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Abstract� Network data frequently arises in a wide variety of elds, and node-link diagrams are a very natural and intuitive represen-
tation of such data. In order for a node-link diagram to be effective, the nodes must be arranged well on the screen. While many graph
layout algorithms exist for this purpose, they often have limitations such as high computational complexity or node colocation. This
paper proposes a new approach to graph layout through the use of space lling curves which is very fast and guarantees that there
will be no nodes that are colocated. The resulting layout is also aesthetic and satis es several criteria for graph layout effectiveness.

Index Terms� Information visualization, Graph layout, Space lling curves.

1 INTRODUCTION
Applications in many elds employ graph visualization to present data
to the user. For example, document visualizations [22] can represent
documents and their citation network with a graph. Similarly, social
network visualizations [16] can represent people as nodes in a graph.
These visualizations are frequently used to show inherent patterns in
the data. In order to emphasize these patterns, many algorithms have
been developed that determine how to lay out the nodes in space.
Many algorithms exist to generate graph layouts, and they all gen-
erally share similar goals. Namely, they all strive to produce a layout
that meets one or more criteria, such as minimizing edge crossings or
having a short average edge length.
While most existing algorithms work well on sparse, mesh-like net-

works, real world networks such as scale-free networks are often large
and dense. As these graphs grow larger and denser, speed and screen
space also become issues. As the number of nodes on the screen in-
creases, less screen space can be used for each node, so the more frugal
a visualization needs to be in using that space. One way of doing this
is by reducing the number of nodes shown in detail at any one time,
such as through focus plus context interaction. But in order to allow
interactivity, it is imperative that the graph layout is fast, as each in-
teraction requires the graph to be adjusted. Many existing algorithms
are not fast enough to interactively adjust, so they rely on distortion
techniques such as sheye lenses [12]. Also, most existing algorithms
do not handle dense clusters in the graph very well, as the nodes inside
the cluster get placed too close together to discern details.
The graph layout approach we present here avoids these limitations

of previous layout algorithms, particularly when working with dense,
scale-free networks. It proceeds by using a clustering algorithm to
order the nodes of a graph, then using this ordering to arrange these
nodes along a space lling curve of arbitrary complexity. This allows
the graph to not only be initially laid out quickly, but also to adjust
to user interaction even more quickly. Our approach is also very fru-
gal with screen space, as it creates a layout which is space lling and
guarantees that nodes inside a cluster are not placed too close together.
It also guarantees good aspect ratios of clusters. In this paper, we de-
scribe our new approach, and also compare it quantitatively and qual-
itatively against seven other algorithms.

2 RELATED WORK

This work draws upon several existing techniques in both the elds
of graph visualization and space lling curves. Many graph layout
algorithms have been developed, and there are several variations of
space lling curves.
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2.1 Existing Graph Layout Techniques
Sometimes a graph has an intuitive layout where the vertices contain
positional information that can be used, such as geographical loca-
tions. However, most graphs do not have such information, thereby
requiring that the positions of vertices be derived. Special cases, such
as trees or directional graphs, have certain properties which can be
utilized to generate a layout. But, general graphs require more exi-
ble algorithms. Also, some work has been done in graph layout using
parallel hardware [9, 32], but many other layout algorithms could be
ported to parallel hardware as well. Hachul and Jünger have produced
an in-depth survey of many recent, general graph layouts [14].
The most intuitive, and probably the most often used graph lay-

out algorithms for small graphs, are force-directed layouts such as
Fruchterman-Reingold [10], LinLog [30], and Kamada-Kawai[21].
These algorithms position graphs by iteratively re ning the positions
of vertices in order to incrementally reduce an energy function. This
energy function varies between algorithms, but generally has the prop-
erty that it is a function of the distances between nodes and the weights
of the edges between them. While these layouts are intuitive and gen-
erally considered aesthetic, they do not scale well to large or dense
graphs. Some variants try to alleviate this issue, such as the Grid Vari-
ant Algorithm (GVA) of Fruchterman and Reingold [10] accelerates
layout by limiting repulsive forces between nodes to those contained
in the same area of a grid. However, they are still quite computation-
ally expensive.
There are more ef cient algorithms which use a multi-scale ap-

