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Abstract Filter banks are a class
of signal processing techniques
that can be used to reveal the local
energy of a signal at multiple scales.
Utilizing such filtering allows us to
consider local texture and other data
characteristics, and permits volume
classification and visualization that
cannot be accomplished easily using
conventional, transfer function-based
methods. Our filter bank approach in-
creases the dimensionality, and thus,
the complexity of the classification
task. We have therefore developed
an interactive user interface for
specifying and visualizing these
higher dimensional classifiers, which
enables volume data exploration and
visualization in a filter-bank space.
We demonstrate that this technique

is particularly effective for the
classification of noisy data, and for
classifying regions that are difficult
to approach using conventional
methods.
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1 Introduction

One critical aspect of direct volume rendering is creation
of transfer functions, which map voxel values to opti-
cal properties such as color and opacity. Because it is an
interactive, explorative process, the very act of specify-
ing a transfer function promotes data understanding that
transcends what can be accomplished through changes in
view. As a user modifies the transfer function, she ex-
plores the volume both spatially and in terms of the data
space, thus providing her with insights into the inherent
spatial/data relationships of the volume. Although transfer
functions are a powerful framework for user interaction,
they are typically primitive in their ability to classify dif-
ferent materials in a volume. This can be contrasted with

volume segmentation methods, such as level set [23, 27]
and region growing [14, 15] techniques, which can better
separate materials. However, these methods are often less
interactive and, therefore, less suited for data space explo-
ration.

It is possible to achieve more sophisticated classifica-
tion of volume data without using segmentation if we take
into account the local texture and neighborhood character-
istics of the volume data during the classification process.
To accomplish this, we introduce a filter bank [7, 32] ap-
proach to volume visualization. Our technique uses a se-
ries of filters to decompose volume data into multiple
signals, each of which provides estimates of the char-
acteristics of the neighboring values at a different scale.
Volume classification thus becomes exploration of trans-
fer function spaces with an input domain that takes into
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account the multi-scale structure of each region. We also
introduce an interface and accompanying methods of user
interaction that allow the user to explore the filter-bank
data space with the same expressive control as that found
in traditional transfer function methods. We have been par-
ticularly careful to keep the classification task simple by
using lower dimensional classifiers whenever possible.

We have built a hardware-accelerated, volume visual-
ization system using this filter-bank approach, enabling
highly interactive volume classification and visualization
of noisy volume and volumetric regions that are diffi-
cult with traditional methods using 1D or 2D (gradient-
based) transfer functions. Our main contributions include
the identification of a set of filters that map well to the ca-
pabilities (and limitations) of current graphics hardware
and, most especially, the design of an intuitive user inter-
face for effectively exploring and utilizing the multi-scale
volume data generated by the filter bank to refine volume
classification.

2 Related work

The generation of transfer functions for volume visualiza-
tion is an area of research that has received a great deal
of attention [28]. Information about the volume data is of-
ten utilized directly by the system to aid transfer function
definition, or is presented to the user to guide data ex-
ploration. For example, Fujishiro et al. [9] use topological
information from a hyper-Reed graph of the volume data
to define transfer functions, leading to visualization dis-
playing the intrinsic structure of the scalar field. Bajaj et
al. [1] show how to make informative visualization from
volume data by examining a set of quantitative signature
functions of contour surfaces in the data. Jankun-Kelly
and Ma [19] present methods based on coherency mea-
sures to automatically generate transfer functions that best
characterize a time-varying volume data set.

Levoy [24] discusses utilizing gradient magnitude
to enhance material boundaries in volume data. Kindl-
mann and Durkin [20] suggest that by examining a two-
dimensional scatter plot of data values and gradient mag-
nitudes, opacity transfer functions can be easily defined
to effectively capture boundary features between materials
of relatively constant data value. Kniss et al. [21] extend
this work by adding a set of direct manipulation widgets as
an interface for defining multi-dimensional transfer func-
tions. Lum and Ma [25] present a transfer function method
that uses pairs of gradient aligned samples to enhance ma-
terial boundaries using changes in illumination.

