Image Graphs - A Novel Approach to Visual Data Exploration

Kwan-Liu Ma*

University of California, Davis

Abstract

For types of data visualization where the cost of producing
images is high, and the relationship between the rendering
parameters and the image produced is less than obvious, a
visual representation of the exploration process can make the
process more efficient and effective. Image graphs represent
not only the results but also the process of data visualiza-
tion. Each node in an image graph consists of an image and
the corresponding visualization parameters used to produce
it. Each edge in a graph shows the change in rendering pa-
rameters between the two nodes it connects. Image graphs
are not just static representations: users can interact with a
graph to review a previous visualization session or to perform
new rendering. Operations which cause changes in rendering
parameters can propagate through the graph. The user can
take advantage of the information in image graphs to un-
derstand how certain parameter changes affect visualization
results. Users can also share image graphs to streamline the
process of collaborative visualization. We have implemented
a volume visualization system using the image graph inter-
face, and our examples in the paper come from this applica-
tion.

CR Categories and Subject Descriptors: H.5.2 [In-
formation Interfaces and Presentation|: User Interfaces -
graphical user interface; H.5.3 [Group and Organization In-
terfaces]: Collaborative computing; 1.3.2 [Computer Graph-
ics]: Graphics Systems - remote systems; 1.3.3 [Computer
Graphics]: Picture/Image Generation - display algorithms;
1.3.6 [Computer Graphics]: Methodology and Techniques -
interaction techniques

Additional Keywords: knowledge representations, scien-
tific visualization, visualization systems, volume rendering

1 Introduction

Effort spent generating and collecting data is wasted unless
there are effective means to organize and understand this
data. This fact poses a problem in some modern visualiza-
tion research. For example, in volume rendering the current
data handling and visualization technology can not handle
the sheer size of emerging datasets. While various efforts
have been made to condense datasets and accelerate ren-
dering calculations, little work has been done to represent
the process and results of this type of visualization coher-
ently. However, this information about the data exploration
is knowledge that should be shared and reused. In [11], a
graph representation is used to effectively organize and store

*2063 Engineering II, Department of Computer Science, One
Shields Avenue, University of California, Davis, CA 95616,
ma@cs.ucdavis.edu

this knowledge. Essentially, during a data visualization ses-
sion, as images are rendered, they are added to a graph which
displays the relationship between all of the images the user
has produced.

This paper describes new, dynamic features we have built
on top of that graph representation, and also describes the
implementation of a web-based visualization system which
uses the graph-based design. The new features include:

e Operations on nodes

e Operations on edges

e Propagation of node properties
e Animation

e Graph pruning, node collapsing, and summary graphs.

Together, these features turn the original static graphs into
a dynamic interface for visual data exploration. We call this
visual interface an image graph.

The data exploration process can be controlled by an im-
age graph which becomes more detailed during the process.
Operating on the graph is more efficient than manipulating
individual images and visualization parameters because the
graph gives the user context. For example, in volumetric
visualization, a change in a single rendering parameter may
affect different datasets in widely varying ways. A visual
representation of the effects of past parameter changes on a
given dataset can help the user predict the effects of future
changes, and thus streamline the exploration process.

In previous work, various attempts have been made to
organize information into visual representations to improve
perception of the information, but only a few are related to
our work. Worldlets [3] are 3D thumbnails for wayfinding in
virtual environment. Each worldlet landmark represents a
miniature virtual world fragment which provides the users a
memorable destination to return to later. CZWeb [2] helps
users navigate through the Web by using a fish-eye view
technique and a hierarchically organized network (or graph).
As the user navigates using a web browser, new web sites
and pages visited are added to the graph in an organized
fashion. The data-flow model [12] has been adopted by many
commercial visualization systems [12, 13, 1]. These systems
all provide a visual programming environment which allows
the user to construct directed graphs representing the flow of
data through the system. An image graph stores information
about data exploration, and is unique because of its intuitive
edge representations and dynamic features.