proach. Examples of these algorithms include the work of Cohen
[3], the Fast Multipole Multilevel Method (FM3) [13], and the Graph
dRawing with Intelligent Placement (GRIP) algorithm [11]. These al-
gorithms start by laying out a small approximation of a graph, then
progressively laying out ner approximations of the graph, until the
entire original graph is laid out. As this does not take multiple iter-
ations, these algorithms generally perform far better than traditional
force-directed approaches, while still producing similar results.
Even faster graph layout algorithms are available in the form of al-

gebraic layouts, such as Algebraic Multigrid Computation of Eigen-
vectors (ACE) [24] or High Dimensional Embedding (HDE) [15].
These algorithms calculate layouts immediately using linear algebra
techniques rather than iteratively or recursively laying out graphs ac-
cording to force calculations. While not very intuitive, these al-
gorithms can quickly produce layouts that are similar to the force-
directed layouts. However, as shown in the survey by Hachul and
Jünger [14], these algorithms can fail to produce a good layout in some
cases, particularly when the graph is dense.
The graph layout approach most closely related to the one presented

here is the treemap based graph layout [25], which does not fall into
either category. This approach works by hierarchically clustering a
graph, then applying a treemap to this hierarchy to derive placements
for the nodes. It can attain the speed of algebraic approaches while
avoiding issues such as nodes mapping to the same location. It also
uses the entire screen, so that no screen space is wasted. However,
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Fig. 1. Graph layout approach: First, we hierarchically cluster the nodes
of the graph. Then, we traverse this hierarchy to generate an ordering.
Finally, we use this ordering to place the nodes on a space lling curve.

when the hierarchy generated by the clustering algorithm is not well
balanced, the results often end up with regions with poor aspect ratios.
While work has been done on improving treemap aspect ratios, they
do not generally apply to binary trees, as are used in the treemap graph
layout algorithm.

2.2 Matrix Ordering
The approach of this paper essentially reduces the problem of graph
layout to one of matrix ordering, so it is important to consider what
work has been done on ordering of adjacency matrices. Mueller et
al. provide a survey of several different matrix ordering algorithms,
including breadth- rst search, depth rst search, RCM, King, Sloan,
and spectral decomposition [27]. Fekete et al. also explore matrix
orderings in their work on ZAME [8], in which they describe the use
of a modi ed version of HDE and an approximated traveling salesmen
algorithm for matrix ordering. Also, any graph clustering can be used
to derive a matrix ordering.

2.3 Graph Clustering
Graph clustering is a challenging problem in its own right. There are
as many kinds of clustering algorithms as there are kinds of graphs
that need to be clustered. However, graph data is frequently clustered
in order to create an overview or allow interactions such as semantic
zooming [25, 12]. Several clustering algorithms are hierarchical, such
as agglomerative or divisive clustering [20]. Others, such as k-means,
are not hierarchical. We choose to focus on clustering of small world
networks, such as the modularity algorithm of Clauset, Newmann, and
Moore [2], and the variant by Huang and Nguyen [18].

2.4 Space Filling Curves
The use of space lling curves in visualization is not that common,
but has recently become more popular. PhylloTrees [29] use spirals
similar to space lling curves to aid in the layout of hierarchical data.
Several recent computer network visualizations have used a space ll-
ing curve to map the IP4 address space of the internet [17, 19, 28].
The work of Martin Wattenberg demonstrates the use of a space lling
curve as an alternative to a treemap, and proves some nice properties
of the resulting visualization, which are due to this curve [33]. The re-
lationship between Wattenberg�s �jigsaw map� and a regular treemap
is particularly relevant to this work, as it analogous to the relationship
between the space lling graph layout approach of this paper and the
treemap based graph layout [25].

