
A Rendering Framework for Multiscale Views of 3D Models

Wei-Hsien Hsu∗ Kwan-Liu Ma†

University of California at Davis

Carlos Correa‡

Lawrence Livermore National Laboratory

Figure 1: A continuous multiscale view (right) of a volumetric human body dataset shows three different levels of detail (left three) in a single
image. The image on the right is directly rendered with our multiscale framework.

Abstract

Images that seamlessly combine views at different levels of detail
are appealing. However, creating such multiscale images is not a
trivial task, and most such illustrations are handcrafted by skilled
artists. This paper presents a framework for direct multiscale ren-
dering of geometric and volumetric models. The basis of our ap-
proach is a set of non-linearly bent camera rays that smoothly cast
through multiple scales. We show that by properly setting up a
sequence of conventional pinhole cameras to capture features of
interest at different scales, along with image masks specifying the
regions of interest for each scale on the projection plane, our render-
ing framework can generate non-linear sampling rays that smoothly
project objects in a scene at multiple levels of detail onto a single
image. We address two important issues with non-linear camera
projection. First, our streamline-based ray generation algorithm
avoids undesired camera ray intersections, which often result in
unexpected images. Second, in order to maintain camera ray co-
herence and preserve aesthetic quality, we create an interpolated
3D field that defines the contribution of each pinhole camera for
determining ray orientations. The resulting multiscale camera has
three main applications: (1) presenting hierarchical structure in a
compact and continuous manner, (2) achieving focus+context visu-
alization, and (3) creating fascinating and artistic images.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms;

Keywords: multiscale views, camera model, levels of detail, visu-
alization

Links: DL PDF

∗e-mail: whhsu@ucdavis.edu
†e-mail: ma@cs.ucdavis.edu
‡e-mail: correac@llnl.gov

1 Introduction

This project is motivated by an illustration created by artists at
the Exploratorium in San Francisco. As shown in Figure 3, this
illustration depicts both macro and micro perspectives of the hu-
man circulatory system in a continuous landscape across multiple
scales. The seamless continuity between scales vividly illustrates
how molecules form blood cells, how blood cells are distributed in
a blood vessel, how the blood vessel connects to a human heart, and
where the heart is located in a human body. The astonishment and
fascination evoked by the illustration, along with its high educative
value, won it first place in the illustration category of the 2008 U.S.
National Science Foundation and Science Magazine Visualization
Challenge.

In scientific studies, it is often desirable to illustrate complex phys-
ical phenomena, organic structures, and man-made objects. Many
of these physical structures are hierarchical in nature. Static multi-
scale illustrations are frequently used to convey hierarchical struc-
tures, such as the anatomy of organ systems and the design of en-
gineered architectures, as shown in Figure 2. Large terrain data,
on the other hand, is usually encapsulated in explorable, naviga-
ble interactive systems [McCrae et al. 2009; Google 2010]. An-
imations are also helpful for presenting extremely large datasets

http://doi.acm.org/10.1145/2024156.2024165
http://portal.acm.org/ft_gateway.cfm?id=2024165&type=pdf

(a) (b)

Figure 2: Examples of multiscale illustrations. (a) A hand-drawn illustration by Carol Donner [Bloom et al. 1988], depicting the hierarchical
structure of the human nervous system. (b) A multiscale illustration of the Eiffel Tower using a zoom-in metaphor.

which are difficult for users to navigate directly, such as those con-
sisting of the solar system and the universe [Cosmic Voyage 1996;
The Known Universe 2009].

Figure 3: “Zoom Into the
Human Bloodstream” by
Linda Nye and the Ex-
ploratorium Visualization
Laboratory [Nye 2008].
With permission from
Exploratorium, San Fran-
cisco, CA, USA. All rights
reserved.

Out of the above scenarios, the cre-
ation of multiscale illustrations is the
most challenging because there is no
direct way to project a complex hi-
erarchical 3D scene to a 2D image.
In this paper, we focus on gener-
ating continuous multiscale images.
Unlike traditional multiscale illustra-
tions, in which each scale is dis-
played separately from others (Fig-
ure 2(b)), a continuous multiscale
image shows objects at several lev-
els of detail with smooth object-
space continuity between different
scales. Although multiperspective
rendering has received some atten-
tion [Yu et al. 2008], previous work
has not specifically addressed seam-
less multiscale image rendering.

We introduce a rendering frame-
work which generates and casts non-
linearly bent rays into a 3D scene,
and projects multiple scales of inter-
est onto a single image. Our mul-
tiscale rendering framework consists
of a sequence of pinhole cameras,
each of which captures a view of
interest at a particular scale. The
camera rays for each pixel in the
final projected image are generated
based on a user-defined image mask
which specifies the interesting re-
gions in each view. The rays are
bent gradually from one scale to an-
other to maintain object-space conti-
nuity as well as image-space smooth-
ness. Our framework can be used on
both polygon models and volumetric
data. The resulting views are use-
ful in many contexts. The most di-
rect application is the presentation of

complex hierarchical structures, as shown in Figure 1. Our multi-
scale camera can also achieve a focus+context effect, a technique
frequently used in many visualization applications. Finally, we
show that it can potentially create pictures that mimic artistic or
impossible views of objects or scenes like the kind made by the
artist M. C. Escher.

