StarGate: A Unified, Interactive Visualization
of Software Projects

Michael Ogawa*

Kwan-Liu Maf

Visualization & Interface Design Innovation (VIDi) Research Group
University of California, Davis

ABSTRACT

With the success of open source software projects, such as Apache
and Mozilla, comes the opportunity to study the development pro-
cess. In this paper, we present StarGate: a novel system for vi-
sualizing software projects. Whereas previous software project vi-
sualizations concentrated mainly on the source code changes, we
literally place the developers in the center of our design. Develop-
ers are grouped visually into clusters corresponding to the areas of
the file repository they work on the most. Connections are drawn
between people who communicate via email. The changes to the
repository are also displayed. With StarGate, it is easy to look be-
yond the source code and see trends in developer activity. The sys-
tem can be used by anyone interested in the project, but it especially
benefits project managers, project novices and software engineering
researchers.

Keywords: Software Visualization, Information Visualization,
Social Networks

Index Terms: K.6.1 [Management of Computing and Informa-
tion Systems]: Project and People Management—Systems develop-
ment; H.5.2 [Information Interfaces and Presentation (e.g., HCI)]:
User Interfaces—Graphical User Interfaces (GUI)

1 INTRODUCTION

In software projects with many contributors, it is essential to have
a version control system to keep track of the code and allow for
simultaneous editing. It is the job of the system to manage files
and handle the reconciliation of changes. Version control systems
in use today include CVS and Subversion. The activity occurring
in software repositories is a challenge to visualize because there are
many people making many changes to many files. In other words,
the repository keeps track of many variables, such as which files
were edited, when they were edited, who edited them, and what
changes were made. The status quo tool for navigating a repository
is a text-based browser, such as ViewVC [1]. Though these are use-
ful to see details about the repository, they cannot see the “forest”
of the project through the “trees” of files.

In a large, open source software project, developers are often
distributed around the world. In order to communicate amongst
themselves, the developers often maintain a shared email list. We
can use data from this mailing list (an archive of which is usually
made publicly available in open source projects) to infer a social
network between developers.

Our goal is to use information visualization techniques to assist
the user in understanding the complex interactions between devel-
opers and software repositories. We also want to aid in understand-
ing the evolution of the software project over time. To this end

*e-mail: msogawa@ucdavis.edu
Te-mail: ma@cs.ucdavis.edu

IEEE Pacific Visualisation Symposium 2008
4 - 7 March, Kyoto, Japan
978-1-4244-1966-1/08/$25.00 ©2008 |IEEE

we have developed StarGate: a system which visualizes the code
repository and social network of developers associated with a soft-
ware project in one integrated representation.

Our system benefits different users in distinct ways:

Project Novices People just starting to work on an existing project
will want to know who is working on specific areas of the code
in order to ask them questions. Focusing questions towards
a specific group of developers should yield a more thorough
answer and bother less people.

Project Managers Those in charge of overseeing software
projects naturally want an overview in order to understand the
complex interactions between software and people. Our sys-
tem can show them the contributions made by specific people
and how the developers are allocated among the files in the
repository.

Software Engineering Researchers Researchers in academia are
interested in finding the relationships between project organi-
zation and the source code. For example, they may ask the
question: “Do two authors who communicate with each other
tend to work on the same areas of source code?” Our appli-
cation can help them visualize the answers to this and other
questions.

In designing our system, we have combined several information
visualization techniques in a unique and visually pleasing way. We
use the center of a radial space-filling hierarchy to display a node-
link network representation, rather than just empty space. The net-
work is not only inside the hierarchy, but also linked to it through
the node positions. In doing so, our application shifts the focus of
software repository visualizations from the typical file- and source
code-centric view to an author-centric view. We offer a variety of
views of the data: from overviews of the relations between people
and the evolution of the project, to details of the changes made to
program files. StarGate incorporates these views in an aesthetic and
compact fashion.

2 RELATED WORK

Our visualization of software projects relates to software reposi-
tories and developer social networks. In this section we discuss
previous work in these areas.