3 A SPACE FILLING GRAPH LAYOUT
This paper proposes an approach to generating a graph layout through
the use of space lling curves. As diagrammed in Figure 1, this ap-
proach consists of three steps. First, the clustering algorithm groups
nodes together into a binary cluster hierarchy. This hierarchy is then
traversed to generate a node ordering. Finally, the nodes are spaced
out along a space lling curve according to the ordering. An example
of a graph layout generated with this approach is shown in Figure 2.

Fig. 2. A protein homology graph laid out with our space lling curve
based approach. Color corresponds to depth in the clustering hierarchy.
|V |= 28,854, |E| = 1,180,816

3.1 Node Ordering
In order to lay out the graph nodes along the space lling curve, we
must rst order them coherently. Several common matrix orderings
were tried (including BFS, DFS, RCM, and King), but none of these
reliably produced good enough results. We found that using a cluster-
ing algorithm reliably produces a good ordering results in many real
world datasets. Since we are focusing on small world graphs (also
called scale-free or power law graphs), we use the �Fast Modularity�
community structure inference algorithm [2], which has been shown to
be very effective for graphs of this type. This algorithm works by start-
ing with each node as its own cluster, then iteratively agglomerating
them together by merging the two clusters that maximize the increase
in the modularity Q, which is de ned as:

Q =
1
2|V |∑i, j

(
ai, j−

did j

2|V |
)

δ (i, j)

where |V | is the number of nodes, ai, j is 1 if there is an edge between
nodes i and j and 0 otherwise, di is the degree of node i, and δ (i, j) is
1 if nodes i and j are in the same cluster and 0 otherwise. As described
in [2], this clustering algorithm runs in O(|E| × d× log|V |), where d
is the depth of the hierarchy (usually O(log|V |)).
Once this clustering hierarchy has been generated, the approach de-

rives an ordering of nodes by traversing the tree depth- rst. At each
level of traversal, it is possible to choose which branch of the hierar-
chy to traverse next. Currently, our approach chooses the branch to
traverse in the order determined by the clustering algorithm, which
turns out to be prioritized by the size of cluster. This traversal is very
fast, as it takes only Θ(|V |) operations. However, this does not take
into consideration inter-cluster edges, so it is possible for such edges
to be stretched out across the graph. A better ordering could probably
be achieved by using the inter cluster edges to decide which branch
of the hierarchy to descend down at each level, but that is beyond the
scope of this paper. Regardless of the order in which the branches are
traversed, the clustering information will be preserved. That is, nodes
that are in the same branch of the clustering hierarchy will be placed
close to each other in the ordering, and hence be in a contiguous area
of the resulting layout. Since we are focusing on fairly well clustered
graphs, this is the most important property for the datasets shown here.
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(a) Hilbert order 1 (b) Hilbert order 2 (c) Hilbert order 4

(d) Peano order 1 (e) Peano order 2 (f) Peano order 4

(g) Gosper order 1 (h) Gosper order 2 (i) Gosper order 4

Fig. 3. Examples of space lling curves.

3.2 Space Filling Curves
Once the graph nodes have been ordered, they are mapped onto the
screen according to a space lling curve. The primary property of
space lling curves which we wish to utilize is that they exhibit what
is referred to as �c-locality� [33]. That is, space lling curves satisfy
the equation:

Distance(M(pi),M(p j)) < c
√
|pi− p j|

where pi is the 1D position of a point i along the line, M(pi) is the
mapping of that point into 2D space, and c is some small constant. Due
to this property, graph nodes that are clustered together are guaranteed
to be placed nearby on the screen. In particular, for a cluster of n nodes,
they are guaranteed to be contained in a circular region of diameter
c
√

n. Therefore, a space- lling curve based layout can guarantee a
minimum aspect ratio for clusters. Space lling curves also have the
property that they do not self-intersect, which means that graph nodes
spaced out on a curve will never be placed in the exact same location,
as is possible with algebraic layouts. In addition, space lling curves
completely ll the area inside their boundary as their order d → ∞.
Thus, given a high enough order curve, graph nodes can be placed at
any point on the screen, so that screen space is not wasted. However,
since displays use discreet pixels, these curves only need to be of an
order suf cient to cover every pixel, which is actually quite reasonable.
In this work we use three space lling curves: a Hilbert curve, a

Peano curve, and a Gosper curve. All three curves are de ned recur-
sively, where the rst level is de ned by a fairly simple curve, and
each segment of the curve of order d is replaced by a copy of the orig-
inal pattern to create the curve of order d +1. Figure 3 shows various
orders of all three curves.