2 Related Work

Camera projection is fundamental to computer graphics, since ev-
ery 3D scene uses a projection to form a 2D image. As a result,
various camera models have been developed for different scene
modeling and rendering purposes. The General Linear Camera
Model (GLC) developed by Yu and McMillan [2004b] uses three
rays to define the affine combination and to generate other sampling
rays. GLC is capable of modeling most linear projections, including
perspective, orthogonal, push-broom, and crossed-slits projections.
GLC was further extended in the Framework for Multiperspective
Rendering [Yu and McMillan 2004a], which is achieved by com-
bining piecewise GLCs that are constrained by an appropriate set
of rules and interpolated rays that are weighted based on the dis-
tance to the closest fragment in a GLC region. Another type of
camera model uses image surfaces to explicitly specify how sam-
pling rays propagate in a scene [Glassner 2000; Brosz et al. 2007].
In Glassner’s work, rays are defined by only two NURBS surfaces,
whereas Brosz et al. used parametric surfaces to define a flexible
viewing volume, and are thus able to accomplish non-linear pro-
jections such as fish-eye or cylindrical projections. However, al-
though these camera models have employed different methods to
contruct view frusta to achieve either linear or non-linear camera
projections, their approaches focus on the manipulation of a sin-
gle viewpoint and cannot achieve the multiscale projection that we
desire.

Much work has been done on creating non-linear camera projec-
tions. Wang et al. [2005] presented a camera lens technique based
on geometric optics for volume rendering. Camera rays are re-
fracted according to the selected lens type at the image plane be-
fore being shot into the 3D volume. But since the lens is put in
front of the image plane, it can only achieve a limited magnifica-
tion within a single viewing direction. Sudarsanam et al. [2008]
created camera widgets that encapsulate specific aspects of non-
linear perspective changes and allow users to manipulate both the
widgets and their image-space views. Instead of explicitly modify-
ing camera rays, Mashio et al. [2010] introduced a technique that
simulates non-perspective projection by deforming a scene based
on camera parameters. But these two methods focus on revealing
or magnifying multiple different interesting regions in a scene.

The Graph Camera developed by Popescu et al. [2009] introduces
three basic construction operations on the frusta of planar pinhole
cameras (PPC) to connect several viewing regions in a 3D scene.
Similar to the Graph Camera, Cui et al. [2010] introduced the
curved ray camera, which generates a bent view frustum based on
a sequence of PPC’s and provides C1 continuity at the connec-
tions between each PPC segment to circumvent occluders. Both
the Graph Camera and the curved ray camera connect successive
PPC’s by first overlapping the frusta and then binding the piece-
wise trimmed frusta. However, since the PPC’s are bound in a se-

Camera 1

+ + +

Ray
Generator

Renderer...

...

2

...

n

1

Camera 2 Camera n

Figure 4: Dataflow of multiscale rendering. The process starts by
setting up separate pinhole cameras for different scales of view and
image masks which indicate interesting regions in each view. Image
masks are merged into a single image and passed to the camera ray
generator, along with camera information. Non-linear bent rays
are generated accordingly and used to sample the scene.

quential way that one camera is placed after another, the piece-wise
viewing frustum is intrinsically diverging due to the nature of per-
spective projection. Although the Graph Camera supports frustum
splitting and can possibly achieve a convergent viewing frustum by
merging two PPC’s with converging viewing directions, it is hard to
set up PPC’s in this way so as to obtain sufficient multiscale mag-
nification; the curved ray camera only supports sequential frustum
bending and can never achieve a convergent frustum which is essen-
tial in creating multiscale effects. In short, their approaches focus
on revealing hidden objects in a large 3D scene, whereas ours is de-
signed for visualizing multiple levels of detail of the same object.

Other types of multiscale or focus+context rendering include
image-space or object-space deformation. Böttger et al. [2006] pre-
sented a technique for generating complex logarithmic views for vi-
sualizing flat vector data. A similar technique was later employed to
visualize complex satellite and aerial imagery, showing details and
context in a single seamless image [Bttger et al. 2008]. But their
approaches are mainly designed for generating flat cartographic
map projections. Focus+context effects for 3D data can also be
achieved by distorting the object so as to magnify certain focal re-
gions [Carpendale et al. 1996; Wang et al. 2008; Wang et al. 2011].
However, deforming objects can possibly lead to severe distortion
if high magnification is demanded.

3 Multiscale Image Composition

A continuous multiscale image is composed of two types of re-
gions. The first type consists of the ordinary perspective views
at each scale of interest, and the other type consists of the tran-
sitions that smoothly connect views at different scales. An intu-
itive way to create views at multiple scales is to use several pinhole
cameras, with each camera capturing a perspective view at a dif-
ferent scale. In order to render transitions between scales, a naive
approach is to separately render each view and then blend them
together using either an illustration metaphor (as shown in Figure
2(b)), or a seamless image-stitching algorithm, such as the graph cut
[Kwatra et al. 2003] or Poisson image editing [Pérez et al. 2003].
Although the images created by these methods appear to be seam-
less, the underlying content is not continuous in object-space, and
thus can make it difficult for viewers to comprehend the true spatial
relations between scales.

We introduce a multiscale rendering framework that generates cam-
era rays non-linearly cast through all scales of interest. Since the
camera rays in our model are bent coherently and march consis-

Camera 1

Camera 2
Camera 3

Image Plane

Masks

Figure 5: Through careful image mask and camera placement,
camera rays can cast through multiple scales to capture features
of interest.

tently, the objects projected on the image are continuous in both
image-space and object-space. Our approach starts by setting up
several pinhole cameras for viewing different scales of interest, uti-
lizing most users’ ease and familiarity with manipulating ordinary
pinhole cameras. Each camera produces an image of its view. In
order to combine all such views to form a single multiscale image,
we use a user-specified image mask to indicate regions of each view
that the user would like to show in the final image. In other words,
every camera projects only part of its view onto the final image
space, based on a corresponding image mask as shown in Figure 4.