While the aforementioned methods are mainly data-
centric, others are largely image-centric or employ ma-
chine learning. He et al. [13] utilize genetic algorithms
to breed trial transfer functions. The user can either se-
lect functions from a set of rendered images or allow the
system to be fully automated. Marks et al. [26] address

the parameter selection problem in general by rendering
a multi-dimensional space of those parameters, resulting
in a large number of images. In the context of volume
visualization, the user navigates this space by browsing
the images to choose appropriate transfer functions. König
and Gröller [22] cast transfer functions specification as
navigation in the data, color, and opacity domains, and
introduce an interface design to support this paradigm.
Finally, Tzeng et al. [30] introduce an intelligent inter-
face for classifying volume data through interactive brush-
ing and supervised learning. They demonstrate volume
classification that cannot be achieved with conventional
methods.

Our data-centric work is unique because it permits in-
teractive user exploration and utilization of the multi-scale
aspects of the volume data to assist transfer function speci-
fication. The multi-scale data is derived with a filter bank.
Our design unifies 2D slice probing, filter-bank space and
transfer function space exploration, and interactive vol-
ume visualization into one system, as shown in Fig. 1.
We demonstrate volume classifications on a variety of data
sets, which would be difficult using conventional methods.

Fig. 1. Integration of interactive, filter-bank exploration into the
classification process. Navigation in four distinct spaces enhances
the user’s expressive power

3 Filter banks for classification

Filter bank methods are popular in signal processing for
analyzing data. A filter bank consists of a series of fil-
ters that splits a signal into a number of sub-bands for
subsequent analysis. Figure 2 illustrates a filter bank that
decomposes a signal x(n) into N band limited signals y1
through yN using filters h1 through h N , respectively.

In the field of image processing, filter banks have been
applied to the problem of texture classification [3, 6, 11,
17, 18, 29, 31]. The basic approach is to apply a set of
filters to produce a set of images, each of which then pro-
vides a different estimate of the local energy distribution.
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Fig. 2. A filter bank aids
analysis by separating
a signal into various sub-
bands via the application
of a set of filters

These energy estimates form a feature vector that can be
used for classification, using methods such as Bayesian
classifiers [31], neural networks [18], and clustering [11].
The significance of our work is the mapping of the fil-
ter bank approach to volume visualization and explo-
ration. Rather than using statistical or machine learning
based classifiers, we combine an interactive, hardware-
accelerated filter bank volume renderer with a novel user
interface. This interface allows both the exploration of the
filtered data space, and specification of filter bank classi-
fiers within this space.

To facilitate this interaction, it is important to select
a set of filters that map well to the capabilities and lim-
itations of modern graphics hardware. In particular, one
must be conscious of the fact there is a limited amount of
texture memory to store volumes and that rendering per-
formance is often fill-rate limited. Applying an N-sized
filter bank in a pre-processing step and using the N fil-
tered copies would use a great deal of texture memory
and thus limit the size of the volume that can be rendered
interactively. On the other hand, applying the filter bank
on-the-fly during rendering would negatively impact inter-
active performance.

Mindful of this concept, our implementation uses fil-
ter banks consisting of Gaussian low-pass filters that are
applied in a pre-processing step. The resulting filtered vol-
umes can be efficiently stored in an oct-tree data structure.
Specifically, as the width of the Gaussian filter is increased
and higher frequencies are attenuated, a lower sampling
rate will accurately encode the filtered volume. Therefore,

Fig. 3. In our implementation, the results of applying the Gaussian
filter bank to the volume data are stored in the different levels of
a mip-map texture

we employ an oct-tree data structure where each level
approaching the coarsest resolution has had an increased
amount of Gaussian smoothing, as depicted in Fig. 3. This
representation has the added advantage of being natively
supported in current graphics hardware in the form of mip-
mapped textures. The ability to quadralinearly filter tex-
tures (interpolate between mip-map levels) provides the
capability of accessing the volume with filter levels that
fall between those that were pre-computed. This multi-
scale data structure is known as a Gaussian pyramid in the
field of image processing [4].

The Gaussian filters utilized in our work have sigmas
of two, four, eight, sixteen, etc. To reduce the number of
mip-map levels that must be stored, larger sigma incre-
ments could be used, but at the expense of reducing the
filtered feature vectors available for classification.