The Hilbert curve (shown in Figures 3(a), 3(b), and 3(c)) is the sim-
plest of the three space lling curves used here. At each recursion,
every corner of the curve is replaced by 4 new corners. Thus, an or-
der d Hilbert curve has 4d points and 4d − 1 segments of length 1

2d .

Pseudo-Code 1 A space lling curve mapping function
SFCMap (value, order) -> (x, y) : {

segment = floor(value * num_segments)
if(order == 0){

select the segment of the basis curve
calculate (x, y) along this segment

} else {
subvalue = value * num_segments - segment
(x’, y’) = SFCMap(subvalue, order - 1)
transform (x’, y’) to (x, y) in right segment

}
return (x,y)

}

When this length is smaller than the size of a pixel, the Hilbert curve
completely covers the screen. In other words, for a screen space with
dimensions S×S, the Hilbert curve needs to be of order d = Ω(log2S),
which for most standard screen dimensions (up to 2,048× 2,048) is
d = 11.

The Peano curve (shown in Figures 3(d), 3(e), and 3(f)) is slightly
more complex than the Hilbert curve, but is otherwise quite similar.
The primary difference between it and the Hilbert curve is that it re-
places each corner with 9 new corners instead of 4. Thus, an order d
Peano curve has 9d points and 9d −1 segments of length 1

3d . Because
of this added complexity, there are several variations of Peano curves,
as there are various possible orientations for the recursive steps. Also,
this complexity allows the curve to cover all pixels in even fewer it-
erations - for a screen space with dimensions S× S, the Peano curve
needs to be of order d = Ω(log3S), which for most standard screen
dimensions (up to 2,187×2,187) is d = 7.

The Gosper curve (shown in Figures 3(g), 3(h), and 3(i)), some-
times called the �Flow-snake,� is the most complex of the three. It is
advantageous in that it does not impose hard borders in each recursion,
thus it imposes the least amount of arti cial structure onto the graph.
However, it is not completely space lling, because it is not square
and it leaves white space around the outside of its boundary. At each
recursion, the Gosper curve replaces each segment of the curve with a
copy of the order 1 Gosper curve. Thus, an order d Gosper curve has
7d segments of length 1

(
√
7)d . To cover a screen space with dimensions

S× S, the Gosper curve needs to be of order d = Ω(log√7S), which
for most standard screen dimensions (up to 2,401×2,401) is d = 8.

3.3 Node Mapping
The last step is to map the nodes onto one of the space lling curves.
This is done by rst arranging the nodes one dimensionally according
to their ordering, and normalizing the node�s positions to the range
[0,1]. The simplest way to do this is to space them out evenly, with
1
|V | between each node. Once they are spaced out in one dimension,
their positions on the space lling curve are calculated with a map-
ping function M :Q→Q2. Just as the space lling curves are de ned
recursively, this mapping function is also calculated recursively. At
each intermediate level of the recursion, the mapping function calcu-
lates which segment of the curve it will be mapped to, then recurses
on that segment. In the nal level of the recursion, the function cal-
culates which segment the node lands on and places the node along
that segment appropriately. However, given a suf ciently high order
curve, this nal level will be at sub-pixel resolution, so the node could
be placed anywhere in the region. Figure 4 shows the result of map-
ping a graph of similarity between network scans to Hilbert curves of
various orders. As the order of the space lling curve increases, the
nodes quickly converge to their nal positions. As mentioned before,
at order 11, the Hilbert curve covers every pixel, so in this example,
recursing farther than 11 would not improve the results. By calculating
the positions in this manner, we can map the nodes from the ordering
to the screen in O(d×|V |), where d is the order of the fractal, which
is logarithmic according to screen resolution, so for our purposes it
is essentially constant. Pseudo-code for the basic space lling curve
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(a) Order 1 (b) Order 2

(c) Order 3 (d) Order 4

(e) Order 5 (f) Order 11

Fig. 4. Mapping nodes to space lling curves of increasing order. A
graph of network scans shown with Hilbert curves of increasing order.
Each increase in order places the nodes closer to their nal positions.
Order 11 is at the pixel level, so further recursions will have no effect.

mapping function is given in Pseudo-Code 1. While there are details
which are speci c to each curve, all three curves we use share the same
basic algorithm.