We have organized the paper as follows. Section 2 de-
scribes data exploration as both a parameter specification
problem and a search problem. This discussion forms the
motivation for our research effort. In Section 3, we briefly
review the graph-based representation, and the basic princi-
ples behind image graphs. Section 4 introduces the dynamic
features of the image graph interface. We show with several
examples how the user can interact with the graph represen-
tation using the new operations and the property propaga-
tion capability. Section 5 addresses the issue of scalability in

image graphs, and suggests a few viable approaches. We dis-
cuss the use of image graphs for collaborative visualization
in Section 6. Section 7 describes a web-based volume visual-
ization system using the image graph interface. Although we
use volume visualization as the driving application through-
out this paper, the principles and design are applicable to
general data exploration and visualization problems. The
final section concludes the work and suggests directions for
future research.

2 Approaches to Data Exploration

The goal of visual data exploration is the discovery of vi-
sualization parameters which emphasize the most relevant
features of a dataset. In volume rendering, some impor-
tant rendering parameters include view, color and opacity
transfer functions, and light sources. He, et al. [5] uses
stochastic search techniques in concert with user defined fit-
ness functions to help the user pick good transfer functions.
Kindlmann and Durkin [6] demonstrate a more ambitious
approach which generates transfer functions for volume ren-
dering in an semi-automatic fashion. Under most systems,
the selection of rendering parameters is an iterative process
of trial and error. The user simply tries combinations of ren-
dering parameters until he finds a combination which pro-
duces a useful image.

The Design Galleries system [10] is notable because it
treats volume rendering as the process of exploring a mul-
tidimensional space. The dimensions of the space are the
rendering parameters. The image the user is looking for
exists in this space, but the user does not know the appro-
priate combination of rendering parameters to produce that
image. In a preprocessing phase, the system renders images
based on parameters in different regions of the search space.
When the preprocessing is complete, the user can view a 3D
representation of the design space and look for the desired
image among the group of rendered images. This is an inter-
esting approach because it recognizes that volume rendering
should be treated as a process of searching a design space
rather than a process of trial and error.

Our approach avoids preprocessing in favor of adding
newly rendered images to an image graph. With unique edge
representations, an image graph keeps track of the relation-
ships between images of the dataset to make the search of the
design space more efficient and effective. The SI system [8]
also explores structured visual representations of the image
production process. It extends the spreadsheet paradigm by
incorporating images, data and widgets into spreadsheets.
This extension allows the user to manipulate data according
to formulae in the same way that numbers are manipulated
in a traditional spreadsheet.

It is important to stress that our approach to data visual-
ization differs from standard flowchart based data analysis in
that most flowchart systems use a graph to control the pro-
cessing of data, while our system uses a graph to help the
user understand the results of the parameter search process.

3 Image Graphs

Image graphs offer a way to represent the data exploration
process. They aid in the process of reviewing and recording
the interesting structures found in the dataset. As well, they
make searching for a desirable rendering parameters more
efficient by showing how changes in parameters affect the
visualization output for a given dataset. In an image graph,

H o
Shading S

amplin

Figure 1: Edge representations for different rendering pa-
rameters. An edge represents the change in rendering pa-
rameters between the two nodes it connects.

each newly rendered image is associated with an n-tuple of
rendering parameters (color, opacity, zoom, rotation, light-
ing, etc.). A notion of equality is defined for each of these
rendering parameters. Two nodes on a graph are considered
to be equal if all of their rendering parameters are equal.
Two nodes are considered to be similar if all but one of their
rendering parameters are equal. After each image is ren-
dered, it is added to the graph. Then the node is attached
to similar nodes in the graph. The similar nodes are con-
nected with an edge that represents how they are related.

Because similar images can differ in one of several aspects,
there are various types of edges that can exist between nodes.
When a new node is added to the graph, at most one new
edge of each type is drawn to prevent the graph from be-
coming cluttered. Edges on the graph vary in appearance
according to the type of relationship they represent. Figure 1
shows six different types. The reason for this distinction is
to depict the changes made during the data exploration to
get from one image on the graph to another. It is especially
important to know the relationships between the images that
have been rendered in case the types of the changes are not
readily apparent from the images.