4 User interface

Given this hierarchical filtered representation of the vol-
ume, the task of specifying a transfer function with our
filter-bank approach becomes one of specifying a map-
ping from the N-dimensional feature vector to a color and
opacity. The overall design philosophy used in develop-
ing our user interface is to keep the dimensionality of the
classifier as low as possible and only use additional fea-
ture vectors for classification where necessary. In order
to accomplish this goal, it is not only necessary to have
interactive volume rendering, but also to provide visual
representations that will help guide the user by specifying
these transfer functions and illustrating the relationship
between spatial regions in a volume and their filter bank
response.

Our interactive interface utilizes parallel coordin-
ates [16] to visualize the multi-dimensional response of
the filter bank. Parallel coordinates are a popular tech-
nique for visualizing multi-dimensional data and have
been widely used by the information visualization com-
munity [2, 8, 10, 12]. As illustrated in Fig. 4, the top row
(level zero) represents the distribution of data values for
the original, unfiltered volume. As the lines move down-
ward through the subsequent levels, they reveal a par-
ticular data value’s response to progressively stronger
filtering.

To specify the transfer function, we use material per-
centage classifiers as described by Drebin et al. [5]. In our
application, the user assigns colors and opacities to a set
of materials and then proceeds to specify classification
functions that map data values to material percentages.
The material percentage is then modulated to the mate-
rial color, resulting in the transfer function color used for
rendering.

User interaction in our work consists of the specifi-
cation of classifiers for each material that users wish to
classify. This task is accomplished by first specifying a 1D
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Fig. 4. An illustration of our multi-scale classification interface,
which utilizes parallel coordinates to allow the user to operate in
the filter-bank space. The thick horizontal lines are coordinate axes
corresponding to a particular filtered data level. Each colored line
corresponds to the data value of a sample point in each filter level.
How the line changes with the application of progressively stronger
Gaussian filtering can help to identify different types of data. For
example, data points in the center of a large homogeneous area will
change little, whereas small areas surrounded by unlike data values
will be progressively blended with the dominant local value. There-
fore, the lines for those points will move sharply to the right or
left

transfer function for the top, unfiltered level and then re-
fining the resulting classification by inserting additional
classification widgets, as necessary, at varying filter levels.
Figure 5 demonstrates our multi-scale interface before any
refinement is done while operating on an MRI data set of
a head. Probing the regions marked with the red and green
arrows results in the parallel coordinate visualization of
the filter bank response shown in Fig. 5c.

Isolating the brain from the surrounding material using
only unfiltered data is not possible, since these areas are
of similar data value. The mixing and crossing of data
lines at level zero in the parallel coordinates representa-
tion highlight this trait. However, as the data values are
plotted through the successive filter bank levels, we no-
tice a clear distinction between the responses of the probed
areas. This difference suggests that adding classifiers at
higher dimensions will help to isolate our target regions.
Figure 6 illustrates this refinement process, which adds
additional 1D transfer function widgets at filter levels 2

Fig. 5a–d. Results of applying a 1D transfer function to an MRI
head data set. a shows a 2D slice from this data set, while b shows
the corresponding classified 2D slice after the application of the
transfer function. In the classified slice, the desired area is des-
ignated by the red arrow, while the green arrow indicates the
unwanted region. After probing these areas in the 2D slice, the
user can see the filter bank response, as shown in c. The resulting
rendering is shown in d. As expected, and as shown by the mix-
ing of wanted and unwanted data values at level zero, the brain is
occluded by the surrounding material

and 3. The resulting higher dimensional classifier is the
multiplication of the filtered response at each of the differ-
ent N levels. This can be expressed as

pi =
N∏

j=1

Pij(sj) , (1)

where pi is the material percentage for material i , Pij() is
a 1D classification function for filtered level j (if no clas-
sification is defined for that dimension), and sj is the scalar
value from level j . Each material classifier is thus linearly
separable, while the overall transfer function is not sep-
arable and consists of the sum of M material percentage
modulated material colors:

C =
M∑

i=1

piCi . (2)
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Fig. 6a–e. Refining the classification of the MRI data described in
Fig. 5 with the goal of isolating the brain from the surrounding
material. The bundles of pink and green lines in a are the result
of user probes of the wanted and unwanted areas in a 2D slice.
As before, the mixing of values at level zero indicates overlap-
ping intensity values. However, the clear separation into pink and
green bundles at subsequent filter levels suggest that a higher di-
mensional classification can help. Adding a classification widget at
level two produced the improved results shown in b and d, yet was
insufficient to fully isolate the brain. Adding another classifier at
level three further refined the results, as shown in c and e
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4.1 User interaction

As previously mentioned, the goal of this work is to use
our filter bank approach with the lowest dimensional clas-
sifier possible. Therefore, the parallel coordinate repre-
sentation is used as a tool to guide users in refining the
specific material that they wish to classify. This requires
providing a means for understanding how the various re-
gions being classified map to the filter bank response,
a means that we accomplished using a process of interac-
tive probing.