3.4 Cluster Spacing
While placing the nodes out evenly on the space lling is simple and
guarantees that all nodes are spaced out away from each other, overall
the nodes end up with an even distribution across the screen. This is
often considered to be not very aesthetic, as it looks as if the nodes
were spread out at random. Also, it blurs the distinction between clus-
ters, as there is no separation between them. It is possible to resolve
these issues by adjusting the spacing between nodes. In particular,
we want to increase the spacing between nodes in different clusters,
while decreasing the spacing between nodes in the same cluster. Since
we already have clustering information from the layout process, it
is straightforward to use this clustering information to space out the
nodes.
Nodes that are clustered together are closer in the clustering hierar-

chy, and therefore have similar depths in the hierarchy. So, the depths
of two consecutive nodes in the tree traversal will be nearly the same

(a) Peano curve - no seperation (b) Peano curve - with seperation

Fig. 5. Separating clusters. By adjusting the spacing between nodes
according to the clustering information, clusters can be separated.

when the two nodes are in the same cluster. Therefore, it is possi-
ble to space the nodes out according to the difference in their depths
in the hierarchy. That is, when the difference between the clustering
depths of two consecutive nodes is small, they should be placed closer
together, and when the difference is large, they should be spaced out
farther. We do this by calculating the spacing si,i+1 as:

si,i+1 = |depthi+1−depthi|k

where k is user de ned. Examples of clusters spaced out this way are
shown in Figure 5. As can be seen in the gure, clusters get compacted
together and spaced out apart from each other.

3.5 Geometric Zoom
One advantage to using a very fast graph layout is that it can be used
in an interactive system. A common interactive technique for graphs
is the capability to zoom into a small section of the graph to show it in
more detail. Existing approaches often use techniques such as sheye
lenses to distort an initial layout [12]. But such approaches require
that the graph be laid out at full resolution to begin with.
By using our space lling curve based approach, the graph can be

relaid out rapidly enough to allow interactivity, such as a geometric
zoom. One simple way to do this is to increase the spacing factors
of nodes that the user selects to focus on. Similar to how clusters
can be separated by spreading them out on the curve, focal areas can
be expanded to take up more space by increasing their portion of the
curve. That is, the layout can perform a geometric zoom by increasing
the spaces between nodes that the user selects. In our system, the user
to selects nodes to zoom with the mouse, and adjusts the level of zoom
with a slider widget. An example is shown in Figure 6.

4 RESULTS
In order to test the effectiveness of our graph layout approach, we ran
it on several graph datasets of various sizes. These datasets are sum-
marized in Table 1. The �netscans� dataset (shown in Figure 4) is a
complete weighted graph representing the similarity between network
scans. However, to more clearly depict patterns in this graph, edges
with a weight below a threshold value are not shown [26]. The �cal-
ifornia� dataset (shown in Figures 5 and 8) consists of the links be-
tween the webpages found from a search for the word �California� [4].
The �pgraph� dataset (shown in Figures 2 and 6) is a protein homol-
ogy graph, which is relatively dense [7]. Finally, the �usa a� dataset
(shown in Figure 7) is of the intersections and the streets between them
in the state of Florida [5].

4.1 Scalability
One primary application for rapid graph layout is for very large graphs,
which would take a very long time to lay out with traditional force-
directed layouts. In order to be useful for this task, the approach has
to be scalable to large datasets. As mentioned before, the actual layout

1304 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2008



Fig. 6. Geometric Zoom. The graph can be distorted by increasing the spacing between selected nodes along the space lling curve. The left
image shows the original graph and the other ones show the result of expanding the selected region by different zoom factors.