Figure 2 shows an image graph which provides the user
with more information than just a group of images of the
dataset. In particular, the graph makes it clear that first
the user was experimenting with a variety of color maps.
Next he produced images by changing the rotation of the
desirable node, and then zoom factor. Note that nodes with
similar parameters are close to each other in the graph even
though they were not created in sequence. The mark on the
top right corner of each thumbnail image indicates the rela-
tive age of each node. Lighter marks correspond to the most
recently created nodes. If these images are simply listed
in the order of creation, it would be difficult to discern the
relationships between these images just by looking at the im-
ages themselves. A more complete description of the static
representation, properties, and benefits of this graph-based
approach is given in [11].

4 Graph-Based Rendering

Considering that the user’s task is essentially a search for
desirable images within a space defined by the rendering pa-
rameters, the image graph effectively represents user’s search
pattern. For example, if after rendering an image using some

Figure 2: A graph representation of a set of images produced
from the exploration of a dataset from a combustion engi-
neering simulation of an industrial furnace. The goal was to
reveal the temperature distribution inside the furnace. From
this graph, one can see the user was first searching for an
appropriate color transfer function before deriving the desir-
able visualization shown in lower right image.

initial default parameters, the user wants to fine tune the ro-
tation of the dataset to best display a certain small structure
in the data, the user might render a series of images with
differing rotations to search for the best rotation. This pro-
cess would be represented on the graph as a group of images
surrounding the initial image, with each of the surrounding
images connected to the original image with a curved line,
which is always used to represent a change in rotation. Once
the user had found the correct rotation, he might continue
his exploration by experimenting with different color and
opacity values. Whatever images he rendered after finding
the correct rotation would be attached to the image with the
desired rotation. The graph would allow the user to quickly
locate images of interest by looking at the relationship be-
tween images. The graph allows the user to easily switch
back and forth between different points in the image search
space. A user could explore different rotations to make a
structure visible as described above, and later try using dif-
ferent opacity mappings to make the same structure visible
independent of rotation. The user could switch back and
forth between these approaches, and the graph would keep
the nodes relating to the two approaches separate from each
other.

This graph-based rendering can be much more dynamic.
Once a few images are produced and added to the graph,
the user can start manipulating the graph by editing the
relationships between all of these images in the graph. The
user can edit both nodes and edges in a graph. We describe
the benefits of these features for data exploration in the rest
of this section.

Figure 3: A portion of a graph representing the exploration
of a foot dataset. Numbers were added to the graph for ease
of illustration. The user combines the color and opacity
maps of Node 1 in the top right corner with the zoom and
rotation of Node 2 in the bottom left corner to produce Node
3 the image in the bottom right corner.

Figure 4: A desirable visualization result (right most) was
produced using the union of two opacity transfer functions
defined by the red and blue curves respectively. The left-
most image (negative, blue vortices) corresponds to the blue
curve. The middle image (positive, red vortices) corresponds
to the red curve.

4.1 Editing Nodes

One feature the graph provides is the ability to combine
the attributes of two existing nodes to produce a new node.
During the process of searching for the rendering parame-
ters which produce a useful image, a user may find several
images which have some qualities of the desired image, but
are not perfect. In this case, the user can drag one node
on top of another node on the graph to produce an image
which shares selected rendering parameters of the two par-
ent nodes. Figure 3 presents an example. A dialog box lets
the user specify which rendering parameters of each parent
image will be used for the child image. The new image is
then rendered and added to the graph, showing the relation-
ship between the rendering parameters of the child and its
parents.

The user can also generate some new rendering parame-
ters using set operations such as union, difference and in-
tersection. For example, an image may be generated based
on an opacity transfer function which is the union of two
others. Figure 4 presents an example in which the left-most

two images exhibit similar structures which in fact represent
two different value ranges from the dataset. Here, scientists
want to see both structures and their relationship in a single
visualization, as can be produced with our union operation.

4.2 Editing Edges and Properties Propagation

Another method of editing the graph is manipulating edges
to alter the changes in rendering parameters between two
nodes. The user can select an edge on the image graph to
bring up a dialog which allows the user to change the pa-
rameter. Once the value of the parameter has been changed,
the user can select a group of nodes to apply the change to.
The user may apply the change to just one of the nodes di-
rectly connected to the edge, or to all of the nodes on either
side of the given edge. Using this method, a user can cause
changes in rendering parameters to propagate through the
graph. Specific property changes can either propagate for-
ward (i.e. in the direction of the newer node attached to
an edge), or backward according to the user’s wishes. This
helps the user see the effects of a single parameter change
as they exist in concert with many other combinations of
parameters, all while keeping graph clutter to a minimum.