2.1 Software Repository Visualizations

For the most part, software repository visualization has focused on
the files and source code rather than the developers. A good ref-
erence for the progress in software visualization can be found in
Storey et al.’s survey paper [18]. In this section we will discuss
visualizations which are not covered in [18] or are particularly rel-
evant to our application.

A more recent application, Augur [12], uses the SeeSoft [11]
paradigm of line-by-line source code visualization and adds visu-
alizations of developer activity. These additional visualizations are

191

192

located in separate inset windows and linked to the main visualiza-
tion. Our application seeks to unify the different information in one
view.

Visual Insights” ADVIZOR, described in [10], offers more views
of the software change process. These include matrix, cityscape
and network views. The user can display multiple views at a time,
referred to as “perspectives.” However, it lacks a unified view that
links the information in the same space.

CVSscan [20] uses a visualization similar to History Flow [19] to
depict the evolution of code. CVSgrab [2] visualizes the evolution
of software files.

ViewVC [1] is “a browser interface for CVS and Subversion ver-
sion control repositories.” It allows for textual exploration of the
directories, changes to files, and developer logs. There is even a
tool for highlighting the differences between file versions. Unfor-
tunately there are no visualizations of the repository activities.

The Cenqua Fisheye! is a commercial software tool for visually
interacting with software repositories. Like ViewVC, it lets users
easily navigate the directories and files. The interface is rich with
textual information, however the graphical displays are limited to
line charts and histograms. They are able to display, for each file,
the line count over time and the edit volume over time. The Cenqua
Fisheye gives detailed information at the file and source code level,
but not an overview of the entire project, such as which authors are
interested in which areas of the repository.

Burch et al. visualized the Mozilla software project in [5]. Their
approach, however, did not take developers into account, but visual-
ized the binary association rules between files with visual constructs
such as pixelmaps and parallel coordinates.

The GEVOL system, described in [9] visualizes graphs inherent
in a software system. These structures include inheritance graphs,
call graphs, and control flow graphs. They display a series of time
steps in the life of the system. Their specialized layout algorithm
preserves the mental map of the system so that comparisons be-
tween timesteps are easier for the user.

The Software Development Bloom [13] should be considered
author-centric because its main axis is used for authors. However,
it does not provide detailed information about the activities of the
authors. Bloom sorts the contributors by their activity type (code
vs. comment) and presents them as wedges in a circular layout. It
gives information on the amount of recent code/comment activity
of people, but not what they coded/commented.

File repository visualization has mostly been file- and source
code-centric. Our approach is author-centric.

2.2 Software Social Networks

Social networks are currently a hot topic in visualization. Our work
specifically relates to software social networks.

Bird et al. [3] extracted and analyzed the email network of the
Apache project. They found that the network has small-world prop-
erties and obeys a power law. Ogawa et al. [16] subsequently cre-
ated an evolving network visualization of the same data. They
found links between the communication activity on the mailing list
and development activity in the source code.

While StarGate also includes a social network visualization, it is
complemented by and linked to the software repository structure.

2.3 Visual Design

StarGate’s visual paradigm was inspired by the work of Livnat et
al [14]. Their VisAlert application places a node-link network rep-
resentation in the center of a table of events wrapped into the form
of a ring. We improve upon their design in several aspects.

First, we strongly link the positioning of the central information
to the surrounding rings. That is, the author nodes in the center

Uhttp://www.cenqua.com/fisheye

Stardust

Figure 1: A typical view of StarGate.

circle are pulled towards the areas of the file repository that they
tend to work on. This positioning is more useful than, say, a force-
directed layout because we can group programmers by code ex-
pertise. Then, when the mailing list connections are drawn be-
tween programmers, we can see the communication patterns be-
tween groups. Second, the information in the ring surrounding the
central network of authors is hierarchical rather than tabular. Third,
we introduce an outer layer of file information beyond the inner
hierarchical rings.