We illustrate this process step-by-step with the MRI
head data set example shown in Fig. 5. The user begins
by classifying the volume using a traditional 1D transfer
function (top portion of Fig. 5c). She can then evaluate
the quality of the classification by looking at the volume
rendered result (Fig. 5d), as well as the classified slices
(Fig. 5b). If the 1D transfer function is not sufficient to
classify the material of interest, the user can then inter-
act with the segmented slice and probe on regions that
are part of the desired material class (marked with the red
arrow in Fig. 5b) and also regions that are misclassified
(marked with the green arrow). As the user probes the 2D
slice, the parallel coordinates representation displays the
filter bank response. Notice that the regions that are not
part of the brain have lines that move left as additional fil-
tering is applied, indicating that these regions are small
and surrounded by lower intensity materials. Based on this
parallel coordinate visualization, an additional 1D trans-
fer function widget is first added at level two, resulting
in the classified result shown in Figs. 6b and 6d. An addi-
tional classifier is then added at level three (Fig. 6a), which
further improves the classification as shown in Figs. 6c
and 6e.

5 Hardware implementation

To maximize system interactivity, we implemented our
volume renderer using graphics hardware. The volume is
rendered using view aligned textured polygons [33] with
the volume stored as a 3D mip-mapped texture. Our ren-
derer makes use of post-data-interpolated classification,
with the transfer function implemented in an OpenGL
shading language fragment program. The transfer function
itself is passed to the fragment program as a set of 1D tex-
tures – one set for each classified material class.

During rendering, on a per fragment basis, the filtered
scalar values used for classification are read, using level-
of-detail biased, quadralinear interpolation. They are then
used as indices for subsequent reads into the transfer func-
tion textures. The results from these transfer functions are
then multiplied as expressed in Eq. 1 and used to deter-
mine the final color as expressed in Eq. 2. The vectorized
nature of GPU architectures makes it possible to per-
form this classification process on four material classes

simultaneously by using the RGBA channels. With this
approach, we can render a 256×256×256 volume into
a 512×512 window with approximately one sample per
voxel in depth at approximately 2.5 frames per second
using an NVIDIA GeForce 6800 Ultra. This perform-
ance is obtained with four material classes, classifiers with
a three-dimensional input domain, and approximately one
rendered sample per voxel in depth. The frame rate is
slower than traditional 1D transfer function methods, but
is sufficient for the type of interaction required for our
work.

6 Results

In addition to the previously discussed MRI head data
set, we have applied our multi-scale technique to three
additional data sets: CT scans of a block of concrete, an
aneurysm, and a Christmas tree. These data sets all contain
material regions or features that cannot be clearly classi-
fied by exclusively using scalar values. The transfer func-
tion widget applied at each dimension of classification for
the example data sets was either triangular, Gaussian, or
a constant step.

We first apply our technique to a data set that was ac-
quired for the purpose of non-destructive testing. This data
set is a CT scan of a long glass rod embedded in a solid
block of concrete. The rod is visible in the 2D slice in
Fig. 7c as a dark gray vertical band approximately one-
third from the left edge. The high-frequency, speckled
nature of the concrete, as well as noise from the imaging
process, makes the classification of this bar difficult for 1D
transfer functions. Using the 1D transfer function at the
top of Fig. 7e results in the volume rendered image and
classified slice shown in Figs. 7a and 7d. Probing the two
types of regions shown in Fig. 7d results in the filter bank
distribution shown in red and green in Fig. 7e. Applying
a 3D transfer function (i.e., three filters) that consider lev-
els zero, two, and three results in the volume rendered
result in Fig. 7b. The majority of the smaller, “noisy” ma-
terial has disappeared, producing a much clearer classifi-
cation of the glass rod.