In order to ensure consistency while projecting different camera
viewpoints onto different parts of the image, we force all camera
rays to originate from the first camera, which is the one that has
the largest scale of view. The rest of the cameras define interme-
diate points that camera rays must pass through in order, from the
largest to smallest scales. We use Bézier curves to connect the near-
clipping planes of two successive cameras, as described in the fol-
lowing section. Figure 5 depicts the resulting non-linear viewing
frustrum based on the input pinhole cameras and image masks.

The gray regions between colored regions in Figure 5 are transition
areas where camera rays need to gradually change between nearby
colored regions to maintain ray coherence. Two things are worth
noting when dealing with camera ray bending in transition regions:

Ray intersection. Camera rays that are bent at unequal degrees
have a chance to intersect with one another. Simple ray
direction interpolation such as linear interpolation between
two nearest preserved rays can generate intersecting rays that
might result in the same object being projected onto the image
more than once.

Ray coherence. Adjacent camera rays must be coherent so as to
avoid too much distortion in the resulting image. For example,
camera rays which are emitted from the pixels in a horizontal
scanline should maintain their spatial relationship after bent.

The first issue is directly related to whether sampling rays can
project the scene correctly. The second issue if properly addressed
can minimize distortion and lead to aesthetically appealing view.
We discuss these two issues and our solutions in the next section.

4 Camera Ray Generation

In order to generate camera rays that seamlessly blend the views
specified by the user, we introduce a streamline-based approach. A
key step of this approach is the construction of a vector field based
on the selected views. Rays are derived by tracing streamlines in
this vector field. The process of generating the camera rays is as
follows:

1. Initialize a set of guide curves, which connect a sequence of
camera planes via Bézier curves.

2. Derive the complete vector field that best matches these
curves via minimization.

3. Trace streamlines from each pixel in the image by integrating
the vector field.

4. Each streamline defines the path that light traverses to gener-
ate a multiscale image.

4.1 Camera Setup

The first step in our design is to set up the cameras that generate the
multiscale image. As an input to our process, we define a series of
cameras Ci, defined by a position Ei, a look-at vector Vi, a field
of view fi, an aspect ratio ai and a near clipping distance di, for
i ∈ {1, . . . , N}. Thus, the near clipping plane of each camera Ci

is defined by the point Ei + Vidi and the normal vector Vi, and
the range is determined by the fi and ai. Each camera also has
an user-defined binary mask Ii,x,y which indicates the preserved
viewing regions in its pixel space. As a result, every single pixel
has a position pi,x,y and a ray vector defined by vi,x,y = (pi,x,y −
Ei)/|pi,x,y − Ei|

4.2 Multiscale Frustum Construction

As a preliminary step, we bind successive cameras so that the re-
gions of interest are propagated smoothly along the multiple scales.
In order to do that, we trace Bézier curves between two succes-
sive cameras. More specifically, given an ordering of the cameras
C1, . . . , CN , we bind two cameras Cj and Cj+1 via Bézier curves
Bj,x,y(t) for each pixel pj,x,y , using the pixel positions and ray
directions as their control points:

Bj,x,y(t) =

3
∑

k=0

bk,n(t)Qk (1)

with

Q0 = pj,x,y

Q1 = pj,x,y + vj,x,yβ|pj,x,y − pj+1,x,y|

Q2 = pj+1,x,y − vj+1,x,yβ|pj,x,y − pj+1,x,y|

Q3 = pj+1,x,y

where β controls the distances between the first and latter two con-
trol points (according to our experiments, β = 0.2 gives sufficient
smoothness) and bk,n are the Bernstein polynomials of degree 3.

Figure 6(a) illustrates a pinhole camera with its viewing frustum
highlighted in red. Figure 6(b) shows the ray binding between Cj

and Cj+1 where Cj+1’s rays are extended at the near-clipped end
to couple with Cj’s rays ensuring that every ray originates from
C1. Figure 6(c) depicts ray coupling with the application of image
masks. Note that a ray is curved to the next camera only when it
originates in the region that is assigned to a descendant camera. In
this figure, the red region indicates the preserved view for Cj , and
the blue region indicates the preserved view for Cj+1. As a result,
camera rays in the red region cast linearly, while rays in the blue
region proceed from the near-clipping plane of Cj , march forward
along Bézier curves, which are constructed based on the original ray
directions, and arrive at Cj+1’s clipping plane. Rays then continue
to proceed linearly to capture the view of Cj+1.

4.3 Streamlines as Camera Rays

The previous step defines a series of guiding curves that indicate
how rays should be traced to realize the multiscale camera. How-
ever, we need to ensure that these rays do not intersect and that

(a) (b) (c)

Figure 6: (a) A pinhole camera and its view frustum. (b) The rays
of Cj+1 are extended backward to couple with Cj using Bézier
curves. Small dotted arrows illustrate control points, which are the
original ray orientations of the two views. (c) Different portions of
the rays are assigned to different views based on the image masks.
The red region is marked as a preserved viewing region forCj , blue
is for Cj+1, and the gray region is the transition between the two.
As a result, interesting features of the two views can be seamlessly
shown in the same image.

they are smoothly interpolated in the transition regions. To achieve
this, we think of the problem of camera ray generation as tracing
streamlines from an underlying vector field.

Streamlines are a set of curves which depict the instantaneous tan-
gents of an underlying vector field. A streamline shows the direc-
tion that the corresponding fluid element travels in the field at any
point in space. One characteristic of streamlines is that any two
given streamlines would never intersect each other as long as no
critical points are present [Fay 1994]. If we treat camera rays as
streamlines, we can make use of this characteristic to ensure that no
camera ray intersections can occur.