3 DATA SOURCES

The system is designed to work with the following data: the soft-
ware repository and the project mailing list archive.

3.1 Version Control Repository

In large open source software projects, it is necessary to have a
version control system. This system keeps track of revisions and
allows for the simultaneous editing of files. For testing our applica-
tion, we use the data from public CVS and Subversion servers. This
data includes the directory hierarchy and file modification records.
Each file modification record includes who edited the file, when it
was edited, and how many lines were added or removed.

3.2 Project Email List Archive

Since the software projects we are interested in are open source, the
developers are distributed throughout the world. In order to com-
municate with each other, the project members utilize an email list,
which can be examined through a publicly available online archive.
The data we use in this paper was gathered from the Apache and
PostgreSQL projects, as described in [3]. The dataset is a list of
all emails containing sender, receiver and time information. Emails
which are replies are considered to be connections between sender
and receiver. Thus the mailing list can be thought of as a network
of project participants.

4 A TOUR OF STARGATE

In this section we will guide you through StarGate’s various com-
ponents.

—
st?;" Lepy

i :
- &

.
U]

Figure 2: The Gate component. This is the directory hierarchy of the
PostgreSQL version control repository. The documents directory is
colored green (at the top) and the source code directory is colored in
various shades of blue.

4.1 The Gate (The Ring of Directories)

The Gate forms the base of the visualization. To visualize the soft-
ware repository directory structure, we use a space-filling radial hi-
erarchy. This visual representation was first proposed by [8] and re-
fined by [17] and [22], among others. We chose this representation
because, as demonstrated later, it allows us to pack more coherent
information both inside and outside.

The inner-most ring of the Gate represents the root of the direc-
tory structure. From here, the levels of the hierarchy grow outwards
from the center as concentric ring slices (Figure 2). The size of the
slices is proportional to the number of files within that directory,
including the subdirectories. Thus a large directory’s ring slice will
span more radii than a small directory’s.

If there is enough room in a ring slice, the directory name appears
inside of it. For smaller directories, hovering over them with the
mouse will display the directory name in a popup.

The user can change the size, shape and color of the Gate (Fig-
ure 3). The size of the ring thickness and center radius can be in-
creased or decreased with slider interfaces. Directory ring slices
can be colored by the user, with the color percolating through the
subdirectories. The directories in the Gate can also be used to se-
lect developers who have made contributions to the files contained
within.

4.2 The Stars (Developers in the Center)

In the center of the Gate, the developers are represented as col-
ored circles, or “stars.” The size of each star is proportional to the
number of file modifications the developer has performed. Stars
are positioned according the areas of the repository the developers
have worked on. For example, if a developer has worked mostly
in the directories appearing on the right-hand side of the Gate, then
they will be positioned to the right of center, towards the right-hand
side of the Gate. This use of positioning allows the observer to
see, at a glance, the developers concentrating on specific areas of
the repository. The spatial grouping of developers working on the
same areas of the repository naturally leads to clustering. The user

(a) Larger rings (b) Larger radius

(c) Colored rings

Figure 3: Varied Gate visual parameters.

can easily see, for example, those who have focused their work on
the documentation.

4.2.1

The position of a developer’s star is determined by which files he
or she has modified and where those files are located in the reposi-
tory hierarchy. The star is “pulled” towards areas of the repository
in which there is more development activity. The placement algo-
rithm is similar to [15]’s anchored maps method, but differs in that
we weight the anchored connections and only draw links within the
social network. To calculate the appropriate placement of the star in
regards to this notion, we use the centroid of the surrounding mod-
ified files. Let p be the developer whose star we want to place. Let
F,, be the set of files that p has modified. Also, define the function
position(f) to return the coordinate on the surrounding ring which
file f is assigned to. Then the equation for the position of developer

pis

Details of Star Positions

) ZfeF,, position(f)
centroid, = T
P

We consider that each file may not be equally important to the
person who modifies them. For this reason, we weight the “pull” of
each file by the number of times it was modified (committed) by a
person. This introduces the function changed(f, p), which returns
the number of times file f was modified by person p.