Table 1. Results: Time to generate a usable layout for several graphs

Graph |V | |E| Clustering Hilbert Peano Gosper Total time
netscans 848 22,462 .0739s 0.0007s 0.0007s 0.0007s 0.074s
california 6,107 15,160 0.655s 0.0043s 0.0039s 0.0043s 0.659s
pgraph 28,854 1,180,816 9.169s 0.0212s 0.0206s 0.0220s 9.190s
usa a 1,070,376 2,712,798 20.531s 0.8185s 0.7689s 0.8318s 21.337s

process only takes Θ(|V |) operations, so this approach is limited by
the clustering algorithm�s complexity of O(|E|×d× log|V |), which is
still quite fast. The extra space used by this approach is only Θ(|V |) to
store the hierarchy, which makes it quite ef cient in terms of memory
usage. As shown in Figure 7, we have tested our approach on graphs
up to |V |= 1,070,376, |E| = 2,712,798 and still been able to quickly
and reliably produce results with commodity hardware.

4.2 Comparison
The primary advantage to the approach presented here is that it is
very fast. However, even if a graph layout is fast, it is useless un-
less the resulting layout is good. For instance, a randomized layout
can be generated very fast, but the resulting layout will rarely be use-
ful. Force-directed layouts, such as LinLog, generally produce quite
good results, but take a long time to do so. Algebraic layouts are much
faster, but can fail to produce good results. The treemap based lay-
out is fast and often effective, but imposes structural artifacts such as
poor aspect ratios, since everything is rectangular. The space lling
curve based approach presented here attains speed comparable to the
treemap layout, and provides the same guarantees of lling the screen
and no node colocation, but it does not impose such a rigid structure or
have the issues with �skinny regions� that the treemap layout does. In
order to demonstrate the quality of a space lling curve based layout,
a comparison between it and several other layouts is given in Figure 8,
where they are applied to the �California� graph [4]. We used the
Boost Graph Library�s implementation of GVA [1] Yehuda Koren�s
own implementations of ACE and HDE [23], Yusufov�s implemen-
tation of GRIP src-grip, and the Open Graph Drawing Framework�s
implementation of FM3 [31]. While several algorithms have parame-
ters that can be adjusted, this would involve a trial and error process
which would need to be included in the timing tests, so we use default
parameters. Timing results were generated by running the programs
on one core of a 2.66GHz Intel Xeon Mac Pro with 8GB of RAM and
are presented in Table 2.

Fig. 7. Scalability. Our approach can scale to large graphs. This graph
is of the streets in the state of Florida, |V | = 1,070,376, |E| = 2,712,798
One small region is expanded to show detail.
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The LinLog layout, shown in Figure 8(a), was easily the slowest,
taking 10,737 seconds to compute 200 iterations. In this layout, it is
clear that there is a very tightly connected group of nodes, and many
weakly connected or disconnected subgraphs. While it can be seen
that there are actually three clusters in the center of the graph, the
internals of these clusters can not be seen, since the nodes are so close
together. Also, much of the space around the outside of the region is
not utilized.
The Grid-Variant Algorithm (GVA) [14], shown in Figure 8(b), is

a heuristically accelerated layout based on the Fruchterman-Reingold
layout algorithm [10]. As can clearly be seen, this algorithm is much
faster than LinLog, taking only 45 seconds to do 400 iterations. How-
ever, the results are not as good as LinLog, since the three clusters in
the middle are not distinguishable from each other. It also induces a
grid-like arrangement of many of the nodes due to the heuristic, which
is not related to the graph. Also, GVA leaves even more of the sur-
rounding area as whitespace. While the force-directed graph layouts
may be intuitive and aesthetically pleasing, neither of them show the
internal structures of the clusters.
The Fast Multipole Multilevel Method (FM3) [13], shown in Fig-