4.4 Estimating The Vector Field

To derive streamlines for use as multiscale camera rays, we must
first construct the underlying vector field. Since streamlines rep-
resent tracks along values in their vector field, the construction of
the vector field determines the paths of the streamlines. The prob-
lem then becomes: given a set of pinhole cameras and an image
mask, how can we construct a vector field whose streamlines are
distributed identically to the original camera rays in preserved re-
gions, and gradually transition between the interpolated regions?

To achieve this goal, we consider the Bézier curves as an initial set
of streamlines corresponding to an initial guess of the underlying
vector field. A complete curved ray Ri,x,y for camera Ci at pixel
x, y is defined by a set of Bézier curvesBj,x,y where j = 1, . . . , i−
1, and a ray at pi,x,y pointing toward vi,x,y . These viewing rays
are the guideline streamlines used to construct an intermediate ray
field. This vector field X(x ∈ R

3) = (u(x), v(x), w(x)) is built
by filling in the field with the tangent directions of Ri,x,y along the
curves if the rays originate from the region assigned to camera Ci

in its image mask (Ii,x,y = 1) for every set of curved rays R1 to
RN , and zero elsewhere, i.e.,

X(x) =











dRi,x,y(t)

dt
if Ii,x,y = 1, where Ri,x,y(t) = x,

for i = 1, . . . , N

(0, 0, 0) otherwise

(2)

The final vector field Y(x) can be derived by solving an optimiza-
tion problem which ensures that the initial guesses are preserved,
but also that the difference between neighboring points is minimal,
resulting in smooth transitions across all the camera frusta.

There are two ways to formulate this optimization problem: as a
direct vector field optimization problem or as a two-step optimiza-
tion, where we solve for a scalar field first and then fit a vector field
using interpolation.

Camera 1
Camera 2

Camera 1 Camera 2

Without

Mask Field

With

Mask Field

Deviated Camera Rays
Distorted Camera Rays

(a) Without Mask Field (b) With Mask Field (c) Without Mask Field (d) With Mask Field

Camera 1 Camera 2

Figure 7: Comparison of the results from direct vector smoothing and with the use of the scalar field mask. Two camera views with the
corresponding masks are shown in the upper left images. The mask for Camera 1 contains only a small portion of the image area, which
means only the camera rays in this preserved region are used to fill the view vector fields. The side view in (a) and the rear view in (c) point
out that the curved rays generated by using direct vector field smoothing deviate from the expected perspective projection around Camera
1 (highlighted in the blue circle) and cause undesirable distortion (highlighted in the blue arc). (b) and (d) illustrate the coherent rays
generated by interpolating the vector fields based on the smoothed scalar field mask. The resulting images are shown in bottom left.

Vector field optimization. In this case, we formulate the problem
solving an equation that minimizes the following energy function
[Xu et al. 2010]:

ε(Y) =

∫

ε1(Y(x),X(x)) + µε2(Y(x))dx (3)

where

ε1(Y(x),X(x)) = |X(x)|2|Y(x)− X(x)|2

ε2(Y = (u(x), v(x), w(x))) = |∇u(x)|2 + |∇v(x)|2 + |∇w(x)|2

The term ε1(Y(x),X(x)) guarantees that the resulting vector field
Y has exactly the same value as the preliminary field X at points
where X(x) is not zero, and the second term µε2(Y(x)) is min-
imized when the neighboring vectors are identical, thus result-
ing in smooth transitions. The energy equation can be solved
by the generalized diffusion equations described in the fluid flow
literature [Hall and Porsching 1990], and is further discussed in
[Ye et al. 2005; Xu et al. 2010].

Unfortunately, although the resulting vector field satisfies our re-
quirements that streamlines pass through all views in preserved re-
gions, and smoothly transition between preserved regions, stream-
lines in the transitional regions produced by this method may not
preserve the characteristics of camera rays in a natural way. To
take a simple example, suppose we use only one camera, but that
we only assign a small portion of the image mask to the camera.
Since only streamlines marked as originating from the image mask
are used to fill the vector field, the remaining parts of the resulting
smoothed vector field will have the same vectors as the boundary
of the marked region and thus fail to project the expected view to
the original camera. Figure 7 illustrates a case of two cameras. One
can see that the preserved rays for Camera 1 in red only provide
a small amount of view vector information. Thus, the neighboring
vectors on top of the preserved views have false values that lead to a
deviated perspective projection as shown in Figure 7(a). Figure 7(c)
shows that the false vector values also cause a distorted distribution
of the camera rays that often result in a twisted image.

Scalar Field Optimization. To avoid the distortions in the camera
rays, we can alternatively pose the problem as fitting a membership
function (scalar) and use this function to interpolate the initial vec-
tor fields. Similar to the construction of X, we construct an initial
scalar field M(x ∈ R

3)), as shown in Figure 8, where we fill in the

mask values along each streamline.

M(x) =











i if Ii,x,y = 1, where Ri,x,y(t) = x

for i = 1, . . . , N

0 otherwise

(4)

The final scalar field N can be derived by optimizing a 1-D version
of Equation 3:

ε(N) =

∫

ε1(N(x),M(x)) + µε3(N(x))dx (5)

where

ε3(N(x)) = |∇N(x)|2

and ε1(N,M) is defined as before, but for a scalar field.