Y fer, [position(f) - changed(f, p)]
Y. rer, changed(f,p)

weighted-centroid,, =

Note that each file position is on a circle, so the weighted cen-
troid of any set of files cannot be outside the circle. A problem may
arise, discussed further in section 6, with the misinterpretation of a
star’s position for an unusual file modification pattern.

193

194

Figure 4: The developer stars, sized in proportion to their project con-
tributions. The top cluster (green) is the documenters. The bottom
cluster (red) is the core developers. The blue stars in the middle have
been selected. Their network connections are colored.

4.2.2 Star Interaction

Brushing over the each star with the cursor displays the developer
name next to their star in a popup. More robust interaction can be
accomplished as follows.

Initially, all stars are the same color (e.g. blue in the figures).
They are uniformly colored (rather than, say, randomly assigned a
color) because we expect the user to use color as an analysis tool.
The user can choose the color for each star by right-clicking and
selecting “Color” from the popup menu. The user may also assign
a color to a group of stars by selecting “Color Group” from the
menu.

Left-clicking on a star selects it. Multiple stars may be selected
by dragging a box around the desired ones (i.e. rubber banding).
Selected stars are differentiated from unselected stars by the fol-
lowing properties:

e They are distinguished by a visible halo.
e The developer name is displayed beside them (optional).

e Their connections are shown in the social network as constel-
lations (Section 4.2.3).

e Their file edit history is shown as stardust (Section 4.3).
e During time animation, they leave a visible trail (Section 4.5).

With many stars visible in the center, it may be difficult to find
a specific person. We provide a text field for the user to enter a
name or part of a name. All stars containing the text entered by
the user are then selected. The user can also select stars based on
files. The user can enter the name of a file in another text field and
all developers who have modified that file (or those files, if the text
matches more than one file) are selected.

4.2.3 Constellations: Developer Connections

The center area is also used to visualize the social network of devel-
opers. Initially, there are no visible edges between the stars. When

Figure 5: Positioning the stars. The positions are determined by
the weighted centroid of the files the developer has modified. More
modifications to a file means more weight is given to a file.

the user selects any star, the star’s neighbor edges are displayed and
colored according to star color. Additionally, when multiple stars
are selected, opaque edges between the selected developers who are
also connected in the social network are drawn (Figure 4).

The entire social network can also be viewed via a slider that
controls the opacity of the edges. Initially the opacity value is zero
(completely transparent), but the user can increase it to show all the
connections at once.

Other social network visualizations, such as [10], have used a
force-directed algorithm to layout the nodes. Our method has sev-
eral advantages over the force-directed approach:

e Our placement is deterministic. That is, the positions of the
stars for a given dataset remain the same every time the pro-
gram is run. Force-directed methods start with a random
placement and refine the layout from there.

e [t is easy to find a group of developers. Simply examine the
stars in proximity to the area of interest in the repository.
Since a force-directed layout changes every time it is run, the
resulting star positions will very likely not be linked to the
repository.

e We are able to show both development and communication
relationships between people, instead of only the communi-
cation relationships. The positions of the stars imply the de-
velopement relationships: clusters of stars work on the same
general areas of the repository. The edges between the stars
show the communication relations: an edge means two peo-
ple have corresponded through the email list. A force-directed
layout only clusters based on the communication network.

e Since it is not an iterative process, our weighted positioning
runs faster than a force-directed layout.

4.3 The Stardust (The Outer Ring of Edit History)

The outer ring of stardust (Figure 6) represents the files which se-
lected authors have modified. Each file’s edit history is placed along
a thin line extending from its place in the directory hierarchy. It can
be thought of as a timeline, with the earliest events towards the cen-
ter and later events towards the outside. Edits are represented as
dots along the timeline. So edits occurring at the beginning of the
project will be on the inner side of the ring and later edits will be to-
wards the outside. The color of the dot is the same as the star color
of the developer who modified it. So an early developer will have

(a) Stardust

(b) Detail

Figure 6: The stardust. Each line represents a file. Each colored dot
on the line represents a change to the file. Dot color corresponds to
the developer that made that change. Time flows radially outward.

dots towards the inside and a later developer will have dots towards
the outside. Initially, the stardust is not visible. When authors are
selected via the stars, the files they have modified are visible as
stardust.

