualization applications.

Acknowledgements

This research is supported in part by the National Science Foun-
dation via grants NSF IIS-1320229 and Department of Energy via
grant DE-FC02-12ER26072.

References

BEAUMONT, O., BOUDET, V., PETITET, A., RASTELLO, F., AND
ROBERT, Y. 2001. A proposal for a heterogeneous cluster scala-
pack (dense linear solvers). Computers, IEEE Transactions on
50, 10, 1052–1070.

CHAN, S.-M., XIAO, L., GERTH, J., AND HANRAHAN, P. 2008.
Maintaining interactivity while exploring massive time series. In
Visual Analytics Science and Technology, 2008. VAST’08. IEEE
Symposium on, IEEE, 59–66.

FERNANDO, N., LOKE, S. W., AND RAHAYU, W. 2012. Mobile
crowd computing with work stealing. In Network-Based Infor-
mation Systems (NBiS), 2012 15th International Conference on,
IEEE, 660–665.

ISENBERG, P., ELMQVIST, N., SCHOLTZ, J., CERNEA, D., MA,
K.-L., AND HAGEN, H. 2011. Collaborative visualization: def-
inition, challenges, and research agenda. Information Visualiza-
tion 10, 4, 310–326.

KASPAR, M., PARSAD, N. M., AND SILVERSTEIN, J. C. 2013.
An optimized web-based approach for collaborative stereoscopic
medical visualization. Journal of the American Medical Infor-
matics Association 20, 3, 535–543.

LIU, Z., JIANG, B., AND HEER, J. 2013. immens: Real-time vi-
sual querying of big data. In Computer Graphics Forum, vol. 32,
Wiley Online Library, 421–430.

MOUTON, C., SONS, K., AND GRIMSTEAD, I. 2011. Collabo-
rative visualization: current systems and future trends. In Pro-
ceedings of the 16th International Conference on 3D Web Tech-
nology, ACM, 101–110.

SHERIF, T., RIOUX, P., ROUSSEAU, M.-E., KASSIS, N., BECK,
N., ADALAT, R., DAS, S., GLATARD, T., AND EVANS, A. C.
2014. Cbrain: a web-based, distributed computing platform for
collaborative neuroimaging research. Frontiers in neuroinfor-
matics 8.

VIEGAS, F. B., WATTENBERG, M., VAN HAM, F., KRISS, J.,
AND MCKEON, M. 2007. Manyeyes: a site for visualization
at internet scale. Visualization and Computer Graphics, IEEE
Transactions on 13, 6, 1121–1128.