To derive a final view vector field, we need to construct a set of
intermediate vector fields X1 to XN representing the entire viewing
frusta of C1 to CN , respectively, where each of the vector fields is
defined by Xi(x) = dRi,x,y(t)/dt for Ri,x,y(t) = x. Based on
the smoothed scalar field mask N and the intermediate view vector
fields X1 to XN , we can construct a final view vector field using the
following function:

Ŷ(x) =

∑n

i=1 Xi(x)ω(N(x), i)
∑n

i=1 ω(N(x), i)
(6)

The term ω(N(x), i) is a weighting function that determines the
weight for each view vector field according to the mask scalar field.
For example, the following weighting function performs linear in-
terpolation between two neighboring view vectors:

ω(N(x), i) =

{

1− |N(x)− i| if |N(x)− i| < 1

0 otherwise

Other types of interpolation, such as monotonic cubic interpola-
tion, may be applied to increase the smoothness at the boundaries
of transitional regions, but increasing the smoothness of boundaries
implies a rapid change in the interior of regions. Figures 7(b) and
(d) shows the results of using a scalar field to compute the underly-
ing vector field. Because it eliminates distortion and is more com-
putationally efficient, we employ this method in our results.

Figure 8: When filling the mask scalar
field, we trace only the camera rays in
the corresponding restricted region. The
above example illustrates the case where
the mask value 1 is filled into the scalar
field where the rays of Camera 1 pass
through the corresponding region of the
image mask.

Vector Field Representations of

Viewing Rays for Each Input Camera

Vector
Field
X1

Scalar
Field
M

Scalar
Field
N

Scalar Field
Smoothing

Vector
Field
Xn

. . .

Interpolated
Vector Field

Y

Streamline
Generation

Camera RaysField filling
along streamlines

Filtered streamlines
based on the image mask

1

2

n

Input Cameras

C1

Cn

Ray

Streamlines

R1

Rn

Data flow

Image mask

Figure 9: The process of camera ray generation using scalar field optimization. Input cam-
era rays are taken as streamlines and used to construct view vector fields X1 to XN . At the
same time, a scalar field M is filled with the mask value along the filtered streamlines based

on the image mask. Ray streamlines are generated upon the view vector field Ŷ, which is
derived by interpolating Xi according to the smoothed scalar field N.

4.5 Streamline Generation

The final step is to generate streamlines from the vector field Ŷ.
Since streamlines are used to simulate camera rays, each stream-
line should pass through a pixel on the projection plane (the near-
clipping plane of Camera 1). Therefore, we take the position of the
pixel on the projection plane as seed points to trace streamlines us-
ing the Runge-Kutta method. Once we have all of the streamlines,
we can render the final image using these streamlines as sampling
rays. The entire ray generation process is summarized in Figure 9.

5 Implementation Details

To implement vector field smoothing and streamline generation, we
need to construct a 3D volume of the vector field that encloses the
entire space, including all objects and camera frusta. This means
we only have a finite number of vector field samples. As a result,
the resolution of the volume directly affects the accuracy of stream-
line integration. This resolution issue becomes especially essential
when streamlines are used to cast through multiscale objects, and
hence it is imperative to use multi-resolution volumes to achieve
adaptive vector sampling.

Rendering 3D scenes with the generated non-linear rays can be
done at interactive frame rates thanks to GPU acceleration. How-
ever, the iterative process for solving Equation 5 to produce a
smooth vector field is computationally expensive. Depending on
the desired resolution for calculating the vector field, the computa-
tion time varies from a fewminutes to several hours. For example, it
takes about two hours to compute the vector field in a 3203 resolu-
tion volume for creating Figure 1, using an Intel Core 2 Duo E6600,
2.4 GHz CPU. Parallelization or GPU acceleration can significantly
reduce the computational time.

5.1 Ray Tracing

Because our rendering framework requires modification of the cam-
era ray directions, we choose ray tracing as the rendering method.
However, most popular raytracers only support linear sampling rays
in ray-object intersection tests. In order to achieve non-linear ray
tracing, we divide the generated curved rays into line segments and
perform piecewise linear ray-object intersection tests.

Our method is also capable of performing multisampling ray trac-
ing to obtain high quality anti-aliasing images. We first divide all
the rays into equal numbers of line segments for subpixel sampling.

When rendering using multisampling, a subpixel sampling point is
determined by averaging the four neighboring points at the corre-
sponding line segments with random weights. The final color can
be derived by averaging the sampled colors within a pixel. We ex-
tend the last line segments as infinite linear rays to cast through the
rest of the scene. Since the ray directions are altered, some of the
rays might intersect with each other at certain points. This is ac-
ceptable because the intersections only occur outside the regions of
interest and thus cause little effect on the projection.

5.2 Volume Ray Casting

For volume data, we use ray casting to sample data values along
with transfer functions (TFs) to achieve direct volume rendering.
Ray casting, by nature, requires a traversal of the data structure,
and thus simplifies the implementation of a non-linear ray march-
ing algorithm. However, interesting features in volume datasets are
usually hard to segment clearly, and in many cases important fea-
tures are wrapped in opaque surrounding volumes. For example,
in the human body dataset as shown in Figure 1, organs are em-
bedded in the epidermis and other tissues. Even though the camera
rays are bent to couple with the views at small scales, the first thing
that the rays hit is the skin. In such cases, the multiscale sampling
rays result in a magnified view of the outer skin, and the interesting
features such as the heart and blood vessels are all occluded.

In order to clearly visualize the features at different scales, we apply
different TFs to the same object while sampling rays with different
mask values. TFs define RGBA colors corresponding to data inten-
sities. In other words, TFs define how color and opacity represent
data on the screen. In our system, users are allowed to specify sep-
arate TFs for each camera viewpoint so as to obtain better views
at different scales. During ray casting, TFs between different views
are interpolated based on the smoothed mask values to achieve con-
tinuous color transitions. The left three images in Figure 1 show
three camera views with different TFs applied to the same dataset.