Figure 8 shows a visualization of the aneurysm data set
that was rendered with our method. The vessels shown
can be classified with a traditional 1D transfer function.
With our method, however, a transfer function that takes
into account the structure of the surrounding material can
be defined. In this case, different colors are used to show
the relative sizes of the different vessels. The aneurysm
is shown in light blue, the smaller vessel structures are
shown in orange, while the intermediately sized vessels
are shown in purple. A 2D transfer function was used for
the blue region, while 3D transfer functions were used for
the brown and purple regions.

Finally, we applied our method to the Christmas tree
data set. Figure 9a depicts the result of using a 1D trans-
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Fig. 7a–e. Results of refining the classifi-
cation of a glass rod embedded in concrete
using our technique. The embedded rod
has a similar data value to many regions in
the concrete, resulting in the poor classifi-
cation shown in a. In c, the rod is visible
as a dark gray band, while similar regions
are visible as blotches. Once the user
probes the areas shown in the classified
slice, d, the resulting filter bank response
is shown. Adding additional classifiers at
filter bank levels containing a clear separa-
tion of probed regions, as in e, yields the
improved volume rendering shown in b

Fig. 8a–c. An aneurysm data set classi-
fied and rendered using our technique. Be-
cause it considers local data characteris-
tics at multiple scales, it is possible to de-
fine a transfer function that assigns colors
based on vessel size. b and c depict two of
the three classification widgets used to as-
sign the colors in a. This example demon-
strates the ability to classify volumetric
features based on size, a task not easily ac-
complished with conventional 1D or 2D
transfer functions

fer function. Although the green needles can be classified
with a 1D transfer function, the ornaments and branches
cannot be separated. Figure 9b shows the result that can
be obtained with our approach. The red ornaments and
branches were classified with a 2D transfer functions,
while the white candles were classified using a 3D transfer
function.

7 Discussion

It is worth discussing the types of information provided by
a Gaussian filter bank and how they differ from the most
popular filter used in volume visualization, a non-linear

filter that computes gradient magnitude. Using Gaussian
filters of varying widths provides an indication of both the
local and global structure of a point at varying scales. This
can be particularly useful for classifying materials based
on neighboring attributes. As a low-pass filter, a Gaussian
filter is also very tolerant of noise. Gradient magnitude, on
the other hand, provides an indication of the local change
in intensity and is thus very effective for use in classifying
and visualizing those regions in a volume with the most
change, specifically material boundaries. The local nature
of gradient magnitude, however, makes it susceptible to
noise and limits its ability to classify based on texture, or
perform classification of homogeneous regions. The Gaus-
sian filter bank approach that we utilize has its strength
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Fig. 9. a shows the Christmas tree data
set rendered with a 1D transfer function.
The similar material values found on the
branches and ornaments prohibit classifi-
cation based exclusively on scalar value.
The image in b has been classified and
rendered using our method. Notice that
the ornaments and branches are classified
as separate materials and have been as-
signed different colors

in classifying regions of a volume and is well-equipped
to deal with noise and texture, while the gradient magni-
tude approach to volume visualization has its strength in
classifying important boundaries in a volume.

We have demonstrated with concrete examples how
scale-based filtering can be used to classify volumetric re-
gions and noisy volumes. Further study of the limitations
of this approach is needed. How do we relate structures
across scales? Would directional Gabor filters or wavelet
transforms with orthogonal bases be able to handle more
complex classifications while maintaining the simplicity
of the existing user interface? Our work shows a very
promising direction for further research in volume visual-
ization.

8 Conclusion

We have presented a new approach to interactive vol-
ume classification that allows the user to explore a filter
bank space of inputs for specifying transfer functions. The
method considers not only the material value, but also the

neighboring properties of a value at multiple scales. Care-
ful attention has been paid to keeping the classification
task simple, using small sets of 1D transfer function wid-
gets (in all examples, three or fewer) to accomplish these
classifications. We believe that noise, texture, and neigh-
boring structure are important aspects of volume classi-
fication and our approach can help scientists overcome
these aspects so that they can more effectively visualize
and explore their data. In particular, the ability to classify
volumetric features according to their sizes, as shown with
the aneurysm data set, is very powerful and has wide ap-
plications in science and engineering, such as the study of
3D turbulent flow.
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