The user can also move edges within the graph, chang-
ing its topology. When the user detaches one end of an
edge from a node and attaches it to another, the parame-
ter change associated with the edge is propagated through
the new node and its peers. Using this approach, the user
can apply a series of parameter changes to a group of nodes
as a whole. Applying parameter changes in this way helps
the user isolate the effects of various rendering parameters
from each other in the images. This can help the user deter-
mine which types of parameter changes cause which results
in an image, as these effects are not always apparent from
the images themselves. Figure 5 shows an example of the
propagated effect before and after manipulating two edges.
The consequence is the replacement of color transfer func-
tion at Node 3, and the propagated effect throughout Nodes
4, 5 and 6. Node 7 is removed since it became redundant to
Node 3. The second edge operation moves the top rotation
edge over the bottom rotation edge. The propagation trig-
gered allows the user to see all the visualization results on
the right from a different view angle, the one Node 1 used.

Note that editing edges can result in a cyclic graph, in
which case property propagation must be executed with
care. Our current solution is to stop the propagation process
when reaching an edge of the same type as the propagated
property. In summary, the essence of the graph-based data
exploration is that the user explore the data by creating a
graph, operating on the graph, and reusing the same graph
as much as possible.

4.3 Animation

Image graphs are also useful for making animation se-
quences. The user selects from the graph the series of key-
frame images to use for the production of the animation,
and the system performs interpolation between them in the
visualization parameter space to produce an animation. We
use linear interpolation from the rendering parameters of
one image to the rendering parameters of the next to pro-
duce the intermediate images. Whether linear interpolation
is appropriate or not for other types of visualization param-
eters remains to be investigated.

Using this method the user can produce movies where,
for example, the muscle tissue in a CT scan gradually fades

Figure 5: Top: an image graph produced from the foot
dataset. A ”color” edge is being detached from node 7, and
re-attached to node 3 in the graph. This action will replace
the color transfer function of node 3 with the color map of
node 7 and trigger a re-rendering at node 3. Furthermore,
the effect of using a new color transfer function at node 3
will propagate through its peers. Middle: the resultant im-
age graph after a forward propagation of a new property,
in this case, the color transfer function. Compared to the
images in the top graph, note that node 3, 4, 5, and 6 have
all been updated. Node 7 has been removed since it has
become redundant to node 3. Bottom: the resultant image
graph after a forward propagation of a new property, in this
case, rotation. Compared to the images in the middle graph,
except the upper left image (Node 0), all other images are
updated using the new viewing angle. Note that the user was
able to create new visualization results without introducing
new graph nodes.

Opacily m—bOOM ————-

Opacity = Rotation

Figure 6: Making an animation using the image graph. Five
key-frame were selected from an image graph to produce an
animation sequence. From an image graph, the selection of
key frame images becomes very intuitive to the user.

away to reveal only bone as the dataset is rotated. The main
benefits of the image graph here are that the user can see
the relationships between the images, and that images with
similar properties are grouped together. So, when selecting
the key frames for an animation the user can quickly find
them with appropriate transitions, and have a rough idea
of what the animation will look like before it is produced
based on how the parameter changes affect the images in
the graph. This intuitiveness of picking key-frame images
would not be present with, say, a data flow network.

Figure 6 shows five key frames picked by a user, and Fig-
ure 7 displays the selected frames from the resulting ani-
mation produced by the system. In this example, between
every two consecutive key-frame images, only one parame-
ter is changed. In practice, change of multiple parameters
between consecutive key-frame images may be desirable, in
which case the interpolation for each parameter is done inde-
pendent of other parameters, but their collective effect would
show in the new images.

5 Graph Scalability and Displaying

The graph-based approach can become difficult to use after
a great deal of images have been added to the graph. To
address this issue, we have investigated several approaches
to graph scalability. These approaches provide either a more
detailed local view or a more compact global view of the
original graph.

5.1 Local Views

Probably the simplest approach to solve the graph scalability
problem is the use of a scrolled window. While a scrolled
window is easy to implement, it only shows a subset of the
graph - a very localized view of the overall graph. The user
loses context. The fisheye lens [4] is a mechanism for keeping
the context while the user focuses on a smaller region. The
distorted views of a large graph produced by using a fisheye
len can be distracting.