The first impression the stardust gives the user is the amount
of files the developer has modified. A developer with very little
activity will not have much stardust to show for it, while a busy
developer will have a lot of stardust. The second piece of informa-
tion gleaned from the stardust is when the developer modified the
files. One interesting pattern emerges when developers have bursts
of activity, shown as a circular arc through the files (Figure 7). An-
other pattern emerges when developers take “vacations” from the
project, showing lots of activity at one time, then a break with no
modifications, then more activity later. This is seen as bursts of
color interrupted by grey.

4.4 File Details

Once the user has selected stars and examined the related stardust,
she or he may want to view details about the files in the repository.
Clicking on one of the stardust spokes will pop up a file details dia-
log window (not shown). In this window there is a table containing
the file modification history. The history is a list of modification
events. Each event includes a developer name, date, number of
lines added and number of lines removed.

4.5 Time Travel

The project timeframe does not necessarily have to be from the very
beginning of the project to the most current time in the dataset. With
the time slider, located at the bottom of the window, the user can
change the latest time in order to see project evolution. Changing
the time affects the stardust (only file modifications up to the cho-
sen time are shown) and the positions of the stars (because future
developer modifications are not included in the calculations).

With the press of a button, the time can be incremented automat-
ically as an animation. The user will see the stars move around as
the developers work on different areas of the source code repository
(Figure 8). The stardust will increase as the number of file changes
increase.

StarGate also has the option to track the movement of stars dur-
ing an animation, which we call star trails. At each time step, the
position of a selected star is recorded in a list. A line is displayed
connecting all of the star’s previous positions along with the star’s

Figure 7: Three bursts of longitudinal activity in the /docs/icons/
directory. This indicates that the files in the directory were all modi-
fied at about the same time. In chronological order, they were made
by Roy T. Fielding (red), Martin Kraemer (yellow) and Jean-Jacques
Clar (blue).

current position, much like the tail of a comet (Figure 9). In this
way the user can see a developer’s history within the repository.

5 CASE STUDY: THE APACHE PROJECT

We now present a case study using data pertaining to the Apache
project. This data was collected by the authors of [3] and details
of the process can be found in their paper. The Apache project
dataset contains 72 developers, 188 directories and 4,019 files. The
data spans eight years: from July 3, 1996 to November 14, 2004.
Note that the project actually started in 1995—one year before the
earliest time in our dataset.

The project management is a meritocracy, meaning that people
who have contributed useful code are allowed to have more free-
dom to contribute. Developers are classified as part of the Project
Management Committee—the group with the most authority—or as
committers.

We start with an examination of the Gate, showing the reposi-
tory hierarchy (Figure 10). It is divided into two major sections:
/docs/ at the top and /srclib/ at the bottom. With this in
mind, we can also see that the stars in the center are divided roughly
into two major clusters. We color the top cluster green and the bot-
tom cluster red for clarity in all images of Figure 11. Figure 11(a)
has the core developer cluster highlighted. We can see that their
communications network is quite dense; it appears that everyone in
the group talks to everyone else. Contrast this with Figure 11(b)
where only the documenters at the top are highlighted. Their net-
work is sparse, meaning that documenters tend to not talk to each
other. But interestingly, when we highlight both clusters in Fig-
ure 11(c), we can see that the documenters talk with the core devel-
opers a good deal.

Examining the star trails in Figure 9, we found that some core
developers (shown in red) started their work on the project in the
documents directory; then they moved down to the source code
area. The documenters (shown in green), on the other hand, stayed
within the documents area. The star trails also showed that many

195

196

Figure 8: Evolution of the Apache project. Documenters are colored green and core developers are colored red. Other developers are colored
blue. We can tell by the red trails that some core developers start as documenters but not vice versa.