ure 8(c), uses a multi-scale approach to generate a layout more quickly
than traditional force directed layouts. It produced results similar to
GVA, but in a fraction of the time. Also, the resulting layout does not
have the grid-like artifact that GVA does. However, the results are even
less useful than either of the previous two. The cluster in the center
is packed even tighter than in GVA, and any internal properties of this
cluster are indiscernible. In particular, there is no way to tell that there
are three clusters inside. Also, even more space is left white around
the borders, so that the disconnected components can be placed around
the large one.
GRIP [11], shown in Figure 8(d), is another multi-scale algorithm,

similar to FM3. As can be seen in the gure, it performed even better
than FM3 in terms of speed, taking just over a second, yet produced
very similar results. That is, the majority of the nodes are compacted
into one small cluster, inside of which very few details can be seen,
while the majority of screen space is allocated to the disconnected
components.
The algebraic method ACE [24], shown in Figure 8(e), while very

fast, produced the least useful results. Not only are the vast major-
ity of nodes concentrated in a very small area, but it does not even
separate disconnected components. It also leaves most of the screen
blank. However, the worst issue was that it often failed to complete
running. When it did nish running, it nished very quickly, but it
often locked up and never reached completion. Similar results were
presented in Hachul and Jünger�s survey paper [14], though it could
be an implementation bug.
Similarly to ACE, HDE [15], shown in Figure 8(f), also produced

results very quickly, but which were not as useful as the force-directed
algorithms. As in ACE, the majority of the nodes are grouped in one
large cluster, with a few outliers on the other side of the screen. The
three clusters are not distinct at all, and the disconnected components
are not separated. Also, just like all the previously mentioned exam-
ples, HDE leaves a large portion of the screen empty.
The treemap based layout (Figure 8(g)) was made by applying the

�Fast Modularity� algorithm [2]. splitting the regions such that edges
are shortened, and randomizing node placement within their regions.
The whole layout took less than a second to compute. The resulting
layout very clearly shows three large clusters of nodes, with many in-
ternal nodes, and a large number of other nodes distributed around
the screen. Within these clusters, interesting features, such as nodes
of high degree, are easily visible. Similar features are also visible in
the rest of the graph. However, there are artifacts, particularly near
the edges of clusters, where nodes are spread out over skinny regions
of the treemap. The treemap also imposes a fairly arti cial rectangu-
lar shape to the graph, which can distract from other patterns that are
actually present in the graph.
The space lling curve layouts (8(h), and 8(i)) were generated as

described in this paper. The graph was clustered with the �Fast Mod-
ularity� algorithm [2], traversed to generate an ordering, then mapped

Table 2. Speed comparison of various algorithms on the �California�
graph [4], |V |= 6,107, |E| = 15,160

Iters or Depth Time/itr Clustering Time
LinLog 200 53.7s/itr N/A 10,737s
GVA 400 0.113s/itr N/A 45.5s
FM3 N/A N/A N/A 12.9s
GRIP N/A N/A N/A 1.51s
ACE N/A N/A N/A 0.19s or ∞
HDE N/A N/A N/A 0.19s

Treemap N/A 0.076s 0.655s 0.731s
Hilbert 11 0.0043s 0.655s 0.659s
Peano 6 0.0039s 0.655s 0.659s
Gosper 7 0.0043s 0.655s 0.659s

to the screen with a space lling curve of suf cient order. That is, the
Hilbert curve was order 11, and the Gosper curve was order 7. In all
cases, the layout time is greatly dominated by the initial clustering cal-
culation, just as in the treemap layout. However, this is done of ine
and only once, so that when the user interacts with the graph it can
be updated very quickly. As with the treemap based layout, all three
clusters can be seen clearly in each space lling curve based layout,
and the internals of all three clusters can also be easily seen. Unlike
the treemap based layout, these layouts do not encounter a problem
with skinny clusters, due to the c-locality property of the space ll-
ing curves. While the Hilbert curve does still impose square bound-
aries on the clusters, the effect is much less pronounced than in the
treemap layout. The Gosper curve, on the other hand, imposes no
square boundaries, but it sacri ces lling the entire screen, as it leaves
some space empty around its border. A Peano curve based layout was
also generated, but was very similar in time and quality to the Hilbert
curve based layout, and is omitted due to space constaints.
Overall, only the treemap based layout and the space lling curve

based layouts clearly showed the three separate clusters in the graph.
Further exploration reveals that the three clusters are in fact of different
groups of websites - one for university sites, one for government sites,
and one for all other sites.