A better approach to graph scalability involves providing
both scrolling and zoom functionalities so that the user looks
at a view of the graph which shows all of the nodes, or an
enhanced view which displays a specific region of interest.
In our current implementation the images representing the
renderings of the dataset automatically scale in resolution as
the zoom factor increases. This means that the user can get
a very good look at an image on the graph by zooming in
to it, without even having to load it into the main rendering
window of our visualization system.

Figure 7: Selected frames from the resulting animation se-
quence. The user can specify arbitrarily short or long se-
quence between consecutive key frames.

5.2 Global Views

To keep the overall context, we first use a manual approach.
The user can select nodes on the graph and collapse them.
That is, remove them from the graph and store them else-
where. These nodes can be added back to the graph later if
the user wishes. In order to maintain correct graph topol-
ogy in this case, the user is only allowed to collapse nodes
with less than three edges active on the graph. However, if a
user wishes to collapse a node with more than two edges, he
can do this by collapsing surrounding nodes until the target
node has the required number of edges, and then collapsing
the node. When the user restores a node to the graph which
has been collapsed, the node might not share an edge with
any active node in the graph. To deal with this issue, the
system computes the shortest path which connects the node
to be added with the existing nodes, and adds the nodes and
edges which form this path to the graph.

We have also implemented an automatic graph pruning
approach, which involves using an least-recently-used algo-
rithm to select nodes to remove from the graph when the
number of nodes on the graph reaches a certain number.
The user can mark certain nodes on the graph as immune
from pruning, so that they will remain on the graph even if
the user does not view or modify them for a long time. If
a node is automatically pruned, it can be brought back into
the graph just like manually pruned nodes.

5.3 Summary Graph

Another benefit the image graph approach provides for the
user is the ability to view a summary graph which only shows
the relationships between images that the user has marked as
important. This functionality is useful in several scenarios.
First, the user may wish to see the shortest path between
the default rendering parameters and the parameters used
for a desirable image. This functionality can be used to
remove all nodes from the graph except those which lie on
the path between nodes the user has marked as important.
As well, the user may wish to show the relationship between
a group of desirable images. In this case, the system can
automatically remove all nodes from the graph which are
not relevant to this relationship. This ability is especially
important in the context of collaboration. A user who is
unfamiliar with a dataset will find a graph which shows just
the important images to be more useful than a graph which
displays poor images produced during the data exploration
process.

6 Collaborative Visualization

The exchange of image graphs among users is more useful
than the exchange of just image data. Users can share, un-
derstand, and build upon each others results. If a group of
images is used, the user has no clear idea of the relationship
between them. If users want to work together to explore a
dataset, it is important to minimize the amount of a user’s
work which is lost when that work is communicated to an-
other user. By expressing the data exploration process in
terms of an image graph as opposed to a list of images, the
system can communicate more information to other users.
When a user explores a new dataset, the first step is to lo-
cate a reasonable set of rendering parameters which produce
an intelligible image. Once this starting point is reached, the
user can begin to refine the image. During this process of re-
finement, a lot of information about the dataset is discovered
which can not be captured by images alone. The user may
learn, for example, that for a given dataset changes in the
color map do little to change the resultant image compared
to the change caused by changes in the opacity map. In a
collaborative scenario, it is useful to communicate this infor-
mation to other users so they would not have to rediscover
it. The image graph accomplishes this goal.

Moreover, this sharing becomes more effective with anno-
tated image graphs. Annotation is done by drawing on the
actual images, or by writing comments about the images.
These comments are stored in the visualization graph along
with the nodes to which they correspond. As well, these
graphs can be saved for later use. The annotated graphs
can then be exchanged among users of the system. Figure 8
shows an annotated image.

7 System Architecture

We have implemented a web-based volume visualization sys-
tem which includes all of the image graph features described
in this paper. The main components of our system are the
render server, the communication server, and clients. Fig-
ure 9 presents the system architecture of the testbed. In
this section each of these components is discussed in further
detail.