Figure 9: Star trails in the Apache project. While some core develop-
ers (in red) started at the top and moved down, the documenters (in
green) stayed more or less in the same area.

core developers started work in the modules section of the source
code before moving to the center. Therefore, we think that pro-
gramming a module may be a good way to get “in” with the core
developers.

In exploring the dataset, we have found that Ralf S. Engelschall
has done a lot of development on the SSL module in May of 2001,
but did not communicate with anyone else (Figure 12(b)). His work
in May was also the only work he did on that particular area of the
repository.

In previous sections we have stated that StarGate is useful for
project novices, managers and software engineering researchers.
We will now consider how each of them may use StarGate.

e Novices can see which developers are working in their area
of interest, so as to contact them with queries. For example,
one who wishes to work on a module can ask for help from
developers in the lower-left quadrant.

e Project managers can, by selecting a star, tell how much work
that person has been doing and in what area, all the way down
to the file modification details. They may also make discover-
ies about communications, such as the two we made above.

e Software engineering researchers will find the animation and

Figure 10: Overview of the Apache project at the latest timestep. The
documentation directory and documenters have been colored green.
The source code directory and core developers have been colored
red.

star trails helpful in visualizing the evolving project and de-
velopers’ tendencies. They can see the amount of repository
changes grow over time and correlate them with the commu-
nications network.

5.1 Comparison with PostgreSQL

Our second software dataset is of the PostgreSQL project. There
are 28 developers working with 4108 files in 277 directories. We
can see in Figure 13 that there is no clear distinction between doc-
umenter and core developer stars, as the only cluster exists in the
center. By selecting people who have worked on the /docs/ di-
rectory, then comparing with the people who have worked on the
/src/ directory, we confirm that most people work a good deal
on both. This is perhaps due to the smaller size of the development
team and the esoteric knowledge needed to document a database
management system.

We also find that there is a fair amount of communication oc-
curring between developers on the “outside” of the core group. In
Figure 14, we have selected people (colored yellow) close to the
edge of the center circle, away from the core group.

(a) Core developers’ dense network (b) Documenters’ network

(bottom group, in red) (top group, in green)

sparse

(c) Both groups

Figure 11: Clusters of Apache contributors and their communications
networks. (a) The core developers form a dense communications
network. (b) The documenters form a sparse network. (c) The docu-
menters talk to the core developers, but not amonst themselves.

6 DIscuUsSION AND FUTURE WORK

As described in Section 4.2, the positions of the stars is determined
by the order of the Gate rings. The hierarchy is set by the repository,
but sibling directories may be ordered in any way. That poses the
question: Will a bad ordering of sibling directories in the Gate lead
to bad star positions? It is theoretically possible to determine the
best ordering of directories in order to achieve the best possible dis-
tribution of stars. However, there are some problems with this: 1)
The meaning of the “best” distribution is in question. Is the goal to
have the most separation of stars, or the tightest clustering? 2) Is it
worth the time it takes to run an energy-minimizing-type algorithm
on the directories? The case study in Section 5 seems to suggest
that the stars are generally placed in positions adequate for mak-
ing visual inferences. 3) By changing the ordering of directories, a
programmer familiar with the structure may become confused.

The StarGate design works well as an overview, but lacks the
seamless integration of file details. How should the user transition
from seeing the project overview to viewing details, such as the
source code and file modification history? We may be able to add
a fourth visual layer of information beyond the stardust, wherein
the details of a selected file or files are displayed. The information
within the layer cannot, however, precisely convey 100% of the data
in the file modification events, since a good deal of text is needed.
Therefore, a visual abstraction of the file history could be possible.

The cluttered graph labelling problem is the bane of many in-
formation visualizations and we are no exception. The solution of-
fered by Wong et al. in [21], which is wrapping the labels around
the node, is compelling. However, it does not solve the problem of
labelling stars that are extremely close to each other.