6 Discussion

We have introduced a new capability for creating novel views of 3D
models. Figure 10 provides a direct comparison between the results
using an image-based approach and our vector field and scalar field
optimization. The image-based result in (a) is produced by sepa-
rately rendering three views and then manually stitching them with
the aid of the graph cut algorithm. As a result, the resulting image

(a) Image based approach (b) Vector field optimization (c) Scalar field optimization

Figure 10: Comparison between the results using an image-based
approach, the vector field optimization, and the scalar field opti-
mization. (a) The image-based approach slightly changes the ob-
ject’s spatial relations due to the image overlaps and graph cut. (b)
The vector field optimization can result in undesired distortion, e.g.
the left shoulder and arterioles around the heart. (c) The two-step
scalar field optimization provides a better control of the smoothness
and exhibits good ray coherence.

does not depict the true relations of the human body and the inner
organs. As described in Section 4.4, direct vector field smoothing
can easily result in distorted or deviated camera rays, which then
reflect on a false camera projection, such as the left shoulder and
arterioles around the heart in (b). The illustration in (c) is created
by using our two-step scalar field optimization.

In our approach, the vector field is initialized from a set of Bézier
curves, which smoothly connect the near clipping planes of each
pair of successive cameras. It follows that if a smooth path can be
traced between these planes, no intersection occurs as long as the
directions of successive cameras do not differ by more than 90 de-
grees. This is not an actual limitation, since we can stack a number
of cameras together to bend the rays in extreme ways. The final vec-
tor field is constructed from a weighted average of intermediate ray
fields. But since the final streamlines are traced in this global vector
field, the streamlines by definition should not intersect. However, in
cases where the frusta of non-consecutive cameras intersect, critical
points could appear, which may distort the image dramatically. One
solution is to constrain the camera placement to avoid such cases.

6.1 Limitations

Although our approach can generate non-linear sampling rays for
direct multiscale rendering simply based on a set of conventional
pinhole cameras and image masks, the quality and beauty of the fi-
nal image are highly dependent on users’ efforts in selecting image
masks and camera viewpoints. Here we provide four guidelines:
1) Objects projected in each view must have coherent spatial rela-
tionships to be able to create reasonable transitions. In other words,
avoiding large difference in viewing directions between successive
cameras is preferable. 2) Design of image masks directly affects
relative positions of each view as well as available space for tran-
sitional regions. Even for the same set of camera views, resulting
images can be quite different when different image masks are ap-
plied. As a result, the preserved regions in image masks should cor-
respond to the relative positions of multiscale viewpoints. 3) Con-
tradictory preserved views can result in undesirable images. For
instance, rays in two preserved views that already intersect would
cause unexpected problems while filling values in the scalar field.
In such cases, users need to adjust the near-clipping and far-clipping
distances of viewpoints to maintain the exclusivity of preserved
views. 4) Since Bézier curves are constructed at each pixel po-

(a) Camera 1 (b) Camera 2 (c) Camera 3

(d)

Camera 1

Camera 2

Camera 3

(f)(e) Large-FOV perspective

Figure 11: Galleon dataset. (a)-(c) show three camera viewpoints
and the corresponding masks at different scales, from an overview
of a Spanish galleon to a teapot held by a pirate on the galleon.
The brightened parts of the three images are the user-specified
preserved regions, whereas the darkened regions are transition re-
gions. (d) shows the relative positions of the three pinhole cameras
and the galleon. The resulting multiscale image is shown in (f). (e)
is a normal perspective view with a large field of view (FOV) which
creates a fisheye-like effect. But even though the large FOV con-
tains parts of the galleon body, the viewer can hardly tell the actual
shape of the galleon due to the bad view angle.

sition, rays would be pretty dense when passing through a small
near-clipping plane of a camera and could increase the difficulty of
accurately integrating streamlines in the vector field. So a larger
near-clipping distance is usually better for vector field generation.

Adequate volume resolution for vector field calculation is also a
crucial factor in producing high quality multiscale images using our
method. Insufficient volume resolution would result in a lack of de-
tail in streamlines at small scales, and noticeable errors in project-
ing preserved views. In Section 5 we mentioned the use of multi-
resolution volumes. However, discontinuous vector fields at junc-
tions between different resolutions also introduce slight streamline
perturbations, sometimes resulting in perceivable artifacts in pro-
jected images. In order to derive more coherent streamlines, higher-
order vector sampling strategies at resolution junctions are needed
to reduce streamline discontinuities.

Finally, our multiscale rendering framework supports both polygon
models and volume datasets. However, most popular raytracers do
not support non-linear ray tracing because ray-object intersection
tests are much trickier for non-linear rays. Therefore, a custom ray-
tracer is required to fully apply our framework to geometric scenes.

6.2 Applications

Presenting hierarchical structures. Our current design demon-
strates attractive results and suggests several interesting uses. As
mentioned earlier, multiscale images are especially useful in pre-
senting objects with hierarchical structures. Showing continuous
multiscale views in the same image helps viewers comprehend the
spatial relationship between scales. Figure 4 illustrates three differ-
ent scales: the upper body, the heart, and the aorta in a human body
volume dataset, in three separate viewpoints. The brightened re-
gions in the left three images are the corresponding preserved areas
that are specified by the user in each view. Notice that the trans-
fer functions applied to the dataset in each of the three views are

Figure 12: Left: Two camera views that show a city skyline and
a building interior, respectively. Right: our multiscale image of
the same 3D city model. Inspired by M. C. Escher’s Print Gallery
[1956], our rendering mimics the multiscale nature of his drawing.

slightly different to show interesting features more effectively. The
resulting multiscale image is shown in Figure 1.