Axis
Switching

Time Step 98"

Figure 8: Visualization of data from modeling of turbulent
jet flow. The image is annotated by a user to point out
features showing low and high pressure, and the axis-switch
property of the flow.

7.1 Render Server

The render server is the process which actually performs the
rendering of the image to be displayed on the client. This
server is started by the proxy server when needed in order to
fulfill a rendering request from a client. Because the system
is modular, different implementations of the render server
can be used interchangeably. The current implementation
uses both the shear warp algorithm [7] and a ray casting al-
gorithm [9] to render data on Cartesian grids. The system
selects which algorithm to use based on the size of the im-
age requested and our performance data. With our current
configuration, the ray casting algorithm performs better on
smaller images and the shear warp algorithm performs bet-
ter on larger images. In addition, the ray casting algorithm
is used to render zoomed images as the shear warp imple-
mentation does not support supersampling.

Both rendering algorithms can benefit from preprocessing.
To speed up subsequent rendering calculations, the shear
warp algorithm as used in our system uses two stages of pre-
processing: classification and octree encoding. Octree en-
coding is dependent on the opacity transfer function used.
This means that if the render server’s preprocessing is up
to date, a new image of the dataset can be rendered very
quickly if only the color transfer function or the view trans-
formation is changed. On the other hand, the ray casting
renderer uses a view-dependent ray cache to achieve very fast
rendering rates independent of changes of transfer functions.

7.2 Proxy Server

The proxy server handles the communication of the clients
and the render server. It provides mechanisms for access
control, tracking the state of a client’s session, load balanc-
ing, and caching. When a client is started, it connects to the
proxy server. The server can choose to allow the client to

Client Machine Render Maching

Client Machine

Web Machine

Render Maching

Clinet Machine H

Clinet Machine ; Render Maching

Client Machine

Web Browse‘

s Y

Rendering
Process

Figure 9: System Architecture of the testbed.

Proxy Server

connect or not, based on any desired set of rules. For exam-
ple, the proxy server might want to limit access to only ten
users at a time. The server could also only accept connec-
tions from within a certain network, or according to some
other metric.

If a client is allowed to connect, the server begins keeping
track of the rendering parameters associated with the cur-
rent client session. A separate set of rendering parameters
is maintained for each client connected, so that many clients
can connect at a time. A single proxy server can also connect
to a variety of render servers. This allows a proxy server to
distribute a rendering load by assigning separate rendering
tasks to rendering processes running on different machines.
While our current implementation does not support the di-
vision of the task of rendering a single image among multiple
servers, this type of separation is a possibility for future ex-
ploration.

The proxy server also implements a caching mechanism to
try to reduce the number of images that need to be rendered.
When an image is generated, the rendering parameters used
to generate that image are stored along with the image. If
another image is requested later using the same rendering
parameters, the initial image is used.

The shear warp algorithm can take advantage of pre-
processing in order to reduce rendering time. The proxy
server determines what type of preprocessing to do based
on changes in the state of the clients. As new images are
produced, the proxy server tells the render server to do the
correct preprocessing.

7.3 Client

The Java client displays a user interface for the system. The
interface allows the user to upload data, filter the data, set
and adjust rendering parameters, displays the images pro-
duced by the render server, and organizes a concise history
of the visualization process conducted by a user. We have
been experimenting with different user interface designs for
this volume visualization system. The Java client will allow
us to conduct user studies of our designs by using users at
remote sites.

8 Conclusions

Image graphs help streamline the process of visual data ex-
ploration in two ways. First, the graphs give the user a
representation of the relationship between visualization pa-
rameter changes and the images produced using them. As
we have pointed out in an example using volume rendering,
often these relationships are not obvious just through in-
spection of the rendered images. An understanding of how
specific rendering parameter changes will affect the image
output is important because it reduces the number of im-
ages the user must produce to find parameters which yield a
useful image, and these images can be quite time consuming
to produce.

Second, the dynamic features of the graphs, such as an-
notation and automatic pruning, facilitate collaboration and
animation. They also help speed the search for good ren-
dering parameters by allowing users to perform operations
on groups of nodes. These operations include simple mod-
ification of rendering parameters, combination of nodes to
form ”child” nodes with their properties, and propagation
of modifications through the graph.