For the communications network representation, though the user
has the ability to interactively select the point in time and even an-
imate through time steps, it only shows one point in time in the
network. What we would like is to have a representation which

(a) The activity of Ralf S. Engelschall

(b) All SSL developers

Figure 12: Comparison of Ralf S. Engelschall (left) to other develop-
ers who worked on the SSL module (right). Note that Ralf did not
communicate using the mailing list.

presents the user with a sense of the history of communication be-
tween developers. Time-varying network representations have been
discussed in previous work like [4], [6], [7] and [16]. However,
none of these representations are suitable for integration into Star-
Gate.

Ultimately, we would like to use more data from the repository
in our application; especially the source code itself. This should
lead to a robust application for practical use in development. The
goal is for developers to use the improved StarGate on a daily basis,
complementing or even replacing command-line systems like CVS
and Subversion.

One aspect of software repositories we have not addressed is the
changes in directory structure over time. We have chosen instead
to show the most up-to-date version of the repository. This is be-
cause, as the directories move, so too would the stars, leading to
a misinterpretation of the star trails during a time-lapse animation.
We have therefore dropped support for directory structure changes
in favor of the more important developer evolution.

7 CONCLUSION

We have presented StarGate: a system for visualizing software de-
velopment. StarGate is a novel way to visualize a software repos-
itory because it focuses on the authors rather than the source code.
It provides an overview of a software project for developers, man-
agers and researchers. We have presented a case study of our sys-
tem in use, visualizing the Apache web server project and compar-
ing it to the PostgreSQL project. Our system was able to discover
development patterns, such as core developers starting out as docu-
menters and periodic, longitudinal modifications of file groups.

A visual paradigm like StarGate’s, with a network of actors sur-
rounded by the artefacts they work on, is not limited to software
engineering applications. One could visualize a collaboration of
music artists in the center of their song catalogs. Or participants
in an online forum, organized by its hierarchy, responding to one
another in the center. The possiblities for visualizing complex net-
work and hierarchical data using StarGate are compelling.

ACKNOWLEDGEMENTS

This work was sponsored in part by the U.S. National Science
Foundation and the U.S. Department of Energy’s SciDAC program.
The authors wish to thank Premkumar Devanbu, Christian Bird and
Alex Gourley for providing the software project datasets and their
valuable feedback.

REFERENCES

[1] Viewvc. http://www.viewvc.org/.
[2] Visual code navigator, http://www.win.tue.nl/ lvoinea/ven.html.

197

198

Figure 13: The PostgreSQL project. The current timestep is Feb. 6,
2006. The top two contributors (blue and red) are selected. There is
no clear distinction between documenters and core developers.

[3]

(4]

(71

[10]

[11]

[12]

[13]

C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan. Min-
ing email social networks. In MSR "06: Proceedings of the 2006 inter-
national workshop on Mining software repositories, pages 137-143.
ACM Press, 2006.

U. Brandes and S. R. Corman. Visual unrolling of network evolu-
tion and the analysis of dynamic discourse. Information Visualization,
2(1):40-50, 2003.

M. Burch, S. Diehl, and P. Weigerber. Visual data mining in software
archives. In SoftVis '05: Proceedings of the 2005 ACM symposium on
Software visualization, pages 37-46. ACM Press, 2005.

C. Chen and S. Morris. Visualizing evolving networks: Minimum
spanning trees versus pathfinder networks. InfoVis, 00:9, 2003.

E. H. Chi, J. Pitkow, J. Mackinlay, P. Pirolli, R. Gossweiler, and S. K.
Card. Visualizing the evolution of web ecologies. In CHI '98: Pro-
ceedings of the SIGCHI conference on Human factors in computing
systems, pages 400-407. ACM Press/Addison-Wesley Publishing Co.,
1998.

M. Chuah. Dynamic aggregation with circular visual designs. In Pro-
ceedings IEEE Symposium on Information Visualization 1998, pages
3543, 1998.