4.3 Limitations
While we have shown this approach to be fast and effective at visualiz-
ing dense networks, it does still have some limitations. The approach
as presented here is dependent on a good clustering to generate the
ordering. So, if a dataset has no clear clustering, or if a poor cluster-
ing algorithm is chosen, there is a good chance that this approach will
not work well. In particular, our approach will not perform well on
arti cial �grid-like� graphs, which are prevalent in many graph draw-
ing works. However, many real world networks do actually exhibit
clustering. Finally, the space lling graph layout approach would run
into a problem if the number of nodes matches exactly with the com-
plexity of the space lling curve, as it would suddenly create many
collinear points. For instance, if the number of nodes is exactly 4n for
some n, then the Hilbert curve based layout would place every node
on the corner of the Hilbert curve of order n, resulting in a poor layout.
However, this could be solved by adjusting the spacing factors or ran-
domly jittering the nodes along the curve. While our current cluster
separation approach has been effective on the data sets we have tried,
it would theoretically fail in the pathological case of a graph with two
identically sized clusters that are adjacent in the clustering hierarchy,
as they would have zero spacing between them. However, this situa-
tion is very rare in real world data. While our approach guarantees that
nodes are not placed in exactly the same location, it is still possible for
them to get arbitrarily close, which can be a problem when nodes are
of large or non-uniform size, or if they are being labeled. Finally, a
space lling curve layout might not be as aesthetically pleasing as tra-
ditional force directed layouts, due to the arti cial structure imposed
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by the curve. However, just like the treemap based layout [25], the
space lling curve based layout could be used as an initial layout for
a force directed approach, which would re ne the layout in very few
iterations.

5 FUTURE WORK

While our space lling curve based approach to graph layout is ef-
fective, there are still improvements that can be made. Accounting
for inter-cluster edges is yet to be solved by taking these edges into
account when traversing the hierarchy. Alternately, other matrix or-
dering algorithms could be applied here, in which case the clustering
hierarchy would not be necessary. There are many other space ll-
ing curves which could be explored, such as H-curves and Sierpenski
curves, as some of them have better c-locality than others. Other in-
teractive techniques such as semantic zooming could also be added to
this framework, and they would work well due to the very low amount
of time it takes to recalculate a layout.

6 CONCLUSION
We have described how graph layouts generated through the use of
a space lling curve guarantee several nice properties. Using a clus-
tering algorithm to generate the ordering guarantees that each cluster
is located in a contiguous region of space. Because the curves never
self-intersect, the layout guarantees that graph nodes are never placed
on top of each other. Furthermore, due to the c-locality property of
the space lling curves, this layout guarantees that clusters of nodes
are arranged with a good aspect ratio. The scalability and ef ciency
of space lling curves has been demonstrated using several real world
datasets, and the performance has been compared to seven existing
algorithms. We have shown that this new approach to graph layout
is quite effective at dealing with dense graphs and capable of clearly
presenting features that many other algorithms could not show.
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(a) LinLog - 10,737s (b) GVA - 45.5s (c) FM3 - 12.9s

(d) GRIP - 1.51s (e) ACE - 0.19s (f) HDE - 0.19s

(g) Treemap based - 0.731s (h) Hilbert curve based - 0.659s (i) Gosper curve based - 0.659s

Fig. 8. Space lling curve layouts versus existing layouts. Existing methods (a-f) range from very slow to very fast, and produce layouts of various
qualities, with the faster ones generally producing less aesthetic or less useful layouts, and devoting smaller regions of the screen to the majority of
nodes, which obscures details such as the number of subclusters and their contents. The treemap layout (g) is both fast and effective at showing
structures such as the three distinct clusters in the graph, but introduces problems such as poor aspect ratios. The space lling curve based layouts
(h,i) solve this by guaranteeing good aspect ratios, while also clearly showing the distinct clusters and maintaining speed.
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