Focus+context effect. Most focus+context rendering algorithms
redirect a portion of camera rays in order to achieve partial magni-
fication. Since ray direction alterations in these models are based
on single cameras, view directions of the magnified portions are
basically the same as of the context. However, features at different
scales usually require different viewpoints to best show interesting
details. In our multiscale camera model, users can specify desired
viewpoints for each scale. In addition, our model is also able to
handle multilevel focus+context rendering, since users can set up
more than two cameras, with each of them capturing different lev-
els of detail. Creating multiple magnified regions is also possible,
although our current rendering framework is designed for zoom-
ing along a single viewing path. We believe our ray generation
approach can support multiple magnified regions by slightly mod-
ifying the way that pinhole cameras are connected so that camera
rays can be cast differently in different image regions. But multiple
magnified regions also imply more complex viewing frusta and a
high potential for conflicting or intersecting viewing rays, and thus
require a more thoughtful camera placement and mask design.

Figure 11 shows an example of focus+context rendering. In this 3D
model, a pirate is standing in the crow’s nest on top of the mast of
the galleon holding a teapot. The top three images (a)-(c) in Figure
11 are three different camera viewpoints showing different levels
of detail in the scene. The side view in Figure 11(d) provides an
overview of the scene that depicts the relative positions and scales
of the three cameras and the model. Based on the three camera
views, the resulting image in Figure 11(f) clearly shows a continu-
ous view from the whole galleon to the pirate on the mast and the
teapot in his hand. Despite the significant difference in scales, our
multiscale camera model makes it possible to show an overview of
the galleon as well as a detailed view of the text on the teapot in a
single continuous image. Figure 13(b) demonstrates focus+context
rendering with greatly differing view angles between focus and con-
text views. Camera 1 provides a bird’s-eye view directly above the
stag beetle, while Camera 2 shows a closeup view of the front of the
beetle. The resulting image on the right combines both an overview
of the beetle’s body and a focused view of the beetle’s oral cavity
in a single, continuous image.

Artistic rendering. Multiscale rendering techniques may also be
applied in many works of art in order to create novel views. In

(a)

Camera 1

Camera 2

(b)

Figure 13: Stag beetle volume dataset. (a) The image on the
right creates a focus+context effect, simultaneously and seamlessly
showing both an overview of the stag beetle and a closeup view of
one of its limbs. The multiscale view is created using the two cam-
era viewpoints shown on the left. (b) Another focus+context view
illustrates the body of the stag beetle from a bird’s-eye view and
zooms to its head in a front view.

addition to showing different levels of detail, multiple scales in a
single illustration help guide the viewer’s eye towards interesting
parts of the image. Many works by the mathematician and artist
M. C. Escher are good examples of multiscale images. Figure 12
shows our rendering result using a 3D city model. In this figure,
we try to mimic the multiscale nature of his well-known illustration
Print Gallery [Escher 1956]. To generate this image, we combined
views of the city skyline and the building interior to create a smooth,
curved transition between indoor and outdoor areas. We placed im-
age masks in the upper portion of the the first viewpoint (Figure 12,
top left) to provide a perspective view of the surrounding buildings,
and in the bottom left corner of the second viewpoint (Figure 12,
bottom left) to capture interior details. Our framework then gener-
ates a smooth transition between the two viewpoints accordingly.

7 Conclusion and Future Works

We present a novel rendering framework model for creating con-
tinuous multiscale views of 3D geometric models and volumetric
data. Almost all appealing multiscale illustrations are handcrafted
by skilled artists. As we have shown, it is attractive to blend mul-
tiscale views of complex structures in a single static picture. Fur-
thermore, even for a single object such as the stag beetle shown in
Figure 13, multiscale views can be applied to achieve focus+context

rendering and to highlight interesting parts of the data. Finally, our
multiscale rendering framework may also be used to emulate mul-
tiscale illustrations of objects and scenes that are previously only
created by artists and physically impossible or expensive to create.

There are a number of directions for future work especially to in-
crease the usability and robustness of this new rendering technol-
ogy. First, the implementation of a custom raytracer would fully
enable multiscale rendering of geometric scenes using our camera
model. Automatic viewpoint placement is another interesting topic
to explore. Instead of specifying viewpoints and corresponding im-
age masks, users select features of interest with respect to properties
such as shape, size, location, etc. With proper constraints, camera
views could be automatically determined using the properties and
spatial relations of user-specified features, without resulting in un-
desirable artifacts. Finally, it is also possible to create animated
views by allowing selected view points to move.

Acknowledgements

This work was sponsored in part by the U.S. National Science
Foundation through grant CCF 0811422, and the U.S. Depart-
ment of Energy through the SciDAC program with Agreement No.
DE-FC02-06ER25777. Data courtesy of the National Institutes of
Health, the Institute of Computer Graphics and Algorithms, the Vi-
enna University of Technology, and 3D Warehouse of Google Inc.

References

BLOOM, F. E., NELSON, C. A., AND LAZERSON, A. 1988. Brain,
Mind, and Behavior. W. H. Freeman and Company, 41 Madison
Avenur, New York, NY 10010.

BÖTTGER, J., BALZER, M., AND DEUSSEN, O. 2006. Com-
plex logarithmic views for small details in large contexts. IEEE
Transactions on Visualization and Computer Graphics 12, 5,
845–852.

BROSZ, J., SAMAVATI, F. F., SHEELAGH, M. T. C., AND SOUSA,
M. C. 2007. Single camera flexible projection. In Proceedings
of the 5th international symposium on Non-photorealistic ani-
mation and rendering, ACM, New York, NY, USA, NPAR ’07,
33–42.