The results of an informal user study we have conducted
using twelve resident staff scientists indicate that image
graphs reduce the average amount of time needed to come up
with desirable images of complex volumetric datasets. We
are presently designing a comprehensive user study to refine
the design of the visualization system and its image graph
interface. We are particularly interested in learning to what
extent that image graphs may be reused.

While the examples in this paper relate to volume render-
ing, we think image graphs would be useful for any type of
data exploration problem which produces images of data as
a function of some set of parameters. Other possible applica-
tions include radiosity calculations, 2-D image filtering, and
polygon based rendering. Our future work, thus, includes
demonstrating that our approach is indeed useful for these
other problem domains.

Acknowledgements

This research was supported by the National Aeronau-
tics and Space Administration under NASA Contract Nos.
NAS1-19480 and NAS1-97046 while the author was in resi-
dence at the Institute for Computer Applications in Science
and Engineering (ICASE), NASA Langley Research Center,
Hampton, VA 23681-2199. James Patten, an undergraduate
student at University of Virginia, with excellent program-
ming skill implemented a prototype of the image graphs de-
sign while he spent two summers at ICASE. The foot data
set was extracted from the the Visible Woman data set. The
furnace data set was provided by Dr. Philip Smith at Uni-
versity of Utah, and the turbulent flow data set was provided
by Dr. A. O. Demuren at Old Dominion University.

References

[1] G. Abram and L. Treinish. An extended data-flow
architecture for data analysis and visualization. In
Proceedings of the IEEE Visualization 95 Conference,
pages 263—270, October 1995.

[2] G. Collaud, J. Dill, P. Tan, and C. V. Jones. CZWeb:
Fish-eye views for visualizing the world-wide web. In

(10]

(11]

(12]

(13]

Proceedings of the HCI International ’97: the 7th Inter-
national Conference on Human-Computer Interaction,
August 1997.

T. T. Elvins, D. R. Nadeau, and D. Kirsh. Worldlets -
3d thumbnails for wayfinding in virtual environments.
In Proceedings of the ACM Symposium on User Inter-
face Software and Technology, pages 21-30, October
1997.

G. W. Furnas. Generalized fisheye views. In Human
Factors in Computing Systems, CHI ’86 Proceedings,
pages 1623, April 1986.

T. He, L. Hong, A. Kaufman, and H. Pfister. Gener-
ation of transfer functions with stochastic search tech-
niques. In Proceedings of Visualization ’96, pages 227—
234, October 1996.

G. Kindlmann and J. W. Durkin. Semi-automatic gen-
eration of transfer functions for direct volume render-
ing. In Proceedings of 1998 Symposium on Volume Vi-
sualization, pages 79-86, October 1998.

P. Lacroute and M. Levoy. Fast Volume Rendering Us-
ing a Shear-Warp Factorization of the Viewing Trans-
formation. In Proceedings of SIGGRAPH ’94, pages
451-458, July 1994.

M. Levoy. Spreadsheets for images. In Proceedings of
SIGGRAPH ’94, pages 139-146, July 1994.

K.-L. Ma, M. F. Cohen, and J. S. Painter. Volume
Seeds: A Volume Exploration Technique. The Journal
of Visualization and Computer Animation, 2:135-140,
1991.

J. Marks, B. Andalman, P. Beardsley, W. Freeman,
S. Gibson, J. Hodings, T. Kang, B. Mirtich, H. Pfister,
W. Ruml, K. Ryall, J. Seims, and S. Shieber. Design
Galleries: A general approach to setting parameters for

computer graphics and animation. In Proceedings of
SIGGRAPH ’97, pages 389-400, August 1997.

J. Patten and K.-L. Ma. A graph based interface for rep-
resenting volume visualization results. In Proceedings of
Graphics Interface 98, pages 117-124, June 1998.

C. Upson, T. Faulhaber, D. Kamins, D. Schlegel,
D. Laidlaw, J. Vroom, R. Gurwitz, and A. van Dam.
The application visualization system: A computational
environment for scientific visualization. IEEE Com-
puter Graphics and Applications, 9(4):30-42, 1989.

D. Young, M. Argiro. Cantata: Visual programming
environment for the khoros system. Computer Graph-
ics, 29(2):22-24, May 1995.