C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and K. Wampler. A system
for graph-based visualization of the evolution of software. In SoftVis
’03: Proceedings of the 2003 ACM symposium on Software visualiza-
tion, pages 77—ff. ACM Press, 2003.

S. G. Eick, T. L. Graves, A. F. Karr, A. Mockus, and P. Schuster.
Visualizing software changes. IEEE Trans. Softw. Eng., 28(4):396—
412, 2002.

S. G. Eick, J. L. Steffen, and J. Eric E. Sumner. Seesoft-a tool for
visualizing line oriented software statistics. /[EEE Trans. Softw. Eng.,
18(11):957-968, 1992.

J. Froehlich and P. Dourish. Unifying artifacts and activities in a vi-
sual tool for distributed software development teams. In /ICSE ’'04:
Proceedings of the 26th International Conference on Software Engi-
neering, pages 387-396. IEEE Computer Society, 2004.

B. Kerr, L.-T. Cheng, and T. Sweeney. Growing bloom: design of
a visualization of project evolution. In CHI ’06: CHI 06 extended
abstracts on Human factors in computing systems, pages 93-98. ACM
Press, 2006.

Figure 14: PostgreSQL. Selecting the developers on the periphery
(i.e. not the core), we see that there is a fair amount of communica-
tion happening between them.

(14]

[15]

(16]

(17]

[18]

[19]

[20]

[21]

[22]

Y. Livnat, J. Agutter, S. Moon, and S. Foresti. Visual correlation
for situational awareness. In INFOVIS ’05: Proceedings of the Pro-
ceedings of the 2005 IEEE Symposium on Information Visualization,
page 13. IEEE Computer Society, 2005.

K. Misue. Drawing bipartite graphs as anchored maps. In APVIS "06:
Proceedings of the Asia Pacific symposium on Information visualisa-
tion, pages 169—177. Australian Computer Society, Inc., 2006.

M. Ogawa, K.-L. Ma, P. Devanbu, C. Bird, and A. Gourley. Visualiz-
ing social interaction in open source software projects. In APVIS’07:
Proceeding of the 2007 Asia-Pacific Symposium on Visualisation,
pages 25-32. IEEE Computer Society, 2007.

J. Stasko and E. Zhang. Focus+context display and navigation tech-
niques for enhancing radial, space-filling hierarchy visualizations. In
INFOVIS 00: Proceedings of the IEEE Symposium on Information
Vizualization 2000, page 57. IEEE Computer Society, 2000.

M.-A. D. Storey, D. Cubranic’, and D. M. German. On the use of
visualization to support awareness of human activities in software de-
velopment: a survey and a framework. In SoftVis '05: Proceedings of
the 2005 ACM symposium on Software visualization, pages 193-202.
ACM Press, 2005.

F. B. Viégas, M. Wattenberg, and K. Dave. Studying cooperation and
conflict between authors with history flow visualizations. In CHI "04:
Proceedings of the SIGCHI conference on Human factors in comput-
ing systems, pages 575-582. ACM Press, 2004.

L. Voinea, A. Telea, and J. J. van Wijk. Cvsscan: visualization of code
evolution. In SoftVis '05: Proceedings of the 2005 ACM symposium
on Software visualization, pages 47-56. ACM Press, 2005.

P. C. Wong, P. Mackey, K. Perrine, J. Eagan, H. Foote, and J. Thomas.
Dynamic visualization of graphs with extended labels. In INFOVIS
’05: Proceedings of the Proceedings of the 2005 IEEE Symposium on
Information Visualization, page 10. IEEE Computer Society, 2005.

J. Yang, M. O. Ward, and E. A. Rundensteiner. Interring: An interac-
tive tool for visually navigating and manipulating hierarchical struc-
tures. In INFOVIS "02: Proceedings of the IEEE Symposium on Infor-
mation Visualization (InfoVis’02), page 77. IEEE Computer Society,
2002.