BTTGER, J., PREISER, M., BALZER, M., AND DEUSSEN, O.
2008. Detail-in-context visualization for satellite imagery. Com-
puter Graphics Forum 27, 2, 587–596.

CARPENDALE, M. S. T., CARPENDALE, T., COWPERTHWAITE,
D. J., AND FRACCHIA, F. D. 1996. Distortion viewing tech-
niques for 3-dimensional data. In Proceedings of the 1996 IEEE
Symposium on Information Visualization (INFOVIS ’96), IEEE
Computer Society, Washington, DC, USA, 46–53.

COSMIC VOYAGE, 1996. http://www.imdb.com/title/

tt0115952/, National Air and Space Museum.

CUI, J., ROSEN, P., POPESCU, V., AND HOFFMANN, C. 2010. A
curved ray camera for handling occlusions through continuous
multiperspective visualization. IEEE Transactions on Visualiza-
tion and Computer Graphics 16 (November), 1235–1242.

ESCHER, M. C., 1956. Print gallery. http://www.mcescher.
com/Gallery/recogn-bmp/LW410.jpg.

FAY, J. A. 1994. Introduction to fluid mechanics. MIT Press,
Cambridge, MA.

GLASSNER, A. S. 2000. Cubism and cameras free-form optics for
computer graphics. Tech. Rep. MSR-TR-2000-05, Microsoft.

GOOGLE, 2010. Google earth. http://earth.google.com.

HALL, C. A., AND PORSCHING, T. A. 1990. Numerical Analysis
of Partial Differential Equations. Prentice Hall, Engelwood.

KWATRA, V., SCHÖDL, A., ESSA, I., TURK, G., AND BOBICK,
A. 2003. Graphcut textures: image and video synthesis using
graph cuts. ACM Trans. Graph. 22, 3, 277–286.

MASHIO, K., YOSHIDA, K., TAKAHASHI, S., AND OKADA, M.
2010. Automatic blending of multiple perspective views for aes-
thetic composition. In Proceedings of the 10th international con-
ference on Smart graphics, Springer-Verlag, Berlin, Heidelberg,
SG’10, 220–231.

MCCRAE, J., MORDATCH, I., GLUECK, M., AND KHAN, A.
2009. Multiscale 3d navigation. In I3D ’09: Proceedings of the
2009 symposium on Interactive 3D graphics and games, ACM,
New York, NY, USA, 7–14.

NYE, L., 2008. Zoom into the human bloodstream. Available
at http://www.nsf.gov/news/special_reports/

scivis/winners_2008.jsp.

PÉREZ, P., GANGNET, M., AND BLAKE, A. 2003. Poisson image
editing. ACM Trans. Graph. 22, 3, 313–318.

POPESCU, V., ROSEN, P., AND ADAMO-VILLANI, N. 2009. The
graph camera. In SIGGRAPH Asia ’09: ACM SIGGRAPH Asia
2009 papers, ACM, New York, NY, USA, 1–8.

SUDARSANAM, N., GRIMM, C., AND SINGH, K. 2008. Non-
linear perspective widgets for creating multiple-view images. In
NPAR ’08: Proceedings of the 6th international symposium on
Non-photorealistic animation and rendering, ACM, New York,
NY, USA, 69–77.

THE KNOWN UNIVERSE, 2009. http://www.amnh.org/

news/2009/12/the-known-universe/, American Mu-
seum of Natural History.

WANG, L., ZHAO, Y., MUELLER, K., AND KAUFMAN, A. 2005.
The magic volume lens: an interactive focus+context technique
for volume rendering. 367–374.

WANG, Y.-S., LEE, T.-Y., AND TAI, C.-L. 2008. Focus+context
visualization with distortion minimization. IEEE Transactions
on Visualization and Computer Graphics (Proceedings of IEEE
Visualization 2008) 14, 6, 1731–1738.

WANG, Y.-S., WANG, C., LEE, T.-Y., AND MA, K.-L. 2011.
Feature-preserving volume data reduction and focus+context vi-
sualization. IEEE Transactions on Visualization and Computer
Graphics 17, 2, 171–181.

XU, L., LEE, T.-Y., AND SHEN, H.-W. 2010. An information-
theoretic framework for flow visualization. IEEE Transactions
on Visualization and Computer Graphics 16, 1216–1224.

YE, X., KAO, D., AND PANG, A. 2005. Strategy for seeding 3d
streamlines. Visualization Conference, IEEE 0, 60.

YU, J., AND MCMILLAN, L. 2004. A framework for multiper-
spective rendering. In Rendering Techniques, 61–68.

YU, J., AND MCMILLAN, L. 2004. General linear cameras. In
ECCV (2), 14–27.

YU, J., MCMILLAN, L., AND STURM, P. 2008. Multiperspec-
tive modeling, rendering, and imaging. In SIGGRAPH Asia ’08:
ACM SIGGRAPH ASIA 2008 courses, ACM, New York, NY,
USA, 1–36.

http://www.imdb.com/title/tt0115952/
http://www.imdb.com/title/tt0115952/
http://www.mcescher.com/Gallery/recogn-bmp/LW410.jpg
http://www.mcescher.com/Gallery/recogn-bmp/LW410.jpg
http://earth.google.com
http://www.nsf.gov/news/special_reports/scivis/winners_2008.jsp
http://www.nsf.gov/news/special_reports/scivis/winners_2008.jsp
http://www.amnh.org/news/2009/12/the-known-universe/
http://www.amnh.org/news/2009/12/the-known-universe/

